API| for Remote Control and JTAG Access

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

Basic Concepts
Release Information
Introduction
Interfaces
Operating of the API Requests

Building an Application with API
API Files
Connecting APl and Application

Communication Setup
Preparing TRACE32 Software
Configuring the API

API Functions
Generic API Functions
T32_Config
T32_Init
T32_Exit
T32_Attach
T32_Nop
T32_Ping
T32_Cmd
T32_CmdWin
T32_Stop
T32_EvalGet
T32_GetMessage
T32_GetPracticeState
Functions for using the API with Multiple Debuggers
T32_GetChannelSize
T32_GetChannelDefaults
T32_SetChannel
ICD/ICE API Functions
T32_GetState
T32_GetCpulnfo

Configure Driver

Initialize driver and connect
Close connection

Attach TRACE32 device

Send Empty Message

Send Ping Message

Execute PRACTICE Command
Execute PRACTICE Command
Stop PRACTICE program

Get Evaluation Result

Get Message Line Contents
Check if a PRACTICE script is running

Get size of channel structure
Get default channel parameters
Set active channel

Get State of ICE/ICD
Get Information about used CPU

]

© ©O© © 00 00 00 ~N N N o O A W W Bk

10
10
11
12
12
13
13
14
15
16
17
18
18
19
20
21
21
22

API for Remote Control and JTAG Access 1

T32_GetRam Get Memory Mapping 23

T32_ResetCPU Prepare for Emulation 24
T32_ReadMemory Read Target Memory 25
T32_WriteMemory Write to Target Memory 27
T32_WriteMemoryPipe Write to Target Memory pipelined 28
T32_ReadRegister Read CPU Registers 29
T32_WriteRegister Write CPU Registers 30
T32_ReadPP Read Program Pointer 31
T32_ReadBreakpoint Read Breakpoints 31
T32_WriteBreakpoint Write Breakpoints 33
T32_Step Single Step 34
T32_StepMode Single Step with Mode Control 35
T32_Go Start Realtime 36
T32_Break Stop Realtime 36
T32_GetTriggerMessage Get Trigger Message Contents 37
T32_GetSymbol Get Symbol Information 38
T32_GetSource Get Source Filename and Line 40
T32_GetSelectedSource Get Source Filename and Line of Selection 41
T32_AnaStatusGet Get State of State Analyzer 42
T32_AnaRecordGet Get One Record of State Analyzer 43
T32_GetTraceState Get State of Trace 46
T32_ReadTrace Get One Record of Trace 47
T32_GetSocketHandle Get the handle of the TRACE32 socket 51
T32_NotifyStateEnable Register a function to be called at special event 52
T32_CheckStateNotify Check message to receive for state notify 53
ICD TAP Access API Functions 55
T32_TAPAccessSetInfo Configure JTAG Interface 56
T32_TAPAccessShiftiR Shift Data to/from Instruction Register 58
T32_TAPAccessShiftDR Shift Data to/from Data Register 59
T32_TAPAccessDirect Direct JTAG Port Access 60
T32_TAPAccessShiftRaw RAW JTAG Shifts 63
T32_TAPAccessAlloc Retrieve a Handle for Bundled Access Mode 66
T32_TAPAccessFree Release Handle for Bundled Access Mode 67
T32_TAPAccessExecute Execute a Bundled TAP Access 67
T32_TAPAccessRelease Unlock Debugger 68
VEISION CONTIOL oottt e e e e e ettt e e e e e e e e e s e e aanbbbbe e e e eaaaeaeee e nnes 69

API for Remote Control and JTAG Access 2

API| for Remote Control and JTAG Access

Version October, 10 2008

Basic Concepts

Release Information

Release 4.0, shipped from 01-September-2004 on, includes the ability to connect to several debuggers at
once (multi-core debugging). It is backward compatible to release 3.

Release 3.0, shipped from 01-April-1998 on, is a compatible extended version. This document has changed.

Release 2.0, shipped from 28-Oct.-1996 on, is incompatible to previous versions, regarding the socket
communication. You need the 2.0 versions of hlinknet.c and hremote.c. Recompile your software with the
new files.

APl for Remote Control and JTAG Access 3 Basic Concepts

Introduction

The TRACE32 Software contains an interface for external control of the TRACE32. The TRACE32
Application Programming Interface (further referred to as API) gives external applications the possibility to
control the debugger and the program run by the debugger.

The API is built as a C library with a C function interface to the controlling application. The API
communicates with the TRACE32 application (not with the TRACE32 itself!) using a socket interface. The
command chain using TRACE32 API then looks like that:

Application ---> TRACE32 API ---> TRACE32 application --> TRACE32
(C Functions) (sockets) (HW interface)

- TRACE32 i
Fie Edt View Var Bresk Run CPU Devices Trigger Analyzer Ped Cov Window Help

lw) s[sle| »ln 5 ghel of
BEodl -[olx]
Application o e
o (E 73830 .1 [d2-d4,a2-a31,-(a?)
SP:0008178C 227L‘.EEEE277‘! n kl; #2774,a1 ; #flags,al
SP:EEEM?g; {7200 comt ; moveq #0,d1 ; #8,count
TRACE32 API SP:000081794 |/100 for =01 <:m:!}z: ’ fl;g,sszi“ - 1R?Eh;,i; =
SP:00001796 2<E4Z mmmmmm 1 d2,a8 ; i,a8 _';/I
q| TRACE32 Etheﬂnft TRACE32
TCP/IP TCP/IP display driver aralie Hard
Socket Efemet | Socket £l ')| USB ardware
Interface Interface |- o
I [soppedatbreskpoint | | [[Mk B

APl for Remote Control and JTAG Access Basic Concepts

Interfaces

Application --> TRACE32 API

The application uses the API as ordinary C functions. The API is linked

Application . . s
to the application at the usual linking stage.

TRACES32 API

TRACE32 API --> TRACE32 display driver

Edt view ver e CFU Dovces Tigger Anaheer Eeri Cov incow Holp

Fie ook Bin T D
(%) slsle| vim| 5 2l 2
=

£ oo |_cots

Application

TRACE32 API

"Il TRACE32 J

TCP/IP TCP/IP _|| display driver

Socket Ethernet Socket £ — L

Interface Interface Ly ve (o fw | (n | om
fili i e

The communication to the TRACE32 software is implemented as a socket interface. This means, that the
controlling application (including API) and the debugger software can reside on two different hosts, using
network connections for communication. But be aware that this connection is not fault tolerant, because no
network error detection is implemented in the API. It is recommended, that both parties run on the same
host.

TRACE32 display driver --> TRACE32

L1 [0 d,a2-a3l, - @7
H2r74,a1 #rlags,al

Sp-owan1792 /200 e, a1 5 40,count

Evie
Wt frain
st

Ethernet
Parallel TRACE32

USB Hardware

TRACE32 | |
TCP/IP || display driver
§ .

Socket = ———
Interface | e s e o §me s
I e e v vl

The debugger software just routes the API requests to the TRACES32 hardware. This interface is the one,
you choosed for your debugger. E.g. it could be Ethernet, parallel or USB.

The answers for the request go exactly the opposite way, returning information to the application in passed
buffers.

APl for Remote Control and JTAG Access Basic Concepts

Operating of the APl Requests

The API requests are executed just in parallel with normal TRACE32 operation. You can use both, the
TRACE32 user interface and the API simultaneously, although it is not recommended. The application will
not be informed about changes that are done via the user interface. Also, unpredictable errors may occur, if
e.g. an API request and a running PRACTICE file interfere.

APl for Remote Control and JTAG Access 6 Basic Concepts

Building an Application with API

API Files

The API consists of two C source files and one C header file:

. hlinknet.c

This file contains and handles the socket interface to the TRACE32 debugger software.

. hremote.c

All API functions are coded in this source file

. t32.h

This header file consists of some definitions and all function prototypes needed.

Connecting APl and Application

Whenever a part of the application uses the API, the header file "t 32. h" must be included. The
corresponding C source file must contain the line

#i ncl ude "t 32. h"

guite at the beginning of the source.

When compiling and linking the application, the API files must be handled as normal source components of
the application. Compilation could look like this:

cc -c hlinknet.c
cc -c hrenpte.c
cc -c applic.c

assuming, that the application is coded in a file called "appl i c. ¢" and your C compiler is called "cc". The
linker run is then invoked with:

cc -o applic hlinknet.o hrenpote.o applic.o

assuming the linker name "cc" and the object extension "0".

APl for Remote Control and JTAG Access Building an Application with API

Communication Setup

Preparing TRACE32 Software

The TRACE32 Software has to be configured for use with a remote control, such as the API. To allow and
configure remote control, add the following lines between two empty lines to the file "conf i g. t 32" If you
are using MS-Windows and T32Start application to start TRAC32-SW you need to open the configuration at
“advanced settings” where you can select “Use Port: yes” in the “API Port” folder. The automatically created
config file (e.g. C:\templuserT32_1000123.t32) will have the necessary lines automatically.

RCL=NETASSI ST
PACKLEN=1024
PORT=20000

PACKLEN specifies the maximum package length in bytes for the socket communication. It must not be
bigger than 1024 and must fit to the value defined by T32_Confi g() .

The port number specifies the UDP port which is used to communicate with the API. The default is 20000. If
this port is already in use, try one higher than 20000.

See also the TRACE32 online help ("hel p. ap RCL").

Configuring the API

The API must be configured with the functions T32_Confi g(),T32_Init() and T32_Attach().
T32_Config() takes two string arguments, usually the node name and the port number. The function
T32_1 ni t () then does a setup of the communication channel. T32_At t ach() attaches to the actual
instrument. The T32_Exi t () function closes the connection and should always be called before
terminating the application.

See chapter "Generic API functions" for a detailed description of these functions.

APl for Remote Control and JTAG Access 8 Communication Setup

API Functions

Generic API Functions

T32_Config Configure Driver

Prototype:

int T32_Config (char * stringl, char * string2);

Parameters:

stringl, string2 ; commands for ethernet interface

Returns:
0 for ok, otherwise Error value
The two strings are concatenated and the resulting command is sent to the communication driver of the API.

On UNIX/VMS systems this driver is the standard Ethernet interface driver of TRACE32. All commands
described for this interface can be used here. Usually three commands will be used:

NODE=I| ocal host
PACKLEN=1024
PORT=20000

NODE defines, on which host the TRACE32 display driver runs - normally local host.

PACKLEN specifies the maximum data package length and must not be bigger than 1024 and must fit to the
value defined in the "conf i g. t 32" file (see chapter 3.1).

The PORT command defines the UDP port to use. If omitted, it defaults to 20000. Be sure that these settings
fit to the RCL settings in the "confi g. t 32" file.

Example:
error = T32 Config ("NODE=", "myhost");
error = T32 Config ("PACKLEN=", "1024");
error = T32 Config ("PORT=", "20010");

API for Remote Control and JTAG Access] APIFunctions

T32_Init Initialize driver and connect

Prototype:

int T32 Init (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

This function initializes the driver and establishes the connection to the TRACE3?2 display driver. If zero is
returned, the connection was set up successfully.

It is recommended to call T32_At t ach() immediately after T32_1 ni t () to have the full set of API
functions available.

Example:

error = T32_Init ();

T32_Exit Close connection

Prototype:

int T32 Exit (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

This function ends the connection to the TRACE32 display driver. This command should always be called
before ending the application.

Example:

error = T32 _Exit ();

API for Remote Control and JTAG Access 10 APIFunctions

T32_Attach

Attach TRACE32 device

Prototype:

int T32 Attach (int dev);

Parameters:

dev

Returns:

Device specifier

0 for ok, otherwise Error value

This command attaches the control to the specified TRACE32 device. It is recommended to attach to
T32_DEV_I| CE immediately after T32_1 ni t (), to have access to all API funtions.

T32_DEV_CS

T32_DEV_| CE

T32_DEV_| CD
Example:

Basic operating system of the TRACE32 ("::"),
disables all device specific commands (default)

Debugger ("E::" or “B::"), including Basic OS commands

same as T32_DEV_I| CE

error = T32 Attach (T32_DEV_ICE);

API for Remote Control and JTAG Access 11 APIFunctions

T32_Nop Send Empty Message

Prototype:

int T32 Nop (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Send an empty message to the TRACES32 display driver and wait for it's answer.

Example:

error = T32 Nop ();

T32_Ping Send Ping Message

Prototype:

int T32 Ping (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Sends a "ping" message to the TRACE32.

Example:

error = T32_ Ping ();

API for Remote Control and JTAG Access 12 APIFunctions

T32_Cmd Execute PRACTICE Command

Prototype:

int T32_ Cmd (char * commuand);

Parameters:

conmmand ;. PRACTI CE command to execute

Returns:
0 for ok, otherwise Error value

With this function a PRACTICE command is passed to TRACE32 for execution. Any valid PRACTICE
command is allowed, including the start of a .cmm script via the “DO” command.

Currently the error values only indicate if there was a communication problem between debugger and API.
Errors caused by executing the command are not reported (will be changed). For retrieving error information
use the call T32_CGet Message() and consider the message type.

Example:

error = T32 Cmd ("Data.Set %.ong 12200 033FFC00");

T32_CmdWin Execute PRACTICE Command

Prototype:

int T32_ CmdWn (dword, char * comand);

Executing a PRACTICE command with given windows handler.

API for Remote Control and JTAG Access 13 APIFunctions

T32_Stop Stop PRACTICE program

Prototype:

int T32 Stop (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

If a PRACTICE script is currently running, it is stopped. If an application is running in the ICE, it will not be
affected by this command. For stopping the target program use T32_Br eak() .

Example:

error = T32_Stop ();

API for Remote Control and JTAG Access 14 APIFunctions

T32_EvalGet Get Evaluation Result

Prototype:

int T32_Eval Get (unsigned | ong * peval);

Parameters:

peval ; pointer to variable to catch the evaluation result

Returns:
0 for ok, otherwise Error value
Some of the PRACTICE commands and other functions set a global variable to store return values,

evaluation results or error conditions. This value is always specific to the command used. The function
T32_EvalGet reads this value.

Example:

unsi gned |l ong result;
error = T32 Eval Get (&result);
printf ("Result of |ast PRACTICE command: %\ n", result);

NOTE: Although this function belongs to the generic section, it is only available with the ICE device (See
T32_Attach).

API for Remote Control and JTAG Access 15 APIFunctions

T32_GetMessage Get Message Line Contents

Prototype:

int T32_Get Message (char nessage[128], word * ptype);

Parameters:
nmessage ; output paraneter, set by API
pt ype ; output paraneter, set by API
Returns:

0 for OK, otherwise Error value

Most PRACTICE commands write messages to the message line of TRACE32. This function reads the
contents of the message line and the type of the message.

"message" must be an user allocated character array of at least 128 elements.

The message types are currently defined as following and can be combined:

Type Meaning

1 General Information

2 Error

8 Status Information

16 Error Information

32 Temporary Display

64 Temporary Information
Example:

char message[128] ;

wor d node;
error = T32_Cnd ("print"); [* del ete previous outputs */
error = T32 Cnmd ("print clock.date()");

error T32_Cet Message (nmessage, &node);
printf ("Message: %\nMde: %\n", nessage, node);

API for Remote Control and JTAG Access 16 APIFunctions

T32_GetPracticeState

Check if a PRACTICE script is running

Prototype:

int T32 GetPracticeState(int* pstate);

Parameters:
pst at e ; output paraneter, set by API
; 0 ...not running
;1 ...running
Return:

0 for OK, otherwise Error value

Returns the run-state of PRACTICE. Use this command to poll for the end of a PRACTICE started via

T32_Cmd().

API for Remote Control and JTAG Access 17

APIFunctions

Functions for using the API with Multiple Debuggers

A single APl instance can be used with several TRACE32 debuggers (e.g. for Multi-Core debugging) by
creating a communication channel to each of the debuggers. Instead of passing the channel as parameter to
API calls, the whole API is switched to a specific channel via T32_Set Channel ().

A channel is created by allocating the required amount of memory (T32_Get Channel Si ze()), initializing
this memory by T32_Get Channel Def aul t s(), activating it via T32_Set Channel () and then using
T32_Config(),T32_Init() and T32_EXxi t () as would be done on the default channel.

Note that despite the channel concept, each debugger must be assigned a unique PORT address in its
configuration file config.t32 file.

T32_GetChannelSize Get size of channel structure

Prototype:

i nt T32_Get Channel Si ze (void);

Parameters:

none

Returns:

size_of channel structure

Only necessary for multi-channel usage.
This function returns the size of a channel structure. Allocate memory with this size to be used for the
channel switching.

Example (see full example at T32_SetChannel()):

voi d* channel = malloc (T32_Get Channel Si ze());

API for Remote Control and JTAG Access 18 APIFunctions

T32_GetChannelDefaults Get default channel parameters

Prototype:

voi d T32_Get Channel Def aults (voi d* channel);

Parameters:

pointer to channel receiving the defaults
Returns:

none

Only necessary for multi-channel usage.
This function fills the channel structure with default values. This is mandatory if using multiple channels.

Example (see full example at T32_SetChannel()):

T32_Cet Channel Def aul ts (channel);

API for Remote Control and JTAG Access 19 APIFunctions

T32_SetChannel Set active channel

Prototype:

voi d T32_Set Channel (voi d* channel);

Parameters:

pointer to activating channel
Returns:

none

Only necessary for multi-channel usage.
This function sets the active channel to be used for further T32_* calls.

Example:

voi d* channel _1 mal | oc (T32_Get Channel Si ze());
voi d* channel _2 mal | oc (T32_Get Channel Si ze());
T32_Get Channel Def aul ts (channel _1);

T32_Get Channel Def aul ts (channel _2);

T32_Set Channel (channel 1);

T32_Config (“PORT=", “20000");

T32_ Init ();

T32_Attach (T32_DEV_I CE);

T32_Set Channel (channel 2);

T32_Config (“PORT=", “20002");

T32_Init ();

T32_Attach (T32_DEV_I CE);

API for Remote Control and JTAG Access 20 APIFunctions

ICD/ICE API Functions

This chapter describes all functions available with the ICE device of the TRACE32. See T32_At t ach() for
how to specify a device.

T32_GetState

Get State of ICE/ICD

Prototype:

int T32 GetState (int * pstate);

Parameters:

pst at e

Returns:

; pointer to variable to catch the ICE state

0 for ok, otherwise Error value

Use this function to get the main state of the ICE. * pst at e can have four different values:

Example:

int state;

General Information
System is halted, CPU makes no cycles (r.g. STOP instruction
Emulation is stopped

Emulation is running

error = T32 GetState (&state);
printf ("Systemis ");
switch (state)

{
case
case
case
case
}

Ly e

printf ("down.\n");

printf ("halted.\n");
printf ("stopped.\n");
printf ("running.\n");

API for Remote Control and JTAG Access 21 APIFunctions

T32_GetCpulnfo Get Information about used CPU

Prototype:

int T32 _GetCpulnfo (char ** pstring, word * pfpu, word * pendian,
word * ptype);

Parameters:
pstring ; pointer to variable to catch a pointer to a string
; describing the cpu
pf pu ; pointer to variable to catch the fpu type
pendi an ; pointer to variable to cache the byte order
pt ype ; additional internal information
Returns:

0 for ok, otherwise Error value

This function gives information about the CPU type. pst ri ng will contain an ASCII string with the CPU type
and family. pf pu describes, whether a FPU is present or not. This is currently not used and always zero.
pendi an describes the byte order of the CPU: zero means big endian (12 34 becomes 1234), otherwise
little endian (12 34 becomes 3412). pt ype is for internal information and useless to the user.

Example:

char * cpustring = "";
unsi gned short hasfpu, endian, tnp;
error = T32_GetCpulnfo (&cpustring, &hasfpu, &endian, & np);
printf ("CPUIis %.\n", cpustring);

printf ("Endian type is %.\n", endian?"little":"big");

API for Remote Control and JTAG Access 22 APIFunctions

T32_GetRam Get Memory Mapping

Prototype:

int T32 GetRam (dword * pstart, dword * pend, word * paccess);

Parameters:
pstart ; pointer to variable with start address
pend ; pointer to variable to catch the end address
paccess ; pointer to variable with access type

Returns:

0 for ok, otherwise Error value

The memory mapping of the emulator can be get with this function. pst art specifies the first address to
search for a memory block. A zero will force to search from beginning of the address space. After return,
pst art contains the first address, at which the specified memory is mapped and pend contains the last
address of the continuously mapped block To get all mapped blocks, call T32_Get Ramrepeatedly, until
paccess == 0.paccess must contain the access mode. Currently there are two modes: 1 for Data RAM
("D: ") and 2 for Program RAM ("P: "). If paccess contains zero after return, and no error occurred, then no
(more) mapped memory was found. Otherwise paccess is not equal to zero (but changed!).

Example:

unsi gned | ong start, end;

unsi gned short access;

start = 0; [* search for first manory bl ock */
access 1; /* search for Data RAM Bl ock */
error = T32 _GetRam (&start, &end, &access);

if (laccess) printf ("No Dataram found.\n");

else printf ("Dataram found from % to %.\n", start, end);

API for Remote Control and JTAG Access 23 APIFunctions

T32_ResetCPU Prepare for Emulation

Prototype:

int T32 _ResetCPU (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Prepares the ICE for emulation. This is done by executing the PRACTICE commands SY Stem.UP and
Register.RESet. This function can also be used to get control after the target software has crashed.

Example:

error = T32 _Reset CPU ();

API for Remote Control and JTAG Access 24 APIFunctions

T32_ReadMemory Read Target Memory

Prototype:

int T32_ReadMenory (dword address, int access, byte * buffer, int size);

Parameters:
addr ess ; target menory address to start read
access ; menory access specifier
buf f er ; out put
si ze ; hunber of bytes to read
Returns:

0 for ok, otherwise Error value
Reads data from target memory. The size of the data block is not limited.

The access parameter defines the memory access class and access method:

Bit0...3 encodes the memory class, values as defined below
Bit 6: Set for emulation memory access (E:, dual port access)
Example:

unsi gned char buffer[16];
error = T32_ReadMenory (0x100, 0x40, buffer, 16); /! ED:. access

Memory Classes:

Generically used memory access class values (independent of CPU architecture):
0 Data access, D:

1 Program access, P:

12 AD:

13 AP:

15 USR:

API for Remote Control and JTAG Access 25 APIFunctions

Additional memory access class values for ARM CPUs

2 CPO

3 ICEbreaker

4 ETM

5 CP14

6 CP15

7 ARM logical

8 THUMB logical
9 ARM physical
10 THUMB physical
11 ETB

14 DAP:

Additional memory access class values for PowerPC CPUs:

2 SPR

3 DCR

4 TLB

5 PMR

6 P: real mode address

7 P: virtual mode address

API for Remote Control and JTAG Access 26

APIFunctions

T32_WriteMemory Write to Target Memory

Prototype:

int T32 WiteMenory (dword address, int access, byte * buffer, int size);

Parameters:
addr ess ; target menory address to start wite
access ; menory access specifier
buf f er ; pointer to host buffer data area to wite
si ze ; nunber of bytes to wite

Returns:

0 for ok, otherwise Error value

Writes data to target memory. The size of the data block is not limited. This function should be used to
access variables and make other not time critical memory writes. The access flags define the memory

access class and access method:

Bit0...3 Memory Class, see T32_ReadMemory()
Bit 6: Set for emulation memory access (dual port access)
Bit 7: Set to enable verify after write

Example:

unsi gned char buffer[16];

error = T32 WiteMenory (0x100, OxcO, buffer, 16);

API for Remote Control and JTAG Access 27 APIFunctions

T32_WriteMemoryPipe Write to Target Memory pipelined

Prototype:

int T32 WiteMenoryPi pe (dword address, int access, byte * buffer, int

si ze);

Parameters:
addr ess ; target menory address to start wite
access ; menory access flags
buf f er ; pointer to host buffer data area to wite
si ze ; nunber of bytes to wite

Returns:

0 for ok, otherwise Error value

Writes data to target memory with pipelining. Pipelinig means, that the memory write operation of the
emulator is done in parallel to the downloading process. This speeds up the download. The return value of
the function always refers to the previous Write command. The result of the last write command must be
fetched by calling the function with size=0. The size of the data block is not limited. This function should be
used to download an application program. The access flags define the memory access class and access
method (see T32_WriteMemory).

Example:

unsi gned char buffer[1024];

error = T32_WiteMenoryPi pe (0x400, 0OxcO, buffer, 1024);

API for Remote Control and JTAG Access 28 APIFunctions

T32_ReadRegister Read CPU Registers

Prototype:

i nt T32_ReadRegi ster (dword maskl, dword mask2, |ong *buffer);

Parameters:

maskl, nmask2 ; register addressing mask

buf f er ; pointer to host buffer to catch register data
Returns:

0 for ok, otherwise Error value

The two 32-bit values mask1 and nask?2 form a 64-bit bitmask. Each bit corresponds with one CPU register.
Bit 0 of mask1 is register #0, bit 31 of mask? is register #63. Registers are only read from the emulator, if
their corresponding bit is set. The values of the registers are written in an array. Array element O is register O,
element 63 is register 63.

Example:
| ong buffer[64];
[* define register array */

error = T32_ReadRegi ster (Ox3ff, 0x0, buffer);

/* read the first 10 registers */

API for Remote Control and JTAG Access 29 APIFunctions

T32_WriteRegister Write CPU Registers

Prototype:

int T32 WiteRegister(dword maskl, dword mask2, |ong *buffer);

Parameters:

maskl, nmask2 ; register addressing mask

buf f er ; pointer to host buffer containing the register data
Returns:

0 for ok, otherwise Error value

The two 32-bit values mask1 and nask?2 form a 64-bit bitmask. Each bit corresponds with one CPU register.
Bit 0 of mask1 is register #0, bit 31 of mask? is register #63. Registers are only written, if their corresponding
bit is set. The values of the registers are passed as an array. Array element 0 is register 0, element 63 is
register 63.

Example:
| ong buffer[64];
[* define register array */

buffer[1] = buffer [3] = 0x30fO0;

/* wite register 1 and 3 */

API for Remote Control and JTAG Access 30 APIFunctions

T32_ReadPP Read Program Pointer

Prototype:

int T32_ReadPP(dword * pp);

Parameters:

pp ; pointer to variable to catch the program pointer
val ue

Returns:
0 for ok, otherwise Error value

This function reads the current value of the program pointer. It is only valid, if the application is stopped, I.e.
the state of the ICE is "Emulation stopped” (see T32_Get St at e). The program pointer is a logical pointer to
the address of the next executed assembler line. In contrary to T32_ReadRegi st er, this function is
completely processor independent.

Example:

dword pp;
error = T32_ReadPP (&pp);
printf ("Current Program Pointer: 9%\n", pp);

T32_ReadBreakpoint Read Breakpoints

Prototype:

i nt T32_ReadBreakpoint (dword address, int access, word * buffer,

int size);
Parameters:
addr ess ; address to begin readi ng breakpoints
access ; menory access flags
buf f er ; pointer to host buffer to catch breakpoi nt data
si ze ; nunber of addresses to read

Returns:

0 for ok, otherwise Error value

API for Remote Control and JTAG Access 31 APIFunctions

Read breakpoint and flag information from emulator. The access variable defines the memory class and
access method (see T32_ReadMenor y). The size of the range is not limited. The buffer contains 16-bit
words in the following format:

Bit 0 execution breakpoint (Program)
Bit 1 HLL stepping breakpoint (HIl)
Bit 2 spot breakpoint (Spot)
Bit 3 read access breakpoint (Read)
Bit 4 write access breakpoint (Write)
Bit 5 universal marker a (Alpha)
Bit 6 universal marker b (Beta)
Bit 7 universal marker ¢ (Charly)
Bit 8 read flag (ICE), if mapped or marker d (FIRE,ICD)
Bit 9 write flag (ICE), if mapped or marker e (FIRE,ICD)
Bit 10 implemented as ONCHIP (FIRE,ICD)
Bit 11 implemented as SOFT (FIRE,ICD)
Bit 12 implemented as HARD (FIRE,ICD)
Example:

unsi gned short buffer[16];
error = T32_ReadBreakpoi nt (0x100, 0x40, buffer, 16);

API for Remote Control and JTAG Access 32 APIFunctions

T32_WriteBreakpoint

Write Breakpoints

Prototype:

int T32_WiteBreakpoi
int size);

Parameters:

addr ess
access

br eakpoi nt
size

Returns:

0 for ok, otherwise Error value

nt (dword address, int access, int breakpoint,

; address to begin witing breakpoints
; menory access flags

; breakpoints to set or clear in area
; nunber of addresses to wite

Set or clear breakpoints. The access variable defines the memory class and access method (see
T32_ReadMenory). The size of the range is not limited. The breakpoint argument defines, which

breakpoints to set or clear over the memory area:

Bit O
Bit 1
Bit 2
Bit 3
Bit 4
Bit5
Bit 6
Bit 7

Bit 8

Example:

execution breakpoint (Program)
HLL stepping breakpoint (HII)
spot breakpoint (Spot)

read access breakpoint (Read)
write access breakpoint (Write)
universal marker a (Alpha)
universal marker b (Beta)
universal marker ¢ (Charly)

Set to clear breakpoints

error = T32_WiteBreakpoint (0x100, 0x40, 0x19, 16);

API for Remote Control and JTAG Access 33 APIFunctions

T32_Step Single Step

Prototype:

int T32 Step (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Executes one single step on the emulator.

Example:

error = T32_Step ();

API for Remote Control and JTAG Access 34 APIFunctions

T32_StepMode Single Step with Mode Control

Prototype:

int T32_Step (int node);

Parameters:

node ; Ssteppi ng node

Returns:
0 for ok, otherwise Error value

Executes one step on the emulator. The mode parameter controls the stepping mode:

0 assembler step
1 HLL step
2 mixed = assembler step with HLL display

Bit 7 of mode defines step into or step over a function call

Example:

error = T32_StepMde (0x81);

Steps over a function call, halting on the next HLL line.

API for Remote Control and JTAG Access 35 APIFunctions

T32_Go Start Realtime

Prototype:

int T32 Go (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Start realtime emulation. The function will return immediately after the emulation has been started. The

T32_Get St at e function can be used to wait for the next breakpoint. All other commands are allowed while
the emulation is running.

Example:

error = T32 _Go ();

T32_Break Stop Realtime

Prototype:

int T32_ Break (void);

Parameters:

none

Returns:

0 for ok, otherwise Error value

Stops the realtime emulation asynchronously.

Example:

error = T32 Break ();

API for Remote Control and JTAG Access 36 APIFunctions

T32_GetTriggerMessage Get Trigger Message Contents

Prototype:

int T32_Get Tri gger Message (char nessage[128]);

Parameters:

nmessage ; pointer to an array of 128 characters to catch the nessage

Returns:
0 for ok, otherwise communication error value

When stopping on a read or write breakpoint (or equivalent), the trigger system generates an appropriate
message. This message (as shown in the “Trigger” window), can be read with this function.

"message" must be an user allocated character array of at least 128 elements.

Example:

char message[128] ;

error = T32_ GetTrigger Message (nessage);
printf ("Trigger systemreports: %\n", message);

API for Remote Control and JTAG Access 37 APIFunctions

T32_GetSymbol Get Symbol Information

Prototype:

int T32_Get Synbol (char* synbol, dword* address, dword* size, dword*

access) ;
Parameters:
symbol ; pointer to symbol nane
addr ess ; pointer to variable to catch the synbol address
si ze ; pointer to variable to catch the synbol size (if any)
access ; pointer to variable to catch the synbol access cl ass
Returns:

0 for ok, otherwise communication error value.

This function returns the symbol information for a specified symbol name. If the specified symbol was not
found, addr ess, si ze and access contains - 1. Note, that there is not possible to get the information of
non-static local variables (as they have no address).

This function can also be used to get the address of a source line.

API for Remote Control and JTAG Access 38 APIFunctions

Example:

dword address, size, access;

"vari abl e";

char* symmane

/* search for a variable call ed
char* srcline = “\\file\\12";
/* search for

error = T32_Get Synbol (symmane, &address,

[* get

printf ("Synbol % is |ocated at Ox%,\n",
printf (“the variable with this synbol

error = T32_Get Synmbol (srcline,

[* get

printf ("Source line 12 of file "file.c

addr ess) ;

printf (“the line is conpiled occupying % bytes of code.”,

API for Remote Control and JTAG Access

informati on about a variable */

&addr ess,

39

line 12 in file “file.c”

&access);

symane, address);
has a size of

&access);

“vari abl e” */

*/

%l bytes.”, size);

i nformati on about a source |line */

is |located at Ox%,\n",

si ze);

APIFunctions

T32_GetSource Get Source Filename and Line

Prototype:

i nt T32_Get Source (dword address, char fil enang[256],

dword *Iline);

Parameters:
addr ess ; address for which file and |ine are requested
fil enane ; output paraneter, is set by the APl function
line ; output paraneter, is set by the APl function
Returns:

0 for ok, otherwise Error value

With a given target address, this function calculates and gets the corresponding source filename and source

line. fi | ename must be an array of characters with at least 256 elements.

Example:

char fil ename[128];
dword line, curr_addr;

error = T32_ReadPP (&curr_addr); [* get program pointer */

error = T32 _GetSource (curr_addr, filenane, & ine);
printf ("Current Source: % at line %d\n", filenane,

API for Remote Control and JTAG Access 40

l'ine);

APIFunctions

T32_GetSelectedSource Get Source Filename and Line of Selection

Prototype:

i nt T32_Get Sel ect edSource (char fil enane[256], dword *line);

Parameters:
fil enane ; pointer to an array of characters, output paraneter
line ; pointer to source line, output paraneter

Returns:

0 for ok, otherwise Error value

This function requests the source filename and line number of a selected source line in TRACE32
PowerView. The source line can be selected in any TRACE32 PowerView window containing source (e.g.
"a.l" or "d.I"). If no previous selection was done, or if no source line is selected, the function returns with

fi | ename pointing to a NULL string.

fi | ename must be an array of characters with at least 256 elements.

Example:

char fil enanme[256] ;
dword |i ne;

error = T32_GCet Sel ectedSource (fil enane, & ine);
if (strlen (filenane))

printf ("Selected Source: % at line %\ n", filename, line);
el se

printf ("No source line selected.\n");

API for Remote Control and JTAG Access 41 APIFunctions

T32_AnaStatusGet Get State of State Analyzer

Prototype:

int T32_AnaStatusGet (byte* state, |ong* size, long* mn, [ong* max);

Parameters:
state ; pointer to variable to catch the current analyzer
state size ; pointer to variable to catch the trace buffer size
nm n number ; pointer to variable to catch the mi ninumrecord
max numnber ; pointer to variable to catch the maxi num record
Returns:

0 for ok, otherwise communication error value

This function requests the state of the TRACE32 State Analyzer. This function is obsolete. New software
should use the T32_GetTraceState function.

“st at e” contains the current analyzer state:

0 analyzer is switched off

1 analyzer is armed

2 analyzer is triggered

3 analyzer recording broken

“si ze” contains the trace buffer size. It specifies the amount of records, which can be recorded, not the
amount of records, which are actually stored in the buffer.

“m n”, “max” contain the minimum and the maximum record number stored in the trace buffer. Note that the
record numbers can be negative or positive.

Example:

byte state;
| ong size, mn, max;

error = T32_AnaSt at usGet (&state, &size, &mn, &max);

printf (“State: %\n", Istate ? “off” : ((state == 1) ? “arnmed”
((state == 3) ? “breaked” : “unknown”)));

printf (“Buffer size = % records\n”, size);

printf (“M ni mum Maxi mum record nunber: %/ %\ n”, nin, nmax);

API for Remote Control and JTAG Access 42 APIFunctions

T32_AnaRecordGet Get One Record of State Analyzer

Prototype:

int T32_AnaRecordGet (long recordnr, byte* buffer, int |ength);

Parameters:
recordnr ; record nunber of record to read
buf f er ; byte array to catch the record information
| engt h ; hunber of bytes to read fromrecord
Returns:

0 for ok, otherwise communication error value

This function reads the record information of one record of the Analyzer trace buffer. This function is
obsolete. New software should use the T32_ ReadTrace function.

“r ecor dnr " specifies the record number to read.

“buf f er ” contains the read record information (see below).

“l engt h” specifies the number of bytes to read from the information into the buffer. This can be used to limit
the amount of bytes transmitted and written into the buffer. If you specify “0”, all information will be
transmitted; in this case allocate an array with 256 bytes at least.

The buffer will then contain the following data:

index content
0 return value: 0 =0k
-1 = no analyzer present
-2 = invalid record number
1 reserved
2 physical access class: lower 4 bits: 1=Data
2=Program
higher 4bits: 3=First Cycle
4=res.
5=Breakpoint Cycle
6=res.
7=Write Cycle
8=0Opfetchl Cycle
3 reserved
4-7 physical address (little endian)

API for Remote Control and JTAG Access 43 APIFunctions

8-15

16

17

18-19

20-27

28/29

30

31

32-35

rest

bus data (max. 8 bytes, depending on bus data width)
bus data width
bus access cycle (read/write/fetch, processor dependant)

status lines, processor
dependant

time stamp (one bit equals
20/256 ns)

external trigger A/B inputs
logical access class:
1=Data

2=Program

reserved

logical address

reserved

API for Remote Control and JTAG Access 44

APIFunctions

Example:

i nt i;

| ong recordnr = 100;

long long tine;

byt e buf f er[256] ;

error = T32_AnaRecordGet (recordnr, buffer, 0);

if (lerror & !buffer[0]) /* no error */
{

printf (“Address = 0x%02x%02x%02x%02x\ n”,
buffer[7], buffer[6], buffer[5], buffer[4]);
printf (“Data = 0x");
for (i =0; i < buffer[16]; i ++)
printf (“%92x”, buffer[8+i]);
printf (“\'n");
printf (“Tinme = 0x");
tinme = 0;
for (i =7, i >=0; i--)
{
printf (“%2x”, buffer[20+i]);
time += (long long) buffer[20+i] << i*8;

}

printf (“\'n");

time =tine * 625 / 8000; /* cal cul at e nanoseconds @
printf (“ =% s, % ns, % us, % ns\n",

(long) (time / 1000000000L),

(long) (tinme % 1000000000L / 1000000L),
(long) (time % 1000000L / 1000L),
(long) (time % 1000L));

API for Remote Control and JTAG Access 45 APIFunctions

T32_GetTraceState Get State of Trace

Prototype:

int T32 GetTraceState (int tracetype, int* state, |ong* size, |ong* mn,

| ong* nmax);
Parameters:
tracet ype ; type of trace and interpretation
state ; pointer to variable to catch the current trace state
si ze ; pointer to variable to catch the trace buffer size
nm n numnber ; pointer to variable to catch the mi ninumrecord
max numnber ; pointer to variable to catch the maxi num record
Returns:

0 for ok, otherwise communication error value
This function requests the state of the selected Trace.

“tracetype” contains the trace method selection.

0 Trace (the Trace selected with Trace. METHOD command)

1 Powerlntegrator

2 Trace raw data (same as 0, but no interpretation of trace data)

3 Trace funneled data (same as 0, but only decoding of funneled data for one source)

“st at e” contains the current trace state:

0 analyzer is switched off

1 analyzer is armed

2 analyzer triggered

3 analyzer recording breaked

API for Remote Control and JTAG Access 46 APIFunctions

“si ze” contains the trace buffer size. It specifies the amount of records, which can be recorded, not the
amount of records, which are actually stored in the buffer.

“m n”, “max” contain the minimum and the maximum record number stored in the trace buffer. Note that the

record numbers can be negative or positive.

Example:

byte state;
| ong size, mn, max;

error = T32 GetTraceState (0, &state, &size, &mn, &max);

printf (“State: %\n", Istate ? “off” : ((state == 1) ? “arned”
((state == 3) ? “breaked” : “unknown”)));

printf (“Buffer size = % records\n”, size);

printf (“M ni mrum Maxi mum record nunber: %/ %\ n”, mn, nax);

T32_ReadTrace Get One Record of Trace

Prototype:

int T32_ReadTrace (int tracetype, |long record, int n, unsigned | ong mask,
byt e* buffer);

Parameters:
tracetype ; type of trace and interpretation
record n ; record nunber of record to start reading from nunber
of
mask ; records to read
buf f er ; type of data to extract fromthe trace
; byte array to catch the record information
Returns:

0 for ok, otherwise communication error value
This function reads the information of one or more records from the trace buffer.

“tracetype” contains the trace method selection. See T32GetTraceState for the encoding.

“r ecor d” specifies the record number to read.

“n” is the number of records to read.

“mask” defines which information should be extracted. Each bit is related to a four byte chunk of data.
“buf f er ” contains the read record information. All data is stored in little endian format.

API for Remote Control and JTAG Access 47 APIFunctions

The buffer will then contain the following data:

bit group byte content

0 0 return value: 0=0k
-1=no analyzer present
-2=invalid record number

0 1 reserved

0 2 reserved

0 3 reserved

1 0 external trace data O

or flow trace data byte (only ETM V3, only row or funnel trace source)

1 1 external trace data 1
or flow trace control byte (only ETM V3, only row or funnel trace
source)
bit 2: TCNTL

1 2 trigger level
1 3 trigger flags

2 0...3 timestamp lower 32 bits (little endian)
0x40 -> 5ns
0x80 -> 10ns
0x100 -> 20ns
0x500 -> 100ns

3 0...3 timestamp upper 32 bits (little endian)

4 0...3 physical address (little endian)

5 0...3 physical address upper 32 bits (little
endian)

6 0...3 physical access class and segment

7 0...3 reserved

8 0...3 logical address (little endian)

9 0...3 logical address upper 32 bits (little endian)

10 0...3 logical access class and segment

11 0...3 reserved

API for Remote Control and JTAG Access 48 APIFunctions

12 0...3 data 0...3

13 0...3 data 4...7

14 0 data bus mask (byte enables)

14 1 cycle type information: bit 1=Data
bit 2=Program
bit 3=First Cycle
bit 4=res.
bit 5=Breakpoint Cycle
bit 6=res.
bit 7=Write Cycle

14 2 data bus width

14 3 reserved

15 0...3 reserved

16...31 0...3 logical analyzer or port channel data

API for Remote Control and JTAG Access 49 APIFunctions

Example:

i nt i;

| ong recordnr = 100;

long long tine;

byt e buf f er[256] ;

error = T32 _ReadTrace (0, recordnr, 1, 0x710c, buffer);
if (lerror &% !'buffer[0]) /[* no error */

{

printf (“Address = 0x%02x%02x%02x%®2x\ n”, buffer[11], buffer[10],
buf fer[9], buffer[8]);
printf (“Data = 0x");
for (i =0; i < buffer[22]; i++)
printf (“%92x”, buffer[12+i]);
printf (“\'n");
printf (“Tinme = 0x");
tinme = 0;
for (i =7, i >=0; i--)
{
printf (“%92x", buffer[0+i]);
time += (long long) buffer[0+i] << i*8;

}

printf (“\'n");

time =time * 625 / 8000; /* cal cul at e nanoseconds */
printf (“ =%l s, %l ns, % us, % ns\n”,

(long) (time / 1000000000L),

(long) (tinme % 1000000000L / 1000000L),
(long) (time % 1000000L / 1000L),
(long) (time % 1000L));

API for Remote Control and JTAG Access 50 APIFunctions

T32_GetSocketHandle Get the handle of the TRACE32 socket

Prototype:

i nt T32_Get Socket Handl e (SOCKET *soc) ;

Parameters:
soc ; pointer to the handl e of the socket created by the API
; to comunicate with TRACE32
Returns:

0 for ok, otherwise communication error value

This function returns a pointer to the handle of the socket created by the API to communicate with
TRACE32. It could be used for example to register asynchronous notification for sending or receiving data
on this socket.

Example:

Register the TRACE32 socket for asynchronous notification then a message is received on the socket.

SOCKET t 32soc;
T32_Get Socket Handl e(& 32soc) ;
if (nr)
WBAAsyncSel ect (t 32soc, myHwnd, WM ASYNC SELECT, FD READ);
el se
WEAAsyncSel ect (t 32soc, myHwnd, WM ASYNC SELECT, O0);

API for Remote Control and JTAG Access 51 APIFunctions

T32_NotifyStateEnable Register a function to be called at special event

Prototype:

int T32 _NotifyStateEnable (int event,void (*func)());

Parameters:
event ;. nunmber of the event; to communi cate with TRACE32
func ; pointer to a function

Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the APl when the specified event
occurs. For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API reevaluate accumulated events.

“event " specifies the number of the event. Currently only the following event is specified through a constant:
T32_E_BREAK Emulator break

“f unc” points to a function that is called when the event takes place.

Example:

Register the function targetHalted to be called whenever the emulator goes into state “break” (stopped).

if (T32_NotifyStateEnabl e(T32_E BREAK, t arget Hal t ed))
printf ("Notify Break: Could not initialize! \n");
el se
printf ("Notify Break Enable.\n");

API for Remote Control and JTAG Access 52 APIFunctions

T32_CheckStateNotify Check message to receive for state notify

Prototype:

int T32 _CheckStateNotify (unsigned parant);

Parameters:

par aml ; paranmeter 1 of registered func at T32_NotifyStat eEnabl e

Returns:
0 for OK, otherwise communication error value

This function makes the API reevaluate events accumulated since the last call to T32_CheckStateNotify. If a
callback function for any of these events was registered with T32_NotifyStateEnable, the callback function is
executed as callback(paraml). The parameter is used independently of the event type and is intended for
passing generic parameters like application handles etc.

As the CAPI does not have an own thread, it is the application program’s responsibility to
periodically call this function.

Example:

API for Remote Control and JTAG Access 53 APIFunctions

The typical Windows callback routine for an application which also handles the asynchronous notification of
a socket.

| ong CALLBACK Mai nWhdPr oc(hwid, message, wParam | Param

HWND hWhd; /* wi ndow handl e w
U NT nessage; /* type of message */
WPARAM wPar am /* additional infornmation @
LPARAM | Par am /* additional infornmation @
{

switch (message)

{

case WM COVMAND: /* message: conmand from application nmenu */

br eak;
case WM ASYNC SELECT:
if (WBAGETSELECTERROR(| Param) != 0)
break;// error receiving select notification
switch (WSAGETSELECTEVENT(| Par am))
{
case FD_READ:
T32_CheckSt at eNot i fy(&pphandl e) ;

br eak;
}
br eak;
case WM DESTROY: /* nmessage: w ndow bei ng destroyed */
br eak;
defaul t: /* Passes it on if unproccessed */

return (Def WndowPr oc(hwhd, mnessage, wParam | Param);
}

return (0);

API for Remote Control and JTAG Access 54 APIFunctions

ICD TAP Access API Functions

This chapter describes all functions availabl

e for direct access to the JTAG TAP controller. There are two

possible modes to access the TAP controller, the Single Access Mode and the Bundled Access Mode. For a
sequence of TAP accesses (e.g. to read memory), the Bundled Access Mode is recommended.

The functions T32_TAPAccessShi ft 1 R T32_TAPAccessShi ft DRand T32_TAPAccessDi rect are

provided for JTAG access. These functions

need a handle to access the TAP controller. For Single Access

Mode, two predefined Handles are available, which control the behavior of the debugger after the API

access:

Handle

Effect

T32_TAPACCESS_HOLD

All debugger actions concerning the TAP controller will be
suspended.The API has exclusive access to the JTAG port.

T32_TAPACCESS_RELEASE

Allows the debugger to access the TAP controller after this
API access

For Bundled Access Mode, the TAP access

handle must be acquired by calling T32_TAPAccessAl | oc. All

IR, DR and direct accesses will be stored, instead of being executed immediately. Those bundled accesses
are executed with a call to T32_TAPAccessExecut e in the given order. While a bundled access is
executed, the API holds exclusive access to the TAP controller.

API for Remote Control and JTAG Access

55 APIFunctions

T32_TAPAccessSetInfo Configure JTAG Interface

Prototype:

i nt T32_TAPAccessSetInfo(int irpre, int irpost, int drpre, int drpost,
int tristate, int tapstate, int tcklevel, int slave);

Parameters:

irpre
i rpost

drpre

dr post

tristate

t apst at e

t ckl evel

sl ave

; Nunber of instruction register bits of all cores in the

; JTAG chai n between the dedi cated core and the TDO si gha
pi n

; Nunber of instruction register bits of all cores in the
JTAG

; chain between TDI signal and the dedi cated core

; Nunber of cores in the JTAG chai n between the dedi cated
core

; and the TDO signal (one data register bit per core which is
; i n BYPASS node

; Nunber of cores in the JTAG chain between the TD signa
and

; the dedicated core (one data register bit per core which is
; in BYPASS node)

; TRUE, if nore than one debugger is connected to JTAG port.
; Wth this option, the debugger switches to tristate node

; after each access.

; In nmulti-debugger node, this paraneter specifies the state
; of the TAP controller, which is expected when the debugger
; takes control and set before the debugger switches to

; tristate node. This value has to be identical for al

; debuggers connected to this JTAG port. See table bel ow for
; a list of possible states.

; In multi-debugger node, this is the | evel of the TCK signa
; when all debuggers are tristated.

; In nmulti-debugger node, only one debugger is allowed to

; control nTRST, nRESET. All others have to set this value to
; TRUE

API for Remote Control and JTAG Access 56 APIFunctions

Returns:
0 for ok, otherwise Error value

Values for tapstate:

0 Exit2-DR 8 Exit2-IR
1 Exit1-DR 9 Exit1-IR
2 Shift-DR 10 Shift-IR
3 Pause-DR 11 Pause-IR
4 Select-IR-Scan 12 Run-Test/Idle
5 Update-DR 13 Update-IR
6 Capture-DR 14 Capture-IR
7 Select-DR-Scan 15 Test-Logic-Reset
Example:
TDl ---> TAP. A ---> TAP.B ---> WTAP ---> TAP_C ---> TDO
| RLEN(TAP_A) = 3 bits
| RLEN(TAP_B) = 5 bits
| RLEN(TAP_C) = 6 bits

| RPRE = | RLEN(TAP_C) = 6

| RPOST = | RLEN (TAP_A) + | RLEN (TAP_B)

API for Remote Control and JTAG Access

57

APIFunctions

T32_TAPAccessShiftIR Shift Data to/from Instruction Register

Prototype:

i nt T32_TAPAccessShi ftl R(T32_TAPACCESS HANDLE connecti on,
i nt nunberofbits, unsigned char* poutbits, unsigned char* pinbits);

Parameters:
connecti on ; TAP access handle (see 4.3)
nunmber of bi ts ; amount of bits to scan
pout bits ; buffer containing data scanned into the TAP
controller,
pi nbits ; or NULL to scan in Zeros

; buffer for data to be scanned out of the TAP
; controller, or NULL to discard the recei ved data

Returns:
0 for ok, otherwise Error value
Use this function to scan data through the Instruction Register

Example:

unsi gned char stat us;
unsi gned char tap_instr = TAP_STATUS;

T32_TAPAccessShi ft1 R (T32_TAPACCESS RELEASE, 8, &tap_instr, &status);

API for Remote Control and JTAG Access 58 APIFunctions

T32_TAPAccessShiftDR Shift Data to/from Data Register

Prototype:

i nt T32_TAPAccessShi ft DR(T32_TAPACCESS HANDLE connecti on,
i nt nunberofbits, unsigned char* poutbits, unsigned char* pinbits);

Parameters:
connecti on ; TAP access handle (see 4.3)
nunberof bits ; amount of bits to scan
pout bits ; buffer containing data scanned into the TAP
controller,
pi nbits ; or NULL to scan in Zeros
; buffer for data to be scanned out of the TAP
; controller, or NULL to discard the recei ved data
Returns:

0 for ok, otherwise Error value
Use this function to scan data through the Data Register

Example:

/1l Retrieve the PVR val ue (Power PC)
unsi gned char stat us;

unsi gned char pvrnr[4];

unsi gned char tap_instr = TAP_COP_PVR,

T32_TAPAccessShi ft1 R (T32_TAPACCESS HOLD, 8, &tap_instr, &status);

T32_TAPAccessShi ft DR (T32_TAPACCESS RELEASE, 32, NULL, pvrnr);
Il Wite Zeros

API for Remote Control and JTAG Access 59 APIFunctions

T32_TAPAccessDirect

Direct JTAG Port Access

Prototype:

i nt T32_TAPAccessDirect (T32_TAPACCESS HANDLE connection, int nbytes,
byte * pout bytes, byte * pinbytes);

Parameters:
connecti on ; TAP access handle (see 4.3)
nbyt es ; Size in bytes of the array psignals
pout byt es ; array containing direct access commands
pi nbyt es ; array receiving the results of the direct access
; conmmands
Returns:

0 for ok, otherwise Error value

The primary use of this function is to directly access the JTAG port, such as toggling HRESET or reading

TDO, via a variety of commands.

The poutbytes buffer can also contain multiple commands. Any command consists of one or more bytes.
The size of the return value is always identical with the command size.

For a direct access to the JTAG port pins, commands can be generically generated. All commands for read

accesses are predefined:

JTAG signals:
T32_TAPACCESS TDO
T32_TAPACCESS_TMS
T32_TAPACCESS _nTRST
System signals:
T32_TAPACCESS nRESET
T32_TAPACCESS VTREF
Debugger related signals:

T32_TAPACCESS_nENOUT

API for Remote Control and JTAG Access

60

T32_TAPACCESS_TDI

T32_TAPACCESS_TCK

T32_TAPACCESS _nRESET_LATCH

T32_TAPACCESS_VTREF_LATCH

APIFunctions

The two latches display any occurrence of RESET/VTREF fail since the last check. The functionality of read

accesses depends on the used debugger and target.

NENOUT enables the output driver of the debug cable (negative logic).

Write accesses are generated by OR-ing the corresponding read command with one of the following values:

T32_TAPACCESS_SET 0
T32_TAPACCESS_SET_LOW

T32_TAPACCESS_SET 1
T32_TAPACCESS_SET_HIGH

T32_TAPACCESS_SET(x)

Sets Signal to logical LOW

Sets Signal to logical HIGH

Sets Signal to value x

The returned result of a write command is identical with that of the corresponding read command.

Additional Commands:

Command (Byte 0)

T32_TAPACCESS_SLEEP_MS
T32_TAPACCESS_SLEEP_US

T32_TAPACCESS_SLEEP_HALF_CLOCK

Cmd. Size
in Bytes

2

2

Bytel

Time in msec
Time in usec

No parameter. The debugger
waits for an half JTAG clock cycle.
NOTE: This command does not
work with return clock from target
(RTCK). Clock accurate arbitrary
shifts should be done by
"T32_TAPAccessShiftRaw RAW
JTAG Shifts” (api_remote.pdf).

NOTE: The existence and functionality if direct access commands may vary depending on the used

debugger and/or target hardware.

API for Remote Control and JTAG Access

APIFunctions

Example:

/] reset target

unsi gned char commands] 8] ;
unsi gned char result[8];
unsi gned char hreset_state;

conmmands| 0]
conmmands| 1]
conmands| 2]
conmands| 3]
conmands| 4]
conmmands| 5]
conmands| 6]
conmands| 7]

T32_TAPACCESS nENOUT | T32_TAPACCESS SET 0;
T32_TAPACCESS nRESET | T32_TAPACCESS SET 0;
T32_ TAPACCESS SLEEP MS;

50; // Wait 50 ns

T32_TAPACCESS nRESET | T32_TAPACCESS SET 1;
T32_ TAPACCESS SLEEP_MS;

50; // Wait 50 ns

T32_ TAPACCESS nRESET;

T32_TAPAccessDirect (T32_TAPACCESS RELEASE, 8, commands, result);

hreset state = result[7];

API for Remote Control and JTAG Access 62 APIFunctions

T32_TAPAccessShiftRaw RAW JTAG Shifts

Prototype:

i nt T32_TAPAccessShi ft Rawm T32_TAPACCESS HANDLE connecti on,
i nt nunberofbits, byte * pTMSBits, byte * pTDIBits,
byte * pTDOBits, int options);

Parameters:
connecti on ; TAP access handle (see 4.3)
nunberof bits ; defines how many TCK cl ock cycles the shift is |ong
pTVBBI t s ; TMS bit pattern. May be NULL in case no specific
pattern shall be shifted.
pTDI Bits ; TDI bit pattern. May be NULL in case no
specific pattern shall be shifted.
pTDOBI t s ; array to store TDO answer. May be NULL if the
result shall not be recorded
options ; shift option bit mask (see bel ow)
Returns:

0 for ok, otherwise Error value

This function should be used to send/receive arbitrary TDI/TMS/TDO pattern. The buffers are considered bit
wise beginning with the first byte e.g. pTDIBits = 0x03 0x04 will shiftout11 0000000010000 O for
TDI.

It is possible to pass a NULL pointer for any of the parameters. The advantage of this method is that less
data needs to be transferred between debug box and API. By setting all communication arrays to NULL the
amount of shifted bits is not limited. The receive/send data pattern size are limited to a size of
(T32_TAPACCESS_ MAXBITS - 64) bits. If TMS and TDI are transferred both the maximum pattern size is
limited to 1/2 * (T32_TAPACCESS_ MAXBITS - 64). If TDI or TMS are left out the pattern can be defined by
the options parameter:

For a direct access to the JTAG port pins, commands can be generically generated. All commands for read
accesses are predefined:

Pattern Options TMS:

SHI FTRAW OPTI ON_TMS_ZERO Shifts TMS = 0

SHI FTRAW OPTI ON_TMS_ONE Shifts TMS = 1

SHI FTRAW OPTI ON_LASTTMS_ONE Shifts TMS = 0, except for the last cycle where
TMS =1

API for Remote Control and JTAG Access 63 APIFunctions

Pattern Options TDI:

SHI FTRAW OPTI ON_TDI _ZERO Shifts TDI =0
SH FTRAW OPTI ON_TDI _ONE Shifts TDI =1
SHI FTRAW OPTI ON_TDI _LASTTDO Shifts TDI pattern that equals last read back

TDO (where pTDOBIts where defined). Please
ask LAUTERBACH support if that feature shall
be extended.

Example 1:

i nt TAPAccessShi ft Raw _Test Hol d()
{

unsi gned char pTDI[1];

unsi gned char pTMS[1];

unsi gned char pTDQJ 1] ;

int err = 0;

/*Drive fromRun/Test Idle to Shift/IR(110 0)*/
pTMS[0] = 0x3;
if (err = T32_TAPAccessShi ft Rawm T32_TAPACCESS HOLD , 4 , pTM™Ms, 0 , O,
SHI FTRAW_OPTI ON_NONE))
goto error;

/*Shift Ox5 / 5-Bit TAP and read back response - Drive to Exitl-1R*/
pTDI [0] = 0x6;
if (err = T32_TAPAccessShi ft Rawm T32_TAPACCESS HOLD , 5 , 0, pTD ,
pTDG,
SH FTRAW OPTI ON_LASTTMS_ONE))
goto error;

[*Drive FromExitl-lRto RUN-Test/Idle (1 0)*/
pTMS[0] = Ox1;
if (err = T32_TAPAccessShi ft Rawm T32_TAPACCESS HOLD , 2 , pTMs, 0 , O,
SHI FTRAW_OPTI ON_NONE))
goto error;

error:
T32_TAPAccessRel ease();
return err;

}

The T32_TAPAccessShi ft Rawfunction can be combined with the T32_TAPAccessExecut e
mechanism to speed up multiple pattern calls. Make sure that the pTDOBIts pointer is valid until
T32_TAPAccessExecut e is called.

API for Remote Control and JTAG Access 64 APIFunctions

Example 2:

i nt TAPAccessShi ft Raw _Test Execut e()
{

unsi gned char pTDI[1];

unsi gned char pTMS[1];

unsi gned char pTDQJ 1] ;

int err = 0;

T32_TAPACCESS HANDLE handl e = T32_TAPAccessAlloc ();
/*Drive fromRun/Test Idle to Shift/IR(110 0)*/
pTMS[0] = 0x3;
if (err = T32_TAPAccessShi ft Rawm(handle , 4 , pTM5 0, O,
SHI FTRAW_OPTI ON_NONE))
goto error;
/*Shift Ox5 / 5-Bit Tap and read back response - Drive to Exitl-1R*/
pTDI [0] = 0x6;
if (err = T32_TAPAccessShiftRawm(handle , 5, 0, pTDl , pTDO
SH FTRAW OPTI ON_LASTTMS_ONE))
goto error;
/*Drive FromExitl-lRto RUN-Test/Idle (1 0)*/
pTMS[0] = Ox1;
if (err = T32_TAPAccessShi ft Rawm(handle , 2 , pTM5 0, O,
SH FTRAW_OPTI ON_NONE))
goto error;

if (err = T32_TAPAccessExecut e(handl e, T32_TAPACCESS HOLD))
goto error;
error:
T32_TAPAccessRel ease();
T32_TAPAccessFree(handl e) ;
return err;

}

API for Remote Control and JTAG Access 65 APIFunctions

T32_TAPAccessAlloc Retrieve a Handle for Bundled Access Mode

Prototype:

T32_TAPACCESS HANDLE T32_ TAPAccessAl | oc();

Parameters:

none

Returns:

Handle for bundled TAP accesses

Use this function to retrieve a handle for bundled TAP accesses. The execution sequence associated with a
handle can be used multiple times.

Example:

unsi gned char stat us;

unsi gned char pvrnr[4];

unsi gned char tap_instr = TAP_COP_PVR,

T32_TAPACCESS HANDLE handl e = T32_TAPAccessAll oc ();
T32_TAPAccessShiftI R (handle, 8, & ap instr, &status);
T32_TAPAccessShi ft DR (handl e, 32, NULL, pvrnr);
T32_TAPAccessExecut e (handl e, T32_ TAPACCESS RELEASE);

T32_TAPAccessFree (handl e);

API for Remote Control and JTAG Access 66 APIFunctions

T32_TAPAccessFree Release Handle for Bundled Access Mode

Prototype:

i nt T32_TAPAccessFree(T32_TAPACCESS HANDLE connecti on);

Parameters:

connecti on ; TAP access handle (see 4.3)

Returns:

0 for ok, otherwise Error value

Use this function to release the handle returned by T32_TAPAccessAl | oc when it is no longer needed.
Example:

see 4.3.5 T32_TAPAccessAlloc for an example

T32_TAPAccessExecute Execute a Bundled TAP Access

Prototype:

i nt T32_TAPAccessExecut e(T32_TAPACCESS HANDLE connecti on,
T32_TAPACCESS HANDLE connecti onhol d);

Parameters:
connecti on : Handle for a bundled TAP access
connecti onhol d ; TAP access handle (see 4.3)
Returns:

0 for ok, otherwise Error value
Use this function, to execute all DR, IR and direct TAP accesses associated with given handle.
Example:

see 4.3.5 T32_TAPAccessAlloc for an example

API for Remote Control and JTAG Access 67 APIFunctions

T32_TAPAccessRelease Unlock Debugger

Prototype:

i nt T32_TAPAccessRel ease();

Parameters:

none

Returns:

0 for ok, otherwise Error value

If debugger accesses are suspended due to a IR, DR, direct access or the T32_TAPAccessExecut e call
with the access handle T32_TAPACCESS HOLD, use this function to resume debugger accesses.

Example:

/1l Retrieve the PVR val ue (Power PC)
unsi gned char stat us;

unsi gned char pvrnr[4];

unsi gned char tap_instr = TAP_COP_PVR;

T32_TAPAccessShi ft 1 R (T32_TAPACCESS HOLD, 8, &tap_instr, &status);
T32_TAPAccessShi ft DR (T32_TAPACCESS HOLD, 32, NULL, pvrnr);

/! At this point, the debugger is still I|ocked

T32_TAPAccessRel ease ();

API for Remote Control and JTAG Access 68 APIFunctions

Version Control

Document version control:

Version Date Change

4.1 new commands T32_TAPACCESS_SLEEP_MS,
T32_TAPACCESS_SLEEP_US,
T32_TAPACCESS_SLEEP_HALF_CLOCK

4.0SP1 15.03.05 Corrected endianess documentation in T32_GetCpulnfo()

4.0 20.08.04 Added Multi-Debugger access: T32_GetChannel*(),
T32_SetChannel()

3.6 30.09.03 T32_TAPACCESS_nENOUT added.

35 15.03.03 New Section 4.3 ICD TAP Access API Functions:

3.4 26.10.99 Changes in handling of big messages

Correction of error at T32_GetMessage without T32_Attach
T32_Cmd() can now handle long command names e.g. data.load
instead of d.|

3.3 12.04.99 New Functions:
T32_GetSocketHandle(SOCKET *soc)
T32_NotifyStateEnable(int event,void (*func)())
T32_CheckStateNotify(unsigned param1, unsigned param?2)

3.2 01.12.98 Format of logical address class of T32_AnaRecordGet changed
3.1 13.03.98 T32_GetSymbol description extended
T32_GetTriggerMessage, T32AnaStatusGet, T32AnaRecordGet
added
3.0 03.03.98 Document format changed (LWP to FM)
2.1 18.12.96 T32_GetSymbol added
2.0 28.10.96 Incompatibility to previous versions in socket communications

T32_StepMode added

14 23.09.96 PACKLEN definitions added
Chapter numbering added

1.3 15.08.96 T32_GetSelectedSource added
Table of Versions added

1.2 29.05.96 Overall revision

API for Remote Control and JTAG Access 69 Version Control

API for Remote Control and JTAG Access 70 Version Control

	API for Remote Control and JTAG Access
	Basic Concepts
	Release Information
	Introduction
	Interfaces
	Operating of the API Requests

	Building an Application with API
	API Files
	Connecting API and Application

	Communication Setup
	Preparing TRACE32 Software
	Configuring the API

	API Functions
	Generic API Functions
	T32_Config Configure Driver
	T32_Init Initialize driver and connect
	T32_Exit Close connection
	T32_Attach Attach TRACE32 device
	T32_Nop Send Empty Message
	T32_Ping Send Ping Message
	T32_Cmd Execute PRACTICE Command
	T32_CmdWin Execute PRACTICE Command
	T32_Stop Stop PRACTICE program
	T32_EvalGet Get Evaluation Result
	T32_GetMessage Get Message Line Contents
	T32_GetPracticeState Check if a PRACTICE script is running

	Functions for using the API with Multiple Debuggers
	T32_GetChannelSize Get size of channel structure
	T32_GetChannelDefaults Get default channel parameters
	T32_SetChannel Set active channel

	ICD/ICE API Functions
	T32_GetState Get State of ICE/ICD
	T32_GetCpuInfo Get Information about used CPU
	T32_GetRam Get Memory Mapping
	T32_ResetCPU Prepare for Emulation
	T32_ReadMemory Read Target Memory
	T32_WriteMemory Write to Target Memory
	T32_WriteMemoryPipe Write to Target Memory pipelined
	T32_ReadRegister Read CPU Registers
	T32_WriteRegister Write CPU Registers
	T32_ReadPP Read Program Pointer
	T32_ReadBreakpoint Read Breakpoints
	T32_WriteBreakpoint Write Breakpoints
	T32_Step Single Step
	T32_StepMode Single Step with Mode Control
	T32_Go Start Realtime
	T32_Break Stop Realtime
	T32_GetTriggerMessage Get Trigger Message Contents
	T32_GetSymbol Get Symbol Information
	T32_GetSource Get Source Filename and Line
	T32_GetSelectedSource Get Source Filename and Line of Selection
	T32_AnaStatusGet Get State of State Analyzer
	T32_AnaRecordGet Get One Record of State Analyzer
	T32_GetTraceState Get State of Trace
	T32_ReadTrace Get One Record of Trace
	T32_GetSocketHandle Get the handle of the TRACE32 socket
	T32_NotifyStateEnable Register a function to be called at special event
	T32_CheckStateNotify Check message to receive for state notify

	ICD TAP Access API Functions
	T32_TAPAccessSetInfo Configure JTAG Interface
	T32_TAPAccessShiftIR Shift Data to/from Instruction Register
	T32_TAPAccessShiftDR Shift Data to/from Data Register
	T32_TAPAccessDirect Direct JTAG Port Access
	T32_TAPAccessShiftRaw RAW JTAG Shifts
	T32_TAPAccessAlloc Retrieve a Handle for Bundled Access Mode
	T32_TAPAccessFree Release Handle for Bundled Access Mode
	T32_TAPAccessExecute Execute a Bundled TAP Access
	T32_TAPAccessRelease Unlock Debugger

	Version Control

