From 8582a8802c9ce995ca533594dbe9333ac6574554 Mon Sep 17 00:00:00 2001 From: Karsten Kruse <karsten.kruse@tuhh.de> Date: Thu, 29 Apr 2021 14:29:51 +0000 Subject: [PATCH] Resolve "typo in reference" and further small adaptions --- ...lace_transforms_for_generalised_functions_and_the_ACP.md | 6 +++--- topics/Linearisation_of_vector-valued_functions.md | 4 ++-- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/topics/Laplace_transforms_for_generalised_functions_and_the_ACP.md b/topics/Laplace_transforms_for_generalised_functions_and_the_ACP.md index 24f207a..5fef6c0 100644 --- a/topics/Laplace_transforms_for_generalised_functions_and_the_ACP.md +++ b/topics/Laplace_transforms_for_generalised_functions_and_the_ACP.md @@ -33,7 +33,7 @@ We study Fourier and Laplace transforms for Fourier hyperfunctions with values i [3] H. Komatsu. Laplace transforms of hyperfunctions -- A new foundation of the Heaviside calculus. *J. Fac. Sci. Univ. Tokyo, Sect. IA*, 34:805--820, 1987. doi: [10.15083/00039471](https://doi.org/10.15083/00039471). -[4] K. Kruse. Vector-valued Fourier hyperfunctions. PhD thesis, Universität Oldenburg, 2014. URN: [urn:nbn:de:gbv:715-oops-19095](http://nbn-resolving.org/urn:nbn:de:gbv:715-oops-19095) +[4] K. Kruse. Vector-valued Fourier hyperfunctions. PhD thesis, Universität Oldenburg, 2014. URN: [urn:nbn:de:gbv:715-oops-19095](http://nbn-resolving.org/urn:nbn:de:gbv:715-oops-19095). [5] K. Kruse. Vector-valued Fourier hyperfunctions and boundary values, 2019. [arXiv:1912.03659](https://arxiv.org/abs/1912.03659). @@ -43,8 +43,8 @@ We study Fourier and Laplace transforms for Fourier hyperfunctions with values i [8] M. Langenbruch. Asymptotic Fourier and Laplace transformations for hyperfunctions. *Stud. Math.*, 205(1):41--69, 2011. doi: [10.4064/sm205-1-4](https://doi.org/10.4064/sm205-1-4). -[9] G. Lumer and F. Neubrander. The asymptotic Laplace transform: New results and relation to Komatsu’s Laplace transform of hyperfunctions. In F. Mehmeti, J. von Below, and S. Nicaise, editors, *Partial differential equations on multistructures*, volume 219 of *Notes Pure Appl. Math.*, 147--162, Dekker, New York, 2001. doi: [10.1201/9780203902196](https://doi.org/10.1201/9780203902196) +[9] G. Lumer and F. Neubrander. The asymptotic Laplace transform: New results and relation to Komatsu’s Laplace transform of hyperfunctions. In F. Mehmeti, J. von Below, S. Nicaise, editors, *Partial differential equations on multistructures*, volume 219 of *Notes Pure Appl. Math.*, 147--162, Dekker, New York, 2001. doi: [10.1201/9780203902196](https://doi.org/10.1201/9780203902196) [10] M. Sato. Theory of hyperfunctions, I. *J. Fac. Sci. Univ. Tokyo, Sect. IA*, 8:139--193, 1959. doi: [10.15083/00039918](https://doi.org/10.15083/00039918). -[11] M. Sato. Theory of hyperfunctions, II. *J. Fac. Sci. Univ. Tokyo, Sect. IA*, 8:387--437, 1960. doi: [10.15083/00039916](https://doi.org/10.15083/00039916). \ No newline at end of file +[11] M. Sato. Theory of hyperfunctions, II. *J. Fac. Sci. Univ. Tokyo, Sect. IA*, 8:387--437, 1960. doi: [10.15083/00039916](https://doi.org/10.15083/00039916). diff --git a/topics/Linearisation_of_vector-valued_functions.md b/topics/Linearisation_of_vector-valued_functions.md index cb2808f..e321036 100644 --- a/topics/Linearisation_of_vector-valued_functions.md +++ b/topics/Linearisation_of_vector-valued_functions.md @@ -31,7 +31,7 @@ Let $\Lambda$ be a subset of $\Omega$ and $G$ a linear subspace of $E'$. Let $f\ ## References [1] A. Grothendieck. Produits tensoriels topologiques et espaces nucléaires. *Mem. Amer. Math. -Soc. 16*. AMS, Providence, RI, 1966. doi: [10.1090/memo/0016](https://doi.org/10.1090/memo/0016). +Soc. 16*. AMS, Providence, RI, 1955. doi: [10.1090/memo/0016](https://doi.org/10.1090/memo/0016). [2] K. Kruse. Surjectivity of the $\overline{\partial}$-operator between spaces of weighted smooth vector-valued functions, 2018. [arXiv:1810.05069](https://arxiv.org/abs/1810.05069). @@ -55,4 +55,4 @@ Soc. 16*. AMS, Providence, RI, 1966. doi: [10.1090/memo/0016](https://doi.org/10 [12] K. Kruse. Series representations in spaces of vector-valued functions via Schauder decompositions. *Math. Nachr.*, 294(2):354--376, 2021. doi: [10.1002/mana.201900172](https://doi.org/10.1002/mana.201900172). -[13] L. Schwartz. Espaces de fonctions différentiables à valeurs vectorielles. *J. Analyse Math.*, 4:88--148, 1955. doi: [10.1007/BF02787718](https://doi.org/10.1007/BF02787718). \ No newline at end of file +[13] L. Schwartz. Espaces de fonctions différentiables à valeurs vectorielles. *J. Analyse Math.*, 4:88--148, 1955. doi: [10.1007/BF02787718](https://doi.org/10.1007/BF02787718). -- GitLab