diff --git a/.gitignore b/.gitignore index 9966e5dedccd1e6f3b1c2487f81414818fa5ec88..dbf00749ff3e11de4e3c36e4d895807d10c58b8d 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,7 @@ build/* +*/build local/* public/* *.html +*.log + diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 1dbb26c00bf3fad21d6a01cacef321e0bf9ed235..6d13d7aa5ddb9dfc97de6a0fe37194602274d377 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -2,8 +2,28 @@ # Full project: https://gitlab.com/pages/plain-html # +stages: + - preprocessor-test + - preprocessor-run + - pandoc-run + - deploy + +testing: + stage: preprocessor-test + allow_failure: false + image: + name: alpine:latest + script: + - apk add --no-cache --upgrade bash + - RESEARCH_ROOT=`pwd`; export RESEARCH_ROOT; + # run shell script with testss + - $RESEARCH_ROOT/bin/run-tests.sh + artifacts: + paths: + - testing/*.log + preprocessing: - stage: build + stage: preprocessor-run allow_failure: false image: name: alpine:latest @@ -11,14 +31,13 @@ preprocessing: - apk add --no-cache --upgrade bash - RESEARCH_ROOT=`pwd`; export RESEARCH_ROOT; # preprocess .MD files - - $RESEARCH_ROOT/bin/preprocIndexMd.sh - - $RESEARCH_ROOT/bin/preprocMd.sh + - $RESEARCH_ROOT/bin/preproc_topics.sh artifacts: paths: - build pandoc: - stage: test + stage: pandoc-run dependencies: [preprocessing] image: name: pandoc/latex:latest diff --git a/bin/buildWebpage.sh b/bin/buildWebpage.sh index 4fc6f9b39b7907516b3090bb8dcd1dd232f399cf..32895c47bf673b044ef15b75697424abf2f68e74 100755 --- a/bin/buildWebpage.sh +++ b/bin/buildWebpage.sh @@ -9,8 +9,7 @@ rm -rf $BUILD_DIR rm -rf $DEPLOY_DIR/{.public,public} #build Index -$BIN_DIR/preprocIndexMd.sh -$BIN_DIR/preprocMd.sh +$BIN_DIR/preproc_topics.sh $BIN_DIR/buildPandoc.sh #make public directory and copy files diff --git a/bin/extract_title.sh b/bin/extract_title.sh new file mode 100755 index 0000000000000000000000000000000000000000..b82222ede38c5b7d0916e23df630331cf86bc24f --- /dev/null +++ b/bin/extract_title.sh @@ -0,0 +1,6 @@ +#!/bin/bash +# extract title of research topic + +filename=$(basename -- "$1") + +echo "## `head -n 1 $1 | sed -e "s;#\s*;\[;g" -e "s;\(.*\);\1\](${filename%.md}.html);g"`" \ No newline at end of file diff --git a/bin/preproc_staff.sh b/bin/preproc_staff.sh new file mode 100755 index 0000000000000000000000000000000000000000..059fbd3ec34ea8b4a5e4495134016000e2b636bd --- /dev/null +++ b/bin/preproc_staff.sh @@ -0,0 +1,70 @@ +#!/bin/bash +# preproc_staff.sh +# Preprocessor for staff keys in .md topic file +# Replaces key fgabel by "Fabian Gabel, M.Sc." according to Webpage content +# If Build_dir is passed, titles are appended to corresponding files +# Note: mat.tuhh.de uses WINDOWS-1252 character encoding + +# processing command line arguments +if [ $# -lt 2 ] +then + RESEARCH_BUILD=`pwd`"/build" + echo -e "No building directory was specified." +else + RESEARCH_BUILD="$2" +fi +mkdir -p $RESEARCH_BUILD +echo -e "Building into directory $RESEARCH_BUILD ..." + +filename=$(basename -- "$1") +baseurl='https://www.mat.tuhh.de' +#make output copy +echo "Preprocessing $filename..." +if [ -f "$RESEARCH_BUILD/$filename" ] +then + echo "File exists, performing preprocessing in place" +else + cp $1 $RESEARCH_BUILD/$filename +fi + +#extract title of topic +echo "Extracting title of $1..." +title=`./extract_title.sh $RESEARCH_BUILD/$filename` +echo "Title of Topic: $title" + +# start preprocessing +# -- leave original untouched, only work with copy in $RESEARCH_BUILD +echo "Preprocessing collaborators in file $RESEARCH_BUILD/$filename ..." +namelist=`grep -h -i -m 1 -r "###\s*Collaborators (MAT):" $RESEARCH_BUILD/$filename | sed -e 's/^###\s*Collaborators (MAT):\s*//I' -e 's/\s*,\s*/\n/g' | sort -u` +echo "Found the following keys: " $namelist +echo "Replacing collaborator keys ..." +for name in $namelist +do + # pipeline to get full name of staff-member from mat-homepage + # -> wget the staff homepage of $name + # -> grep the line with the <h1>-tag, something like <h1>Fabian Gabel, M. Sc.</h1><div class='staffIntro'><p><img src='/home/fgabel/images/portrait.png' title='Foto von Fabian Gabel, M. Sc.' class='staffPicture'></p><div class='staffContact'> + # -> strip the string such that only the portion between <h1></h1> remains + # -> remove leading spaces + wget -qO- $baseurl/home/$name/?homepage_id=$name > page.html + iconv -f WINDOWS-1252 -t UTF-8 ./page.html > ./utf.html + fullname=`grep h1 ./utf.html | sed -e "s/<h1>\s*\(.*\)<\/h1>.*$/\1/g" | sed -e 's/^[ \t]*//'` + rm -rf {utf,page}.html + + echo "Found collaborator $fullname" + + # replace name in .md file + sed -i "s;$name;\[$fullname\]($name.html);g" $RESEARCH_BUILD/$filename + #sed -i "s;$name;\[$fullname\]($baseurl/home/$name);g" $RESEARCH_BUILD/$filename #uncomment this line for linking the mat.tuhh.de webpage + + # delete external collaborators if left empty + sed -i -e '/###\s*Collaborators (External):\s*$/ d' $RESEARCH_BUILD/$filename + + if [ $# -gt 1 ] + then + # append research to staffile + echo -e "\n$title\n" >> $RESEARCH_BUILD/$name.md + fi +done + +# adpat img path (prefix a dot) +sed -i "s;\](/img/;\](./img/;g" $RESEARCH_BUILD/$filename \ No newline at end of file diff --git a/bin/preproc_topics.sh b/bin/preproc_topics.sh new file mode 100755 index 0000000000000000000000000000000000000000..e270adf35b3843270cdf196b1b29e188e482a2cd --- /dev/null +++ b/bin/preproc_topics.sh @@ -0,0 +1,45 @@ +#!/bin/bash + +RESEARCH_BUILD="$RESEARCH_ROOT/build" +rm -rf $RESEARCH_ROOT/build + +mkdir -p $RESEARCH_BUILD +baseurl='https://www.mat.tuhh.de' + +#build index.html +#replace working group +cp $RESEARCH_ROOT/index.md $RESEARCH_BUILD/index.md +$RESEARCH_ROOT/bin/preproc_wg.sh $RESEARCH_BUILD/index.md $RESEARCH_BUILD >> $RESEARCH_BUILD/build.log 2>&1 + +#replace staff names +$RESEARCH_ROOT/bin/preproc_staff.sh $RESEARCH_BUILD/index.md $RESEARCH_BUILD >> $RESEARCH_BUILD/build.log 2>&1 + +#finalize file +sed -i "s;\](/img/;\](./img/;g" $RESEARCH_BUILD/index.md + + +#build rest of the topics +for f in $RESEARCH_ROOT/topics/*.md +do + echo $f + filename=$(basename -- "$f") + #make output copy + echo "Preprocessing $filename..." + cp $f $RESEARCH_BUILD/$filename + + #extract title of topic + title=`./extract_title.sh $RESEARCH_BUILD/$filename` + echo "Preprocessing topic $title" + + # append research topic to index + echo -e "\n$title\n" >> $RESEARCH_BUILD/index.md + + #replace working group + $RESEARCH_ROOT/bin/preproc_wg.sh $RESEARCH_BUILD/$filename $RESEARCH_BUILD >> $RESEARCH_BUILD/build.log 2>&1 + + #replace staff names + $RESEARCH_ROOT/bin/preproc_staff.sh $RESEARCH_BUILD/$filename $RESEARCH_BUILD >> $RESEARCH_BUILD/build.log 2>&1 + + #finalize file + sed -i "s;\](/img/;\](./img/;g" $RESEARCH_BUILD/$filename +done \ No newline at end of file diff --git a/bin/preproc_wg.sh b/bin/preproc_wg.sh new file mode 100755 index 0000000000000000000000000000000000000000..125d3220fa8eb7231bf0b1d1d09d0ea2ddec9cca --- /dev/null +++ b/bin/preproc_wg.sh @@ -0,0 +1,56 @@ +#!/bin/bash +# preproc_staff.sh +# Preprocessor for staff keys in .md topic file +# Replaces key fgabel by "Fabian Gabel, M.Sc." according to Webpage content +# If Build_dir is passed, titles are appended to corresponding files +# Note: mat.tuhh.de uses WINDOWS-1252 character encoding + +# processing command line arguments +if [ $# -lt 2 ] +then + RESEARCH_BUILD=`pwd`"/build" + echo -e "No building directory was specified." +else + RESEARCH_BUILD="$2" +fi +mkdir -p $RESEARCH_BUILD +echo -e "Building into directory $RESEARCH_BUILD ..." + +filename=$(basename -- "$1") +baseurl='https://www.mat.tuhh.de' +#make output copy +echo "Preprocessing $filename..." +if [ -f "$RESEARCH_BUILD/$filename" ] +then + echo "File exists, performing preprocessing in place" +else + cp $1 $RESEARCH_BUILD/$filename +fi + +#extract title of topic +echo "Extracting title of $1..." +title=`./extract_title.sh $RESEARCH_BUILD/$filename` +echo "Title of Topic: $title" + +# start preprocessing +# -- leave original untouched, only work with copy in $RESEARCH_BUILD +# replace working group +echo "Replacing working group keys..." +namelist=`grep -h -i -m 1 -r "###\s*Working Groups:" $RESEARCH_BUILD/$filename | sed -e 's/^###\s*Working Groups:\s*//I' -e 's/\s*,\s*/\n/g' | sort -u` +echo "Found the following keys: " $namelist +for wg in $namelist +do + #extract full name from tuhh-webpage + fullname=`wget -qO- $baseurl/forschung/$wg | grep h1 | sed -e "s;<h1>\s*\(.*\)</h1>.*$;\1;g" | sed -e 's;^[ \t]*;;'` + + echo "Found working group $fullname" + + # append research to wg-file + if [ $# -gt 1 ] + then + echo -e "\n$title\n" >> $RESEARCH_BUILD/$wg.md + fi + + sed -i "s;### Working Groups:\(.*\)$wg\(.*\);### Working Groups:\1\[$fullname\]($wg.html)\2;g" $RESEARCH_BUILD/$filename + #sed -i "s;### Working Groups:\(.*\)$wg\(.*\);### Working Groups:\1\[$fullname\]($baseurl/forschung/$wg)\2;g" $RESEARCH_BUILD/$filename #uncomment this line for linking the mat.tuhh.de webpage +done \ No newline at end of file diff --git a/bin/run-tests.sh b/bin/run-tests.sh new file mode 100755 index 0000000000000000000000000000000000000000..f123fb3d34f85912a3a106c07db9a0bf09a4d8b4 --- /dev/null +++ b/bin/run-tests.sh @@ -0,0 +1,66 @@ +#!/bin/bash + +# set environment variable for testing dir +RESEARCH_TESTING=$RESEARCH_ROOT/testing +rm -rf $RESEARCH_TESTING/*.log + +#BEGIN Test 1: Preprocessor for Staff +rm -rf $RESEARCH_TESTING/build +echo "Test 1: Preprocessor for staff keys" +$RESEARCH_ROOT/bin/preproc_staff.sh $RESEARCH_TESTING/aperiodSchr.md $RESEARCH_TESTING/build >> $RESEARCH_TESTING/testing.log 2>&1 +DIFF=$(diff $RESEARCH_TESTING/build/aperiodSchr.md $RESEARCH_TESTING/aperiodSchr-preproc.md) +if [ "$DIFF" != "" ] +then + echo "Test 1: failed" + exit 1 +else + echo "Test 1: passed." +fi +#END Test 1 + +#BEGIN Test 2: Preprocessor for Working Group +rm -rf $RESEARCH_TESTING/build +echo "Test 2: Preprocessor for staff keys" +$RESEARCH_ROOT/bin/preproc_wg.sh $RESEARCH_TESTING/aperiodSchr.md $RESEARCH_TESTING/build >> $RESEARCH_TESTING/testing.log 2>&1 +DIFF=$(diff $RESEARCH_TESTING/build/aperiodSchr.md $RESEARCH_TESTING/aperiodSchr-preproc-wg.md) +if [ "$DIFF" != "" ] +then + echo "Test 2: failed" + exit 1 +else + echo "Test 2: passed." +fi +#END Test 2 + +#BEGIN Test 3: Preprocessor Staff then Working Group +rm -rf $RESEARCH_TESTING/build +echo "Test 3: Preprocessor for staff and working group keys" +$RESEARCH_ROOT/bin/preproc_staff.sh $RESEARCH_TESTING/aperiodSchr.md $RESEARCH_TESTING/build >> $RESEARCH_TESTING/testing.log 2>&1 +$RESEARCH_ROOT/bin/preproc_wg.sh $RESEARCH_TESTING/aperiodSchr.md $RESEARCH_TESTING/build >> $RESEARCH_TESTING/testing.log 2>&1 +DIFF=$(diff $RESEARCH_TESTING/build/aperiodSchr.md $RESEARCH_TESTING/aperiodSchr-preproc-both.md) +if [ "$DIFF" != "" ] +then + echo "Test 3: failed" + exit 1 +else + echo "Test 3: passed." +fi +#END Test 3 + +#BEGIN Test 4: Preprocessor Working Group then Staff (opposite order as Test 3) +rm -rf $RESEARCH_TESTING/build +echo "Test 4: Preprocessor for working group and staff keys" +$RESEARCH_ROOT/bin/preproc_wg.sh $RESEARCH_TESTING/aperiodSchr.md $RESEARCH_TESTING/build >> $RESEARCH_TESTING/testing.log 2>&1 +$RESEARCH_ROOT/bin/preproc_staff.sh $RESEARCH_TESTING/aperiodSchr.md $RESEARCH_TESTING/build >> $RESEARCH_TESTING/testing.log 2>&1 +DIFF=$(diff $RESEARCH_TESTING/build/aperiodSchr.md $RESEARCH_TESTING/aperiodSchr-preproc-both.md) +if [ "$DIFF" != "" ] +then + echo "Test 4: failed" + exit 1 +else + echo "Test 4: passed." +fi +#END Test 4 + +#this should be the last line (errors exit earlier) +exit 0 \ No newline at end of file diff --git a/testing/aperiodSchr-preproc-both.md b/testing/aperiodSchr-preproc-both.md new file mode 100644 index 0000000000000000000000000000000000000000..8ff0f8733d4f034c909cd4d08c88c1793be7cadc --- /dev/null +++ b/testing/aperiodSchr-preproc-both.md @@ -0,0 +1,60 @@ +# Finite Sections of Aperiodic Schrödinger Operators + +### Working Groups: [Lehrstuhl Angewandte Analysis](aa.html) + +### Collaborators (MAT): [Dennis Gallaun, M. Sc.](dgallaun.html), [Fabian Gabel, M. Sc.](fgabel.html), [Dr. Julian Großmann](jgrossmann.html), [Prof. Dr. Marko Lindner](mlindner.html), [Riko Ukena, M. Sc.](rukena.html) + + +## Description + +Discrete Schrödinger operators are used to describe physical systems on lattices +and, therefore, play an important role in theoretical solid-state physics. +For a fixed $p \in [1,\infty]$, consider the Schrödinger operator $H \colon \ell^p(\mathbb{Z}) \to \ell^p(\mathbb{Z})$ given by + +$$ +(H x)_n = x_{n + 1} + x_{n - 1} + v(n) x_nn \in \mathbb{Z}, +$$(1) + +and its one-sided counterpart $H_+ \colon \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N})$ given by + +$$ +(H_+ x)_n = x_{n + 1} + x_{n - 1} + v(n) x_n\;,n \in \mathbb{N}, \quad x_0 = 0\;. +$$ (2) + +Based on Definitions $(1)$ and $(2)$, one can associate $H$ and $H_+$ with infinite tridiagonal matrices $A = (a_{ij})_{i,j \in \mathbb{Z}}$ and $A_+ = (a_{i,j})_{i,j \in \mathbb{N}}$. + +Looking at the corresponding infinite linear system of equations + +$$ +A x = b \quad\text{and}\quad A_+ y = c +$$ + +it is interesting to know if the solutions $x$ and $y$ to theses systems can be computed approximately by solving the large but finite linear systems + +$$ +A_m x^{(m)} = b^{(m)} \quad\text{and}\quad (A_+)_m y^{(m)} = c^{(m)} +$$ + +and letting $m \to \infty$. +This is the main idea of the Finite Section Method (FSM). +In order to assure the applicability of the above procedure, one investigates further properties of the operator $A$, the sequence $(A_n)$ and its one-sided counterparts. In particular, Fredholm Theory, spectral theory and the concept of limit operators play a central role in this investigation [1]. + +This research project deals with the investigation of the applicability of the FSM to problems surging from aperiodic discrete Schrödinger Operators [3]. +A famous example for theses operators is the so called Fibonacci-Hamiltonian [2], where the potential $v$ is given as + +$$ +v(n) := \chi_{[1 - \alpha, 1)}(n \alpha \operatorname{mod} 1)\;, \quad n \in \mathbb{Z}. +$$ + +For this particular example, the central objects of investigation are periodic approximations $(A_m)$. It is crucial to assure that the spectrum of these approximations eventually avoids the point $0$ for larger numbers of $m$. The following graph shows approximations of the spectra of the one-sided Fibonacci Hamiltonian on $\ell^2(\mathbb{N})$. + + + +## References + + [1] M. Lindner. Infinite Matrices and their Finite Sections: An Introduction to the Limit +Operator Method, Basel: Birkhäuser, 2006. + + [2] M. Lindner, H. Söding. "Finite Sections of the Fibonacci Hamiltonian," in The Diversity and Beauty of Applied Operator Theory, edited by A. Böttcher, D. Potts, P. Stollmann and D. Wenzel. Cham: Springer International Publishing, (2018):381-396. + + [3] F. Gabel, D. Gallaun, J. Großmann, R. Ukena. The Finite Section Method for Aperiodic Schrödinger Operators. [arXiv:2104.00711](https://arxiv.org/abs/2104.00711) \ No newline at end of file diff --git a/testing/aperiodSchr-preproc-wg.md b/testing/aperiodSchr-preproc-wg.md new file mode 100644 index 0000000000000000000000000000000000000000..e0c29a7e65048d965f911e72cc07d43727d59701 --- /dev/null +++ b/testing/aperiodSchr-preproc-wg.md @@ -0,0 +1,61 @@ +# Finite Sections of Aperiodic Schrödinger Operators + +### Working Groups: [Lehrstuhl Angewandte Analysis](aa.html) + +### Collaborators (MAT): dgallaun, fgabel, jgrossmann, mlindner, rukena + +### Collaborators (External): + +## Description + +Discrete Schrödinger operators are used to describe physical systems on lattices +and, therefore, play an important role in theoretical solid-state physics. +For a fixed $p \in [1,\infty]$, consider the Schrödinger operator $H \colon \ell^p(\mathbb{Z}) \to \ell^p(\mathbb{Z})$ given by + +$$ +(H x)_n = x_{n + 1} + x_{n - 1} + v(n) x_nn \in \mathbb{Z}, +$$(1) + +and its one-sided counterpart $H_+ \colon \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N})$ given by + +$$ +(H_+ x)_n = x_{n + 1} + x_{n - 1} + v(n) x_n\;,n \in \mathbb{N}, \quad x_0 = 0\;. +$$ (2) + +Based on Definitions $(1)$ and $(2)$, one can associate $H$ and $H_+$ with infinite tridiagonal matrices $A = (a_{ij})_{i,j \in \mathbb{Z}}$ and $A_+ = (a_{i,j})_{i,j \in \mathbb{N}}$. + +Looking at the corresponding infinite linear system of equations + +$$ +A x = b \quad\text{and}\quad A_+ y = c +$$ + +it is interesting to know if the solutions $x$ and $y$ to theses systems can be computed approximately by solving the large but finite linear systems + +$$ +A_m x^{(m)} = b^{(m)} \quad\text{and}\quad (A_+)_m y^{(m)} = c^{(m)} +$$ + +and letting $m \to \infty$. +This is the main idea of the Finite Section Method (FSM). +In order to assure the applicability of the above procedure, one investigates further properties of the operator $A$, the sequence $(A_n)$ and its one-sided counterparts. In particular, Fredholm Theory, spectral theory and the concept of limit operators play a central role in this investigation [1]. + +This research project deals with the investigation of the applicability of the FSM to problems surging from aperiodic discrete Schrödinger Operators [3]. +A famous example for theses operators is the so called Fibonacci-Hamiltonian [2], where the potential $v$ is given as + +$$ +v(n) := \chi_{[1 - \alpha, 1)}(n \alpha \operatorname{mod} 1)\;, \quad n \in \mathbb{Z}. +$$ + +For this particular example, the central objects of investigation are periodic approximations $(A_m)$. It is crucial to assure that the spectrum of these approximations eventually avoids the point $0$ for larger numbers of $m$. The following graph shows approximations of the spectra of the one-sided Fibonacci Hamiltonian on $\ell^2(\mathbb{N})$. + + + +## References + + [1] M. Lindner. Infinite Matrices and their Finite Sections: An Introduction to the Limit +Operator Method, Basel: Birkhäuser, 2006. + + [2] M. Lindner, H. Söding. "Finite Sections of the Fibonacci Hamiltonian," in The Diversity and Beauty of Applied Operator Theory, edited by A. Böttcher, D. Potts, P. Stollmann and D. Wenzel. Cham: Springer International Publishing, (2018):381-396. + + [3] F. Gabel, D. Gallaun, J. Großmann, R. Ukena. The Finite Section Method for Aperiodic Schrödinger Operators. [arXiv:2104.00711](https://arxiv.org/abs/2104.00711) \ No newline at end of file diff --git a/testing/aperiodSchr-preproc.md b/testing/aperiodSchr-preproc.md new file mode 100644 index 0000000000000000000000000000000000000000..978efd19c712eed52955c583db2a6aca8dc6afa4 --- /dev/null +++ b/testing/aperiodSchr-preproc.md @@ -0,0 +1,60 @@ +# Finite Sections of Aperiodic Schrödinger Operators + +### Working Groups: aa + +### Collaborators (MAT): [Dennis Gallaun, M. Sc.](dgallaun.html), [Fabian Gabel, M. Sc.](fgabel.html), [Dr. Julian Großmann](jgrossmann.html), [Prof. Dr. Marko Lindner](mlindner.html), [Riko Ukena, M. Sc.](rukena.html) + + +## Description + +Discrete Schrödinger operators are used to describe physical systems on lattices +and, therefore, play an important role in theoretical solid-state physics. +For a fixed $p \in [1,\infty]$, consider the Schrödinger operator $H \colon \ell^p(\mathbb{Z}) \to \ell^p(\mathbb{Z})$ given by + +$$ +(H x)_n = x_{n + 1} + x_{n - 1} + v(n) x_nn \in \mathbb{Z}, +$$(1) + +and its one-sided counterpart $H_+ \colon \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N})$ given by + +$$ +(H_+ x)_n = x_{n + 1} + x_{n - 1} + v(n) x_n\;,n \in \mathbb{N}, \quad x_0 = 0\;. +$$ (2) + +Based on Definitions $(1)$ and $(2)$, one can associate $H$ and $H_+$ with infinite tridiagonal matrices $A = (a_{ij})_{i,j \in \mathbb{Z}}$ and $A_+ = (a_{i,j})_{i,j \in \mathbb{N}}$. + +Looking at the corresponding infinite linear system of equations + +$$ +A x = b \quad\text{and}\quad A_+ y = c +$$ + +it is interesting to know if the solutions $x$ and $y$ to theses systems can be computed approximately by solving the large but finite linear systems + +$$ +A_m x^{(m)} = b^{(m)} \quad\text{and}\quad (A_+)_m y^{(m)} = c^{(m)} +$$ + +and letting $m \to \infty$. +This is the main idea of the Finite Section Method (FSM). +In order to assure the applicability of the above procedure, one investigates further properties of the operator $A$, the sequence $(A_n)$ and its one-sided counterparts. In particular, Fredholm Theory, spectral theory and the concept of limit operators play a central role in this investigation [1]. + +This research project deals with the investigation of the applicability of the FSM to problems surging from aperiodic discrete Schrödinger Operators [3]. +A famous example for theses operators is the so called Fibonacci-Hamiltonian [2], where the potential $v$ is given as + +$$ +v(n) := \chi_{[1 - \alpha, 1)}(n \alpha \operatorname{mod} 1)\;, \quad n \in \mathbb{Z}. +$$ + +For this particular example, the central objects of investigation are periodic approximations $(A_m)$. It is crucial to assure that the spectrum of these approximations eventually avoids the point $0$ for larger numbers of $m$. The following graph shows approximations of the spectra of the one-sided Fibonacci Hamiltonian on $\ell^2(\mathbb{N})$. + + + +## References + + [1] M. Lindner. Infinite Matrices and their Finite Sections: An Introduction to the Limit +Operator Method, Basel: Birkhäuser, 2006. + + [2] M. Lindner, H. Söding. "Finite Sections of the Fibonacci Hamiltonian," in The Diversity and Beauty of Applied Operator Theory, edited by A. Böttcher, D. Potts, P. Stollmann and D. Wenzel. Cham: Springer International Publishing, (2018):381-396. + + [3] F. Gabel, D. Gallaun, J. Großmann, R. Ukena. The Finite Section Method for Aperiodic Schrödinger Operators. [arXiv:2104.00711](https://arxiv.org/abs/2104.00711) \ No newline at end of file diff --git a/testing/aperiodSchr.md b/testing/aperiodSchr.md new file mode 100644 index 0000000000000000000000000000000000000000..1915e11f905f08eae707678ba7df717e08f5ea68 --- /dev/null +++ b/testing/aperiodSchr.md @@ -0,0 +1,61 @@ +# Finite Sections of Aperiodic Schrödinger Operators + +### Working Groups: aa + +### Collaborators (MAT): dgallaun, fgabel, jgrossmann, mlindner, rukena + +### Collaborators (External): + +## Description + +Discrete Schrödinger operators are used to describe physical systems on lattices +and, therefore, play an important role in theoretical solid-state physics. +For a fixed $p \in [1,\infty]$, consider the Schrödinger operator $H \colon \ell^p(\mathbb{Z}) \to \ell^p(\mathbb{Z})$ given by + +$$ +(H x)_n = x_{n + 1} + x_{n - 1} + v(n) x_nn \in \mathbb{Z}, +$$(1) + +and its one-sided counterpart $H_+ \colon \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N})$ given by + +$$ +(H_+ x)_n = x_{n + 1} + x_{n - 1} + v(n) x_n\;,n \in \mathbb{N}, \quad x_0 = 0\;. +$$ (2) + +Based on Definitions $(1)$ and $(2)$, one can associate $H$ and $H_+$ with infinite tridiagonal matrices $A = (a_{ij})_{i,j \in \mathbb{Z}}$ and $A_+ = (a_{i,j})_{i,j \in \mathbb{N}}$. + +Looking at the corresponding infinite linear system of equations + +$$ +A x = b \quad\text{and}\quad A_+ y = c +$$ + +it is interesting to know if the solutions $x$ and $y$ to theses systems can be computed approximately by solving the large but finite linear systems + +$$ +A_m x^{(m)} = b^{(m)} \quad\text{and}\quad (A_+)_m y^{(m)} = c^{(m)} +$$ + +and letting $m \to \infty$. +This is the main idea of the Finite Section Method (FSM). +In order to assure the applicability of the above procedure, one investigates further properties of the operator $A$, the sequence $(A_n)$ and its one-sided counterparts. In particular, Fredholm Theory, spectral theory and the concept of limit operators play a central role in this investigation [1]. + +This research project deals with the investigation of the applicability of the FSM to problems surging from aperiodic discrete Schrödinger Operators [3]. +A famous example for theses operators is the so called Fibonacci-Hamiltonian [2], where the potential $v$ is given as + +$$ +v(n) := \chi_{[1 - \alpha, 1)}(n \alpha \operatorname{mod} 1)\;, \quad n \in \mathbb{Z}. +$$ + +For this particular example, the central objects of investigation are periodic approximations $(A_m)$. It is crucial to assure that the spectrum of these approximations eventually avoids the point $0$ for larger numbers of $m$. The following graph shows approximations of the spectra of the one-sided Fibonacci Hamiltonian on $\ell^2(\mathbb{N})$. + + + +## References + + [1] M. Lindner. Infinite Matrices and their Finite Sections: An Introduction to the Limit +Operator Method, Basel: Birkhäuser, 2006. + + [2] M. Lindner, H. Söding. "Finite Sections of the Fibonacci Hamiltonian," in The Diversity and Beauty of Applied Operator Theory, edited by A. Böttcher, D. Potts, P. Stollmann and D. Wenzel. Cham: Springer International Publishing, (2018):381-396. + + [3] F. Gabel, D. Gallaun, J. Großmann, R. Ukena. The Finite Section Method for Aperiodic Schrödinger Operators. [arXiv:2104.00711](https://arxiv.org/abs/2104.00711) \ No newline at end of file