
API for Remote Control and JTAG Access

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

 Misc .. !!!!

 API for Remote Control and JTAG Access .. 1

 Basic Concepts ... 3

 Release Information 3

 Introduction 4

 Interfaces 5

 Operating of the API Requests 6

 Building an Application with API ... 7

 API Files 7

 Connecting API and Application 7

 Communication Setup .. 8

 Preparing TRACE32 Software 8

 Configuring the API 8

 API Functions .. 9

 Generic API Functions 9

 T32_Config Configure Driver 9

 T32_Init Initialize driver and connect 10

 T32_Exit Close connection 10

 T32_Attach Attach TRACE32 device 11

 T32_Nop Send Empty Message 12

 T32_Ping Send Ping Message 12

 T32_Cmd Execute PRACTICE Command 13

 T32_CmdWin Execute PRACTICE Command 13

 T32_Stop Stop PRACTICE program 14

 T32_EvalGet Get Evaluation Result 15

 T32_GetMessage Get Message Line Contents 16

 T32_GetPracticeState Check if a PRACTICE script is running 17

 Functions for using the API with Multiple Debuggers 18

 T32_GetChannelSize Get size of channel structure 18

 T32_GetChannelDefaults Get default channel parameters 19

 T32_SetChannel Set active channel 20

 ICD/ICE API Functions 21

 T32_GetState Get State of ICE/ICD 21

 T32_GetCpuInfo Get Information about used CPU 22
 API for Remote Control and JTAG Access 1

 T32_GetRam Get Memory Mapping 23

 T32_ResetCPU Prepare for Emulation 24

 T32_ReadMemory Read Target Memory 25

 T32_WriteMemory Write to Target Memory 27

 T32_WriteMemoryPipe Write to Target Memory pipelined 28

 T32_ReadRegister Read CPU Registers 29

 T32_WriteRegister Write CPU Registers 30

 T32_ReadPP Read Program Pointer 31

 T32_ReadBreakpoint Read Breakpoints 31

 T32_WriteBreakpoint Write Breakpoints 33

 T32_Step Single Step 34

 T32_StepMode Single Step with Mode Control 35

 T32_Go Start Realtime 36

 T32_Break Stop Realtime 36

 T32_GetTriggerMessage Get Trigger Message Contents 37

 T32_GetSymbol Get Symbol Information 38

 T32_GetSource Get Source Filename and Line 40

 T32_GetSelectedSource Get Source Filename and Line of Selection 41

 T32_AnaStatusGet Get State of State Analyzer 42

 T32_AnaRecordGet Get One Record of State Analyzer 43

 T32_GetTraceState Get State of Trace 46

 T32_ReadTrace Get One Record of Trace 47

 T32_GetSocketHandle Get the handle of the TRACE32 socket 51

 T32_NotifyStateEnable Register a function to be called at special event 52

 T32_CheckStateNotify Check message to receive for state notify 53

 ICD TAP Access API Functions 55

 T32_TAPAccessSetInfo Configure JTAG Interface 56

 T32_TAPAccessShiftIR Shift Data to/from Instruction Register 58

 T32_TAPAccessShiftDR Shift Data to/from Data Register 59

 T32_TAPAccessDirect Direct JTAG Port Access 60

 T32_TAPAccessShiftRaw RAW JTAG Shifts 63

 T32_TAPAccessAlloc Retrieve a Handle for Bundled Access Mode 66

 T32_TAPAccessFree Release Handle for Bundled Access Mode 67

 T32_TAPAccessExecute Execute a Bundled TAP Access 67

 T32_TAPAccessRelease Unlock Debugger 68

 Version Control ... 69
 API for Remote Control and JTAG Access 2

API for Remote Control and JTAG Access

Version October, 10 2008

Basic Concepts

Release Information

Release 4.0, shipped from 01-September-2004 on, includes the ability to connect to several debuggers at
once (multi-core debugging). It is backward compatible to release 3.

Release 3.0, shipped from 01-April-1998 on, is a compatible extended version. This document has changed.

Release 2.0, shipped from 28-Oct.-1996 on, is incompatible to previous versions, regarding the socket
communication. You need the 2.0 versions of hlinknet.c and hremote.c. Recompile your software with the
new files.
 API for Remote Control and JTAG Access 3 Basic Concepts

Introduction

The TRACE32 Software contains an interface for external control of the TRACE32. The TRACE32
Application Programming Interface (further referred to as API) gives external applications the possibility to
control the debugger and the program run by the debugger.

The API is built as a C library with a C function interface to the controlling application. The API
communicates with the TRACE32 application (not with the TRACE32 itself!) using a socket interface. The
command chain using TRACE32 API then looks like that:

Application ---> TRACE32 API ---> TRACE32 application --> TRACE32
 (C Functions) (sockets) (HW interface)

TRACE32 API

TCP/IP
Socket
Interface

TCP/IP
Socket
Interface

Ethernet

Application

TRACE32
display driver TRACE32

Hardware

Ethernet
Parallel
USB
 API for Remote Control and JTAG Access 4 Basic Concepts

Interfaces

Application --> TRACE32 API

TRACE32 API --> TRACE32 display driver

The communication to the TRACE32 software is implemented as a socket interface. This means, that the
controlling application (including API) and the debugger software can reside on two different hosts, using
network connections for communication. But be aware that this connection is not fault tolerant, because no
network error detection is implemented in the API. It is recommended, that both parties run on the same
host.

TRACE32 display driver --> TRACE32

The debugger software just routes the API requests to the TRACE32 hardware. This interface is the one,
you choosed for your debugger. E.g. it could be Ethernet, parallel or USB.

The answers for the request go exactly the opposite way, returning information to the application in passed
buffers.

TRACE32 API

Application
The application uses the API as ordinary C functions. The API is linked
to the application at the usual linking stage.

TRACE32 API

TCP/IP
Socket
Interface

TCP/IP
Socket
Interface

Ethernet

Application

TRACE32
display driver

TCP/IP
Socket
Interface

TRACE32
display driver TRACE32

Hardware

Ethernet
Parallel
USB
 API for Remote Control and JTAG Access 5 Basic Concepts

Operating of the API Requests

The API requests are executed just in parallel with normal TRACE32 operation. You can use both, the
TRACE32 user interface and the API simultaneously, although it is not recommended. The application will
not be informed about changes that are done via the user interface. Also, unpredictable errors may occur, if
e.g. an API request and a running PRACTICE file interfere.
 API for Remote Control and JTAG Access 6 Basic Concepts

Building an Application with API

API Files

The API consists of two C source files and one C header file:

• hlinknet.c

This file contains and handles the socket interface to the TRACE32 debugger software.

• hremote.c

All API functions are coded in this source file

• t32.h

This header file consists of some definitions and all function prototypes needed.

Connecting API and Application

Whenever a part of the application uses the API, the header file "t32.h" must be included. The
corresponding C source file must contain the line

quite at the beginning of the source.

When compiling and linking the application, the API files must be handled as normal source components of
the application. Compilation could look like this:

assuming, that the application is coded in a file called "applic.c" and your C compiler is called "cc". The
linker run is then invoked with:

assuming the linker name "cc" and the object extension "o".

#include "t32.h"

cc -c hlinknet.c
cc -c hremote.c
cc -c applic.c

cc -o applic hlinknet.o hremote.o applic.o
 API for Remote Control and JTAG Access 7 Building an Application with API

Communication Setup

Preparing TRACE32 Software

The TRACE32 Software has to be configured for use with a remote control, such as the API. To allow and
configure remote control, add the following lines between two empty lines to the file "config.t32". If you
are using MS-Windows and T32Start application to start TRAC32-SW you need to open the configuration at
“advanced settings” where you can select “Use Port: yes” in the “API Port” folder. The automatically created
config file (e.g. C:\temp\userT32_1000123.t32) will have the necessary lines automatically.

PACKLEN specifies the maximum package length in bytes for the socket communication. It must not be
bigger than 1024 and must fit to the value defined by T32_Config().

The port number specifies the UDP port which is used to communicate with the API. The default is 20000. If
this port is already in use, try one higher than 20000.

See also the TRACE32 online help ("help.ap RCL").

Configuring the API

The API must be configured with the functions T32_Config(), T32_Init() and T32_Attach().
T32_Config() takes two string arguments, usually the node name and the port number. The function
T32_Init() then does a setup of the communication channel. T32_Attach() attaches to the actual
instrument. The T32_Exit() function closes the connection and should always be called before
terminating the application.

See chapter "Generic API functions" for a detailed description of these functions.

RCL=NETASSIST
PACKLEN=1024
PORT=20000
 API for Remote Control and JTAG Access 8 Communication Setup

API Functions

Generic API Functions

T32_Config Configure Driver

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

The two strings are concatenated and the resulting command is sent to the communication driver of the API.
On UNIX/VMS systems this driver is the standard Ethernet interface driver of TRACE32. All commands
described for this interface can be used here. Usually three commands will be used:

NODE defines, on which host the TRACE32 display driver runs - normally local host.

PACKLEN specifies the maximum data package length and must not be bigger than 1024 and must fit to the
value defined in the "config.t32" file (see chapter 3.1).

The PORT command defines the UDP port to use. If omitted, it defaults to 20000. Be sure that these settings
fit to the RCL settings in the "config.t32" file.

Example:

int T32_Config (char * string1, char * string2);

string1, string2 ; commands for ethernet interface

NODE=localhost
PACKLEN=1024
PORT=20000

error = T32_Config ("NODE=", "myhost");
error = T32_Config ("PACKLEN=", "1024");
error = T32_Config ("PORT=", "20010");
 API for Remote Control and JTAG Access 9 API Functions

T32_Init Initialize driver and connect

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

This function initializes the driver and establishes the connection to the TRACE32 display driver. If zero is
returned, the connection was set up successfully.

It is recommended to call T32_Attach() immediately after T32_Init() to have the full set of API
functions available.

Example:

T32_Exit Close connection

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

This function ends the connection to the TRACE32 display driver. This command should always be called
before ending the application.

Example:

int T32_Init (void);

error = T32_Init ();

int T32_Exit (void);

error = T32_Exit ();
 API for Remote Control and JTAG Access 10 API Functions

T32_Attach Attach TRACE32 device

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

This command attaches the control to the specified TRACE32 device. It is recommended to attach to
T32_DEV_ICE immediately after T32_Init(), to have access to all API funtions.

Example:

int T32_Attach (int dev);

dev Device specifier

T32_DEV_OS Basic operating system of the TRACE32 ("::"),
disables all device specific commands (default)

T32_DEV_ICE Debugger ("E::" or “B::”), including Basic OS commands

T32_DEV_ICD same as T32_DEV_ICE

error = T32_Attach (T32_DEV_ICE);
 API for Remote Control and JTAG Access 11 API Functions

T32_Nop Send Empty Message

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

Send an empty message to the TRACE32 display driver and wait for it's answer.

Example:

T32_Ping Send Ping Message

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

Sends a "ping" message to the TRACE32.

Example:

int T32_Nop (void);

error = T32_Nop ();

int T32_Ping (void);

error = T32_Ping ();
 API for Remote Control and JTAG Access 12 API Functions

T32_Cmd Execute PRACTICE Command

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

With this function a PRACTICE command is passed to TRACE32 for execution. Any valid PRACTICE
command is allowed, including the start of a .cmm script via the “DO” command.

Currently the error values only indicate if there was a communication problem between debugger and API.
Errors caused by executing the command are not reported (will be changed). For retrieving error information
use the call T32_GetMessage() and consider the message type.

Example:

T32_CmdWin Execute PRACTICE Command

Prototype:

 Executing a PRACTICE command with given windows handler.

int T32_Cmd (char * command);

command ; PRACTICE command to execute

error = T32_Cmd ("Data.Set %Long 12200 033FFC00");

int T32_CmdWin (dword, char * command);
 API for Remote Control and JTAG Access 13 API Functions

T32_Stop Stop PRACTICE program

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

If a PRACTICE script is currently running, it is stopped. If an application is running in the ICE, it will not be
affected by this command. For stopping the target program use T32_Break().

Example:

int T32_Stop (void);

error = T32_Stop ();
 API for Remote Control and JTAG Access 14 API Functions

T32_EvalGet Get Evaluation Result

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Some of the PRACTICE commands and other functions set a global variable to store return values,
evaluation results or error conditions. This value is always specific to the command used. The function
T32_EvalGet reads this value.

Example:

NOTE: Although this function belongs to the generic section, it is only available with the ICE device (See
T32_Attach).

int T32_EvalGet (unsigned long * peval);

peval ; pointer to variable to catch the evaluation result

unsigned long result;
error = T32_EvalGet (&result);
printf ("Result of last PRACTICE command: %d\n", result);
 API for Remote Control and JTAG Access 15 API Functions

T32_GetMessage Get Message Line Contents

Prototype:

Parameters:

Returns:

0 for OK, otherwise Error value

Most PRACTICE commands write messages to the message line of TRACE32. This function reads the
contents of the message line and the type of the message.

"message" must be an user allocated character array of at least 128 elements.

The message types are currently defined as following and can be combined:

Example:

int T32_GetMessage (char message[128], word * ptype);

message
ptype

; output parameter, set by API
; output parameter, set by API

Type Meaning

1 General Information

2 Error

8 Status Information

16 Error Information

32 Temporary Display

64 Temporary Information

char message[128];
word mode;

error = T32_Cmd ("print"); /* delete previous outputs */
error = T32_Cmd ("print clock.date()");
error = T32_GetMessage (message, &mode);
printf ("Message: %s\nMode: %d\n", message, mode);
 API for Remote Control and JTAG Access 16 API Functions

T32_GetPracticeState Check if a PRACTICE script is running

Prototype:

Parameters:

Return:

0 for OK, otherwise Error value

Returns the run-state of PRACTICE. Use this command to poll for the end of a PRACTICE started via
T32_Cmd().

int T32_GetPracticeState(int* pstate);

pstate ; output parameter, set by API
; 0 … not running
; 1 … running
 API for Remote Control and JTAG Access 17 API Functions

Functions for using the API with Multiple Debuggers

A single API instance can be used with several TRACE32 debuggers (e.g. for Multi-Core debugging) by
creating a communication channel to each of the debuggers. Instead of passing the channel as parameter to
API calls, the whole API is switched to a specific channel via T32_SetChannel().

A channel is created by allocating the required amount of memory (T32_GetChannelSize()), initializing
this memory by T32_GetChannelDefaults(), activating it via T32_SetChannel() and then using
T32_Config(), T32_Init() and T32_Exit() as would be done on the default channel.

Note that despite the channel concept, each debugger must be assigned a unique PORT address in its
configuration file config.t32 file.

T32_GetChannelSize Get size of channel structure

Prototype:

Parameters:

none

Returns:

size_of channel structure

Only necessary for multi-channel usage.
This function returns the size of a channel structure. Allocate memory with this size to be used for the
channel switching.

Example (see full example at T32_SetChannel()):

int T32_GetChannelSize (void);

void* channel = malloc (T32_GetChannelSize());
 API for Remote Control and JTAG Access 18 API Functions

T32_GetChannelDefaults Get default channel parameters

Prototype:

Parameters:

pointer to channel receiving the defaults

Returns:

none

Only necessary for multi-channel usage.
This function fills the channel structure with default values. This is mandatory if using multiple channels.

Example (see full example at T32_SetChannel()):

void T32_GetChannelDefaults (void* channel);

T32_GetChannelDefaults (channel);
 API for Remote Control and JTAG Access 19 API Functions

T32_SetChannel Set active channel

Prototype:

Parameters:

pointer to activating channel

Returns:

none

Only necessary for multi-channel usage.
This function sets the active channel to be used for further T32_* calls.

Example:

void T32_SetChannel (void* channel);

void* channel_1 = malloc (T32_GetChannelSize());
void* channel_2 = malloc (T32_GetChannelSize());
T32_GetChannelDefaults (channel_1);
T32_GetChannelDefaults (channel_2);
T32_SetChannel (channel_1);
T32_Config (“PORT=”, “20000”);
T32_Init ();
T32_Attach (T32_DEV_ICE);
T32_SetChannel (channel_2);
T32_Config (“PORT=”, “20002”);
T32_Init ();
T32_Attach (T32_DEV_ICE);
…

 API for Remote Control and JTAG Access 20 API Functions

ICD/ICE API Functions

This chapter describes all functions available with the ICE device of the TRACE32. See T32_Attach() for
how to specify a device.

T32_GetState Get State of ICE/ICD

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Use this function to get the main state of the ICE. *pstate can have four different values:

Example:

int T32_GetState (int * pstate);

pstate ; pointer to variable to catch the ICE state

0 General Information

1 System is halted, CPU makes no cycles (r.g. STOP instruction

2 Emulation is stopped

3 Emulation is running

int state;
error = T32_GetState (&state);
printf ("System is ");
switch (state)
{

case 0: printf ("down.\n");
case 1: printf ("halted.\n");
case 2: printf ("stopped.\n");
case 3: printf ("running.\n");

}

 API for Remote Control and JTAG Access 21 API Functions

T32_GetCpuInfo Get Information about used CPU

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

This function gives information about the CPU type. pstring will contain an ASCII string with the CPU type
and family. pfpu describes, whether a FPU is present or not. This is currently not used and always zero.
pendian describes the byte order of the CPU: zero means big endian (12 34 becomes 1234), otherwise
little endian (12 34 becomes 3412). ptype is for internal information and useless to the user.

Example:

int T32_GetCpuInfo (char ** pstring, word * pfpu, word * pendian,
word * ptype);

pstring

pfpu
pendian
ptype

; pointer to variable to catch a pointer to a string
; describing the cpu
; pointer to variable to catch the fpu type
; pointer to variable to cache the byte order
; additional internal information

char * cpustring = "";
unsigned short hasfpu, endian, tmp;
error = T32_GetCpuInfo (&cpustring, &hasfpu, &endian, &tmp);
printf ("CPU is %s.\n", cpustring);
printf ("Endian type is %s.\n", endian?"little":"big");
 API for Remote Control and JTAG Access 22 API Functions

T32_GetRam Get Memory Mapping

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

The memory mapping of the emulator can be get with this function. pstart specifies the first address to
search for a memory block. A zero will force to search from beginning of the address space. After return,
pstart contains the first address, at which the specified memory is mapped and pend contains the last
address of the continuously mapped block To get all mapped blocks, call T32_GetRam repeatedly, until
paccess == 0. paccess must contain the access mode. Currently there are two modes: 1 for Data RAM
("D:") and 2 for Program RAM ("P:"). If paccess contains zero after return, and no error occurred, then no
(more) mapped memory was found. Otherwise paccess is not equal to zero (but changed!).

Example:

int T32_GetRam (dword * pstart, dword * pend, word * paccess);

pstart
pend
paccess

; pointer to variable with start address
; pointer to variable to catch the end address
; pointer to variable with access type

unsigned long start, end;
unsigned short access;
start = 0; /* search for first mamory block */
access = 1; /* search for Data RAM Block */
error = T32_GetRam (&start, &end, &access);
if (!access) printf ("No Dataram found.\n");
else printf ("Dataram found from %x to %x.\n", start, end);
 API for Remote Control and JTAG Access 23 API Functions

T32_ResetCPU Prepare for Emulation

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

Prepares the ICE for emulation. This is done by executing the PRACTICE commands SYStem.UP and
Register.RESet. This function can also be used to get control after the target software has crashed.

Example:

int T32_ResetCPU (void);

error = T32_ResetCPU ();
 API for Remote Control and JTAG Access 24 API Functions

T32_ReadMemory Read Target Memory

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Reads data from target memory. The size of the data block is not limited.

The access parameter defines the memory access class and access method:

Example:

Memory Classes:

int T32_ReadMemory (dword address, int access, byte * buffer, int size);

address
access
buffer
size

; target memory address to start read
; memory access specifier
; output
; number of bytes to read

Bit 0…3 encodes the memory class, values as defined below

Bit 6: Set for emulation memory access (E:, dual port access)

unsigned char buffer[16];
error = T32_ReadMemory (0x100, 0x40, buffer, 16); // ED: access

Generically used memory access class values (independent of CPU architecture):

0 Data access, D:

1 Program access, P:

12 AD:

13 AP:

15 USR:
 API for Remote Control and JTAG Access 25 API Functions

Additional memory access class values for ARM CPUs

2 CP0

3 ICEbreaker

4 ETM

5 CP14

6 CP15

7 ARM logical

8 THUMB logical

9 ARM physical

10 THUMB physical

11 ETB

14 DAP:

Additional memory access class values for PowerPC CPUs:

2 SPR

3 DCR

4 TLB

5 PMR

6 P: real mode address

7 P: virtual mode address
 API for Remote Control and JTAG Access 26 API Functions

T32_WriteMemory Write to Target Memory

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Writes data to target memory. The size of the data block is not limited. This function should be used to
access variables and make other not time critical memory writes. The access flags define the memory
access class and access method:

Example:

int T32_WriteMemory (dword address, int access, byte * buffer, int size);

address
access
buffer
size

; target memory address to start write
; memory access specifier
; pointer to host buffer data area to write
; number of bytes to write

Bit 0…3 Memory Class, see T32_ReadMemory()

Bit 6: Set for emulation memory access (dual port access)

Bit 7: Set to enable verify after write

unsigned char buffer[16];
…
error = T32_WriteMemory (0x100, 0xc0, buffer, 16);
 API for Remote Control and JTAG Access 27 API Functions

T32_WriteMemoryPipe Write to Target Memory pipelined

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Writes data to target memory with pipelining. Pipelinig means, that the memory write operation of the
emulator is done in parallel to the downloading process. This speeds up the download. The return value of
the function always refers to the previous Write command. The result of the last write command must be
fetched by calling the function with size=0. The size of the data block is not limited. This function should be
used to download an application program. The access flags define the memory access class and access
method (see T32_WriteMemory).

Example:

int T32_WriteMemoryPipe (dword address, int access, byte * buffer, int
size);

address
access
buffer
size

; target memory address to start write
; memory access flags
; pointer to host buffer data area to write
; number of bytes to write

unsigned char buffer[1024];
…
error = T32_WriteMemoryPipe (0x400, 0xc0, buffer, 1024);
 API for Remote Control and JTAG Access 28 API Functions

T32_ReadRegister Read CPU Registers

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

The two 32-bit values mask1 and mask2 form a 64-bit bitmask. Each bit corresponds with one CPU register.
Bit 0 of mask1 is register #0, bit 31 of mask2 is register #63. Registers are only read from the emulator, if
their corresponding bit is set. The values of the registers are written in an array. Array element 0 is register 0,
element 63 is register 63.

Example:

int T32_ReadRegister (dword mask1, dword mask2, long *buffer);

mask1, mask2
buffer

; register addressing mask
; pointer to host buffer to catch register data

long buffer[64];

/* define register array */

error = T32_ReadRegister (0x3ff, 0x0, buffer);

/* read the first 10 registers */
 API for Remote Control and JTAG Access 29 API Functions

T32_WriteRegister Write CPU Registers

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

The two 32-bit values mask1 and mask2 form a 64-bit bitmask. Each bit corresponds with one CPU register.
Bit 0 of mask1 is register #0, bit 31 of mask2 is register #63. Registers are only written, if their corresponding
bit is set. The values of the registers are passed as an array. Array element 0 is register 0, element 63 is
register 63.

Example:

int T32_WriteRegister(dword mask1, dword mask2, long *buffer);

mask1, mask2
buffer

; register addressing mask
; pointer to host buffer containing the register data

long buffer[64];

/* define register array */

buffer[1] = buffer [3] = 0x30f0;

/* write register 1 and 3 */
 API for Remote Control and JTAG Access 30 API Functions

T32_ReadPP Read Program Pointer

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

This function reads the current value of the program pointer. It is only valid, if the application is stopped, I.e.
the state of the ICE is "Emulation stopped" (see T32_GetState). The program pointer is a logical pointer to
the address of the next executed assembler line. In contrary to T32_ReadRegister, this function is
completely processor independent.

Example:

T32_ReadBreakpoint Read Breakpoints

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

int T32_ReadPP(dword * pp);

pp
value

; pointer to variable to catch the program pointer

dword pp;
error = T32_ReadPP (&pp);
printf ("Current Program Pointer: %x\n", pp);

int T32_ReadBreakpoint (dword address, int access, word * buffer,
int size);

address
access
buffer
size

; address to begin reading breakpoints
; memory access flags
; pointer to host buffer to catch breakpoint data
; number of addresses to read
 API for Remote Control and JTAG Access 31 API Functions

Read breakpoint and flag information from emulator. The access variable defines the memory class and
access method (see T32_ReadMemory). The size of the range is not limited. The buffer contains 16-bit
words in the following format:

Example:

Bit 0 execution breakpoint (Program)

Bit 1 HLL stepping breakpoint (Hll)

Bit 2 spot breakpoint (Spot)

Bit 3 read access breakpoint (Read)

Bit 4 write access breakpoint (Write)

Bit 5 universal marker a (Alpha)

Bit 6 universal marker b (Beta)

Bit 7 universal marker c (Charly)

Bit 8 read flag (ICE), if mapped or marker d (FIRE,ICD)

Bit 9 write flag (ICE), if mapped or marker e (FIRE,ICD)

Bit 10 implemented as ONCHIP (FIRE,ICD)

Bit 11 implemented as SOFT (FIRE,ICD)

Bit 12 implemented as HARD (FIRE,ICD)

unsigned short buffer[16];
error = T32_ReadBreakpoint (0x100, 0x40, buffer, 16);
 API for Remote Control and JTAG Access 32 API Functions

T32_WriteBreakpoint Write Breakpoints

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Set or clear breakpoints. The access variable defines the memory class and access method (see
T32_ReadMemory). The size of the range is not limited. The breakpoint argument defines, which
breakpoints to set or clear over the memory area:

Example:

int T32_WriteBreakpoint (dword address, int access, int breakpoint,
int size);

address
access
breakpoint
size

; address to begin writing breakpoints
; memory access flags
; breakpoints to set or clear in area
; number of addresses to write

Bit 0 execution breakpoint (Program)

Bit 1 HLL stepping breakpoint (Hll)

Bit 2 spot breakpoint (Spot)

Bit 3 read access breakpoint (Read)

Bit 4 write access breakpoint (Write)

Bit 5 universal marker a (Alpha)

Bit 6 universal marker b (Beta)

Bit 7 universal marker c (Charly)

Bit 8 Set to clear breakpoints

error = T32_WriteBreakpoint (0x100, 0x40, 0x19, 16);
 API for Remote Control and JTAG Access 33 API Functions

T32_Step Single Step

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

Executes one single step on the emulator.

Example:

int T32_Step (void);

error = T32_Step ();
 API for Remote Control and JTAG Access 34 API Functions

T32_StepMode Single Step with Mode Control

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Executes one step on the emulator. The mode parameter controls the stepping mode:

Bit 7 of mode defines step into or step over a function call

Example:

Steps over a function call, halting on the next HLL line.

int T32_Step (int mode);

mode ; stepping mode

0 assembler step

1 HLL step

2 mixed = assembler step with HLL display

error = T32_StepMode (0x81);
 API for Remote Control and JTAG Access 35 API Functions

T32_Go Start Realtime

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

Start realtime emulation. The function will return immediately after the emulation has been started. The
T32_GetState function can be used to wait for the next breakpoint. All other commands are allowed while
the emulation is running.

Example:

T32_Break Stop Realtime

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

Stops the realtime emulation asynchronously.

Example:

int T32_Go (void);

error = T32_Go ();

int T32_Break (void);

error = T32_Break ();
 API for Remote Control and JTAG Access 36 API Functions

T32_GetTriggerMessage Get Trigger Message Contents

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value

When stopping on a read or write breakpoint (or equivalent), the trigger system generates an appropriate
message. This message (as shown in the “Trigger” window), can be read with this function.

"message" must be an user allocated character array of at least 128 elements.

Example:

int T32_GetTriggerMessage (char message[128]);

message ; pointer to an array of 128 characters to catch the message

char message[128];

error = T32_GetTriggerMessage (message);
printf ("Trigger system reports: %s\n", message);
 API for Remote Control and JTAG Access 37 API Functions

T32_GetSymbol Get Symbol Information

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value.

This function returns the symbol information for a specified symbol name. If the specified symbol was not
found, address, size and access contains -1. Note, that there is not possible to get the information of
non-static local variables (as they have no address).
This function can also be used to get the address of a source line.

int T32_GetSymbol (char* symbol, dword* address, dword* size, dword*
access);

symbol
address
size
access

; pointer to symbol name
; pointer to variable to catch the symbol address
; pointer to variable to catch the symbol size (if any)
; pointer to variable to catch the symbol access class
 API for Remote Control and JTAG Access 38 API Functions

Example:

dword address, size, access;

char* symname = "variable";

/* search for a variable called “variable” */

char* srcline = “\\file\\12”;

/* search for line 12 in file “file.c” */

error = T32_GetSymbol (symname, &address, &size, &access);

/* get information about a variable */

printf ("Symbol %s is located at 0x%x,\n", symname, address);

printf (“the variable with this symbol has a size of %d bytes.”, size);

error = T32_GetSymbol (srcline, &address, &size, &access);

/* get information about a source line */

printf ("Source line 12 of file ’file.c’ is located at 0x%x,\n",
address);

printf (“the line is compiled occupying %d bytes of code.”, size);
 API for Remote Control and JTAG Access 39 API Functions

T32_GetSource Get Source Filename and Line

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

With a given target address, this function calculates and gets the corresponding source filename and source
line. filename must be an array of characters with at least 256 elements.

Example:

int T32_GetSource (dword address, char filename[256], dword *line);

address
filename
line

; address for which file and line are requested
; output parameter, is set by the API function
; output parameter, is set by the API function

char filename[128];
dword line, curr_addr;

error = T32_ReadPP (&curr_addr); /* get program pointer */
error = T32_GetSource (curr_addr, filename, &line);
printf ("Current Source: %s at line %d\n", filename, line);
 API for Remote Control and JTAG Access 40 API Functions

T32_GetSelectedSource Get Source Filename and Line of Selection

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

This function requests the source filename and line number of a selected source line in TRACE32
PowerView. The source line can be selected in any TRACE32 PowerView window containing source (e.g.
"a.l" or "d.l"). If no previous selection was done, or if no source line is selected, the function returns with
filename pointing to a NULL string.
filename must be an array of characters with at least 256 elements.

Example:

int T32_GetSelectedSource (char filename[256], dword *line);

filename
line

; pointer to an array of characters, output parameter
; pointer to source line, output parameter

char filename[256];
dword line;

error = T32_GetSelectedSource (filename, &line);
if (strlen (filename))

printf ("Selected Source: %s at line %d\n", filename, line);
else

printf ("No source line selected.\n");
 API for Remote Control and JTAG Access 41 API Functions

T32_AnaStatusGet Get State of State Analyzer

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value

This function requests the state of the TRACE32 State Analyzer. This function is obsolete. New software
should use the T32_GetTraceState function.

“state” contains the current analyzer state:

“size” contains the trace buffer size. It specifies the amount of records, which can be recorded, not the
amount of records, which are actually stored in the buffer.
“min”, “max” contain the minimum and the maximum record number stored in the trace buffer. Note that the
record numbers can be negative or positive.

Example:

int T32_AnaStatusGet (byte* state, long* size, long* min, long* max);

state
state size
min number
max number

; pointer to variable to catch the current analyzer
; pointer to variable to catch the trace buffer size
; pointer to variable to catch the minimum record
; pointer to variable to catch the maximum record

0 analyzer is switched off

1 analyzer is armed

2 analyzer is triggered

3 analyzer recording broken

byte state;
long size, min, max;

error = T32_AnaStatusGet (&state, &size, &min, &max);
printf (“State: %s\n”, !state ? “off” : ((state == 1) ? “armed” :

((state == 3) ? “breaked” : “unknown”)));
printf (“Buffer size = %d records\n”, size);
printf (“Minimum/Maximum record number: %d/%d\n”, min, max);
 API for Remote Control and JTAG Access 42 API Functions

T32_AnaRecordGet Get One Record of State Analyzer

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value

This function reads the record information of one record of the Analyzer trace buffer. This function is
obsolete. New software should use the T32_ReadTrace function.

“recordnr” specifies the record number to read.
“buffer” contains the read record information (see below).
“length” specifies the number of bytes to read from the information into the buffer. This can be used to limit
the amount of bytes transmitted and written into the buffer. If you specify “0”, all information will be
transmitted; in this case allocate an array with 256 bytes at least.

The buffer will then contain the following data:

int T32_AnaRecordGet (long recordnr, byte* buffer, int length);

recordnr
buffer
length

; record number of record to read
; byte array to catch the record information
; number of bytes to read from record

index content

0 return value: 0 = Ok
 -1 = no analyzer present
 -2 = invalid record number

1 reserved

2 physical access class: lower 4 bits:

higher 4bits:

1=Data
2=Program
3=First Cycle
4=res.
5=Breakpoint Cycle
6=res.
7=Write Cycle
8=Opfetch1 Cycle

3 reserved

4-7 physical address (little endian)
 API for Remote Control and JTAG Access 43 API Functions

8-15 bus data (max. 8 bytes, depending on bus data width)

16 bus data width

17 bus access cycle (read/write/fetch, processor dependant)

18-19 status lines, processor
dependant

20-27 time stamp (one bit equals
20/256 ns)

28/29 external trigger A/B inputs

30 logical access class:
1=Data
2=Program

31 reserved

32-35 logical address

rest reserved
 API for Remote Control and JTAG Access 44 API Functions

Example:

int i;
long recordnr = 100;
long long time;
byte buffer[256];

error = T32_AnaRecordGet (recordnr, buffer, 0);
if (!error && !buffer[0]) /* no error */
{

printf (“Address = 0x%02x%02x%02x%02x\n”,
buffer[7], buffer[6], buffer[5], buffer[4]);

printf (“Data = 0x”);
for (i = 0; i < buffer[16]; i++)

printf (“%02x”, buffer[8+i]);
printf (“\n”);
printf (“Time = 0x”);
time = 0;
for (i = 7; i >= 0; i--)
{

printf (“%02x”, buffer[20+i]);
time += (long long) buffer[20+i] << i*8;

}
printf (“\n”);
time = time * 625 / 8000; /* calculate nanoseconds */

 printf (“ = %d s, %d ms, %d us, %d ns\n”,
(long) (time / 1000000000L),
(long) (time % 1000000000L / 1000000L),
(long) (time % 1000000L / 1000L),
(long) (time % 1000L));

}

 API for Remote Control and JTAG Access 45 API Functions

T32_GetTraceState Get State of Trace

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value

This function requests the state of the selected Trace.

“tracetype” contains the trace method selection.

“state” contains the current trace state:

int T32_GetTraceState (int tracetype, int* state, long* size, long* min,
long* max);

tracetype
state
size
min number
max number

; type of trace and interpretation
; pointer to variable to catch the current trace state
; pointer to variable to catch the trace buffer size
; pointer to variable to catch the minimum record
; pointer to variable to catch the maximum record

0 Trace (the Trace selected with Trace.METHOD command)

1 PowerIntegrator

2 Trace raw data (same as 0, but no interpretation of trace data)

3 Trace funneled data (same as 0, but only decoding of funneled data for one source)

0 analyzer is switched off

1 analyzer is armed

2 analyzer triggered

3 analyzer recording breaked
 API for Remote Control and JTAG Access 46 API Functions

“size” contains the trace buffer size. It specifies the amount of records, which can be recorded, not the
amount of records, which are actually stored in the buffer.

“min”, “max” contain the minimum and the maximum record number stored in the trace buffer. Note that the
record numbers can be negative or positive.

Example:

T32_ReadTrace Get One Record of Trace

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value

This function reads the information of one or more records from the trace buffer.

“tracetype” contains the trace method selection. See T32GetTraceState for the encoding.
“record” specifies the record number to read.
“n” is the number of records to read.
“mask” defines which information should be extracted. Each bit is related to a four byte chunk of data.
“buffer” contains the read record information. All data is stored in little endian format.

byte state;
long size, min, max;

error = T32_GetTraceState (0, &state, &size, &min, &max);
printf (“State: %s\n”, !state ? “off” : ((state == 1) ? “armed” :

((state == 3) ? “breaked” : “unknown”)));
printf (“Buffer size = %d records\n”, size);
printf (“Minimum/Maximum record number: %d/%d\n”, min, max);

int T32_ReadTrace (int tracetype, long record, int n, unsigned long mask,
byte* buffer);

tracetype
record n

mask
buffer

; type of trace and interpretation
; record number of record to start reading from number
of
; records to read
; type of data to extract from the trace
; byte array to catch the record information
 API for Remote Control and JTAG Access 47 API Functions

The buffer will then contain the following data:

bit group byte content

0 0 return value:

 0=Ok
 -1=no analyzer present
 -2=invalid record number

0 1 reserved

0 2 reserved

0 3 reserved

1 0 external trace data 0
or flow trace data byte (only ETM V3, only row or funnel trace source)

1 1 external trace data 1
or flow trace control byte (only ETM V3, only row or funnel trace
source)
bit 2: TCNTL

1 2 trigger level

1 3 trigger flags

2 0…3 timestamp lower 32 bits (little endian)
0x40 -> 5ns
0x80 -> 10ns
0x100 -> 20ns
0x500 -> 100ns

3 0…3 timestamp upper 32 bits (little endian)

4 0…3 physical address (little endian)

5 0…3 physical address upper 32 bits (little
endian)

6 0…3 physical access class and segment

7 0…3 reserved

8 0…3 logical address (little endian)

9 0…3 logical address upper 32 bits (little endian)

10 0…3 logical access class and segment

11 0…3 reserved
 API for Remote Control and JTAG Access 48 API Functions

12 0…3 data 0…3

13 0…3 data 4…7

14 0 data bus mask (byte enables)

14 1 cycle type information: bit 1=Data
bit 2=Program
bit 3=First Cycle
bit 4=res.
bit 5=Breakpoint Cycle
bit 6=res.
bit 7=Write Cycle

14 2 data bus width

14 3 reserved

15 0…3 reserved

16…31 0…3 logical analyzer or port channel data
 API for Remote Control and JTAG Access 49 API Functions

Example:

int i;
long recordnr = 100;
long long time;
byte buffer[256];

error = T32_ReadTrace (0, recordnr, 1, 0x710c, buffer);
if (!error && !buffer[0]) /* no error */
{

printf (“Address = 0x%02x%02x%02x%02x\n”, buffer[11], buffer[10],
buffer[9], buffer[8]);
printf (“Data = 0x”);
for (i = 0; i < buffer[22]; i++)

printf (“%02x”, buffer[12+i]);
printf (“\n”);
printf (“Time = 0x”);
time = 0;
for (i = 7; i >= 0; i--)
{

printf (“%02x”, buffer[0+i]);
time += (long long) buffer[0+i] << i*8;

}
printf (“\n”);
time = time * 625 / 8000; /* calculate nanoseconds */
printf (“ = %d s, %d ms, %d us, %d ns\n”,

(long) (time / 1000000000L),
(long) (time % 1000000000L / 1000000L),
(long) (time % 1000000L / 1000L),
(long) (time % 1000L));

}

 API for Remote Control and JTAG Access 50 API Functions

T32_GetSocketHandle Get the handle of the TRACE32 socket

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value

This function returns a pointer to the handle of the socket created by the API to communicate with
TRACE32. It could be used for example to register asynchronous notification for sending or receiving data
on this socket.

Example:

Register the TRACE32 socket for asynchronous notification then a message is received on the socket.

int T32_GetSocketHandle (SOCKET *soc);

soc ; pointer to the handle of the socket created by the API
; to communicate with TRACE32

SOCKET t32soc;
T32_GetSocketHandle(&t32soc);
if (nr)

WSAAsyncSelect(t32soc, myHwnd, WM_ASYNC_SELECT, FD_READ);
else

WSAAsyncSelect(t32soc, myHwnd, WM_ASYNC_SELECT, 0);
 API for Remote Control and JTAG Access 51 API Functions

T32_NotifyStateEnable Register a function to be called at special event

Prototype:

Parameters:

Returns:

0 for ok, otherwise communication error value

This function registers a callback function with the API that will be called by the API when the specified event
occurs. For this mechanism to work, the user must ensure that the function T32_CheckStateNotify is called
periodically (e.g. in the windows main loop) because that will make the API reevaluate accumulated events.

“event” specifies the number of the event. Currently only the following event is specified through a constant:

T32_E_BREAK Emulator break

“func” points to a function that is called when the event takes place.

Example:

Register the function targetHalted to be called whenever the emulator goes into state “break” (stopped).

int T32_NotifyStateEnable (int event,void (*func)());

event
func

; number of the event; to communicate with TRACE32
; pointer to a function

if (T32_NotifyStateEnable(T32_E_BREAK,targetHalted))
printf ("Notify Break: Could not initialize! \n");

else
printf ("Notify Break Enable.\n");
 API for Remote Control and JTAG Access 52 API Functions

T32_CheckStateNotify Check message to receive for state notify

Prototype:

Parameters:

Returns:

0 for OK, otherwise communication error value

This function makes the API reevaluate events accumulated since the last call to T32_CheckStateNotify. If a
callback function for any of these events was registered with T32_NotifyStateEnable, the callback function is
executed as callback(param1). The parameter is used independently of the event type and is intended for
passing generic parameters like application handles etc.

As the CAPI does not have an own thread, it is the application program’s responsibility to
periodically call this function.

Example:

int T32_CheckStateNotify (unsigned param1);

param1 ; parameter 1 of registered func at T32_NotifyStateEnable
 API for Remote Control and JTAG Access 53 API Functions

The typical Windows callback routine for an application which also handles the asynchronous notification of
a socket.

long CALLBACK MainWndProc(hWnd, message, wParam, lParam)
HWND hWnd; /* window handle */
UINT message; /* type of message */
WPARAM wParam; /* additional information */
LPARAM lParam; /* additional information */
{

switch (message)
{
case WM_COMMAND: /* message: command from application menu */

break;
case WM_ASYNC_SELECT:

if (WSAGETSELECTERROR(lParam) != 0)
break;// error receiving select notification

switch (WSAGETSELECTEVENT(lParam))
{
case FD_READ:

T32_CheckStateNotify(&apphandle);
break;

}
break;

case WM_DESTROY: /* message: window being destroyed */
break;

default: /* Passes it on if unproccessed */
return (DefWindowProc(hWnd, message, wParam, lParam));

}
return (0);

}

 API for Remote Control and JTAG Access 54 API Functions

ICD TAP Access API Functions

This chapter describes all functions available for direct access to the JTAG TAP controller. There are two
possible modes to access the TAP controller, the Single Access Mode and the Bundled Access Mode. For a
sequence of TAP accesses (e.g. to read memory), the Bundled Access Mode is recommended.

The functions T32_TAPAccessShiftIR, T32_TAPAccessShiftDR and T32_TAPAccessDirect are
provided for JTAG access. These functions need a handle to access the TAP controller. For Single Access
Mode, two predefined Handles are available, which control the behavior of the debugger after the API
access:

For Bundled Access Mode, the TAP access handle must be acquired by calling T32_TAPAccessAlloc. All
IR, DR and direct accesses will be stored, instead of being executed immediately. Those bundled accesses
are executed with a call to T32_TAPAccessExecute in the given order. While a bundled access is
executed, the API holds exclusive access to the TAP controller.

Handle Effect

T32_TAPACCESS_HOLD All debugger actions concerning the TAP controller will be
suspended.The API has exclusive access to the JTAG port.

T32_TAPACCESS_RELEASE Allows the debugger to access the TAP controller after this
API access
 API for Remote Control and JTAG Access 55 API Functions

T32_TAPAccessSetInfo Configure JTAG Interface

Prototype:

Parameters:

int T32_TAPAccessSetInfo(int irpre, int irpost, int drpre, int drpost,
int tristate, int tapstate, int tcklevel, int slave);

irpre

irpost

drpre

drpost

tristate

tapstate

tcklevel

slave

; Number of instruction register bits of all cores in the
; JTAG chain between the dedicated core and the TDO signal
pin
; Number of instruction register bits of all cores in the
JTAG
; chain between TDI signal and the dedicated core
; Number of cores in the JTAG chain between the dedicated
core
; and the TDO signal (one data register bit per core which is
; in BYPASS mode
; Number of cores in the JTAG chain between the TDI signal
and
; the dedicated core (one data register bit per core which is
; in BYPASS mode)
; TRUE, if more than one debugger is connected to JTAG port.
; With this option, the debugger switches to tristate mode
; after each access.
; In multi-debugger mode, this parameter specifies the state
; of the TAP controller, which is expected when the debugger
; takes control and set before the debugger switches to
; tristate mode. This value has to be identical for all
; debuggers connected to this JTAG port. See table below for
; a list of possible states.
; In multi-debugger mode, this is the level of the TCK signal
; when all debuggers are tristated.
; In multi-debugger mode, only one debugger is allowed to
; control nTRST, nRESET. All others have to set this value to
; TRUE.
 API for Remote Control and JTAG Access 56 API Functions

Returns:

0 for ok, otherwise Error value

Values for tapstate:

Example:

0 Exit2-DR 8 Exit2-IR

1 Exit1-DR 9 Exit1-IR

2 Shift-DR 10 Shift-IR

3 Pause-DR 11 Pause-IR

4 Select-IR-Scan 12 Run-Test/Idle

5 Update-DR 13 Update-IR

6 Capture-DR 14 Capture-IR

7 Select-DR-Scan 15 Test-Logic-Reset

TDI ---> TAP_A ---> TAP_B ---> MyTAP ---> TAP_C ---> TDO

IRLEN(TAP_A) = 3 bits
IRLEN(TAP_B) = 5 bits
IRLEN(TAP_C) = 6 bits

IRPRE = IRLEN(TAP_C) = 6
IRPOST = IRLEN (TAP_A) + IRLEN (TAP_B) = 8
 API for Remote Control and JTAG Access 57 API Functions

T32_TAPAccessShiftIR Shift Data to/from Instruction Register

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Use this function to scan data through the Instruction Register

Example:

int T32_TAPAccessShiftIR(T32_TAPACCESS_HANDLE connection,
int numberofbits, unsigned char* poutbits, unsigned char* pinbits);

connection
numberofbits
poutbits

pinbits

; TAP access handle (see 4.3)
; amount of bits to scan
; buffer containing data scanned into the TAP
controller,
; or NULL to scan in Zeros
; buffer for data to be scanned out of the TAP
; controller, or NULL to discard the received data

unsigned char status;
unsigned char tap_instr = TAP_STATUS;

T32_TAPAccessShiftIR (T32_TAPACCESS_RELEASE, 8, &tap_instr, &status);
 API for Remote Control and JTAG Access 58 API Functions

T32_TAPAccessShiftDR Shift Data to/from Data Register

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Use this function to scan data through the Data Register

Example:

int T32_TAPAccessShiftDR(T32_TAPACCESS_HANDLE connection,
int numberofbits, unsigned char* poutbits, unsigned char* pinbits);

connection
numberofbits
poutbits

pinbits

; TAP access handle (see 4.3)
; amount of bits to scan
; buffer containing data scanned into the TAP
controller,
; or NULL to scan in Zeros
; buffer for data to be scanned out of the TAP
; controller, or NULL to discard the received data

// Retrieve the PVR value (PowerPC)
unsigned char status;
unsigned char pvrnr[4];
unsigned char tap_instr = TAP_COP_PVR;

T32_TAPAccessShiftIR (T32_TAPACCESS_HOLD, 8, &tap_instr, &status);
T32_TAPAccessShiftDR (T32_TAPACCESS_RELEASE, 32, NULL, pvrnr);
// Write Zeros
 API for Remote Control and JTAG Access 59 API Functions

T32_TAPAccessDirect Direct JTAG Port Access

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

The primary use of this function is to directly access the JTAG port, such as toggling HRESET or reading
TDO, via a variety of commands.
The poutbytes buffer can also contain multiple commands. Any command consists of one or more bytes.
The size of the return value is always identical with the command size.

For a direct access to the JTAG port pins, commands can be generically generated. All commands for read
accesses are predefined:

int T32_TAPAccessDirect(T32_TAPACCESS_HANDLE connection, int nbytes,
byte * poutbytes, byte * pinbytes);

connection
nbytes
poutbytes
pinbytes

; TAP access handle (see 4.3)
; size in bytes of the array psignals
; array containing direct access commands
; array receiving the results of the direct access
; commands

JTAG signals:

T32_TAPACCESS_TDO T32_TAPACCESS_TDI

T32_TAPACCESS_TMS T32_TAPACCESS_TCK

T32_TAPACCESS_nTRST

System signals:

T32_TAPACCESS_nRESET T32_TAPACCESS_nRESET_LATCH

T32_TAPACCESS_VTREF T32_TAPACCESS_VTREF_LATCH

Debugger related signals:

T32_TAPACCESS_nENOUT
 API for Remote Control and JTAG Access 60 API Functions

The two latches display any occurrence of RESET/VTREF fail since the last check. The functionality of read
accesses depends on the used debugger and target.

nENOUT enables the output driver of the debug cable (negative logic).

Write accesses are generated by OR-ing the corresponding read command with one of the following values:

The returned result of a write command is identical with that of the corresponding read command.

Additional Commands:

NOTE: The existence and functionality if direct access commands may vary depending on the used
debugger and/or target hardware.

T32_TAPACCESS_SET_0
T32_TAPACCESS_SET_LOW

Sets Signal to logical LOW

T32_TAPACCESS_SET_1
T32_TAPACCESS_SET_HIGH

Sets Signal to logical HIGH

T32_TAPACCESS_SET(x) Sets Signal to value x

Command (Byte 0) Cmd. Size
in Bytes

Byte1

T32_TAPACCESS_SLEEP_MS 2 Time in msec

T32_TAPACCESS_SLEEP_US 2 Time in usec

T32_TAPACCESS_SLEEP_HALF_CLOCK 1 No parameter. The debugger
waits for an half JTAG clock cycle.
NOTE: This command does not
work with return clock from target
(RTCK). Clock accurate arbitrary
shifts should be done by
”T32_TAPAccessShiftRaw RAW
JTAG Shifts” (api_remote.pdf).
 API for Remote Control and JTAG Access 61 API Functions

Example:

// reset target
unsigned char commands[8];
unsigned char result[8];
unsigned char hreset_state;

commands[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_0;
commands[1] = T32_TAPACCESS_nRESET | T32_TAPACCESS_SET_0;
commands[2] = T32_TAPACCESS_SLEEP_MS;
commands[3] = 50; // Wait 50 ms
commands[4] = T32_TAPACCESS_nRESET | T32_TAPACCESS_SET_1;
commands[5] = T32_TAPACCESS_SLEEP_MS;
commands[6] = 50; // Wait 50 ms
commands[7] = T32_TAPACCESS_nRESET;

T32_TAPAccessDirect (T32_TAPACCESS_RELEASE, 8, commands, result);

hreset_state = result[7];
 API for Remote Control and JTAG Access 62 API Functions

T32_TAPAccessShiftRaw RAW JTAG Shifts

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

This function should be used to send/receive arbitrary TDI/TMS/TDO pattern. The buffers are considered bit
wise beginning with the first byte e.g. pTDIBits = 0x03 0x04 will shift out 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 for
TDI.

It is possible to pass a NULL pointer for any of the parameters. The advantage of this method is that less
data needs to be transferred between debug box and API. By setting all communication arrays to NULL the
amount of shifted bits is not limited. The receive/send data pattern size are limited to a size of
(T32_TAPACCESS_MAXBITS - 64) bits. If TMS and TDI are transferred both the maximum pattern size is
limited to 1/2 * (T32_TAPACCESS_MAXBITS - 64). If TDI or TMS are left out the pattern can be defined by
the options parameter:

For a direct access to the JTAG port pins, commands can be generically generated. All commands for read
accesses are predefined:

int T32_TAPAccessShiftRaw(T32_TAPACCESS_HANDLE connection,
int numberofbits, byte * pTMSBits, byte * pTDIBits,
byte * pTDOBits, int options);

connection
numberofbits
pTMSBits

pTDIBits

pTDOBits

options

; TAP access handle (see 4.3)
; defines how many TCK clock cycles the shift is long
; TMS bit pattern. May be NULL in case no specific
 pattern shall be shifted.
; TDI bit pattern. May be NULL in case no
 specific pattern shall be shifted.
; array to store TDO answer. May be NULL if the
 result shall not be recorded
; shift option bit mask (see below)

Pattern Options TMS:

SHIFTRAW_OPTION_TMS_ZERO Shifts TMS = 0

SHIFTRAW_OPTION_TMS_ONE Shifts TMS = 1

SHIFTRAW_OPTION_LASTTMS_ONE Shifts TMS = 0, except for the last cycle where
TMS = 1
 API for Remote Control and JTAG Access 63 API Functions

Example 1:

The T32_TAPAccessShiftRaw function can be combined with the T32_TAPAccessExecute
mechanism to speed up multiple pattern calls. Make sure that the pTDOBits pointer is valid until
T32_TAPAccessExecute is called.

Pattern Options TDI:

SHIFTRAW_OPTION_TDI_ZERO Shifts TDI = 0

SHIFTRAW_OPTION_TDI_ONE Shifts TDI = 1

SHIFTRAW_OPTION_TDI_LASTTDO Shifts TDI pattern that equals last read back
TDO (where pTDOBits where defined). Please
ask LAUTERBACH support if that feature shall
be extended.

int TAPAccessShiftRaw_Test_Hold()
{
 unsigned char pTDI[1];
 unsigned char pTMS[1];
 unsigned char pTDO[1];
 int err = 0;

 /*Drive from Run/Test Idle to Shift/IR (1 1 0 0)*/
 pTMS[0] = 0x3;
 if (err = T32_TAPAccessShiftRaw(T32_TAPACCESS_HOLD , 4 , pTMS, 0 , 0,
 SHIFTRAW_OPTION_NONE))
 goto error;

 /*Shift 0x5 / 5-Bit TAP and read back response - Drive to Exit1-IR*/
 pTDI[0] = 0x6;
 if (err = T32_TAPAccessShiftRaw(T32_TAPACCESS_HOLD , 5 , 0, pTDI ,
pTDO,
 SHIFTRAW_OPTION_LASTTMS_ONE))
 goto error;

 /*Drive From Exit1-IR to RUN-Test/Idle (1 0)*/
 pTMS[0] = 0x1;
 if (err = T32_TAPAccessShiftRaw(T32_TAPACCESS_HOLD , 2 , pTMS, 0 , 0,
 SHIFTRAW_OPTION_NONE))
 goto error;

error:
 T32_TAPAccessRelease();
 return err;
}

 API for Remote Control and JTAG Access 64 API Functions

Example 2:

int TAPAccessShiftRaw_Test_Execute()
{
 unsigned char pTDI[1];
 unsigned char pTMS[1];
 unsigned char pTDO[1];
 int err = 0;

 T32_TAPACCESS_HANDLE handle = T32_TAPAccessAlloc ();
 /*Drive from Run/Test Idle to Shift/IR (1 1 0 0)*/
 pTMS[0] = 0x3;
 if (err = T32_TAPAccessShiftRaw(handle , 4 , pTMS, 0 , 0,
 SHIFTRAW_OPTION_NONE))
 goto error;
 /*Shift 0x5 / 5-Bit Tap and read back response - Drive to Exit1-IR*/
 pTDI[0] = 0x6;
 if (err = T32_TAPAccessShiftRaw(handle , 5 , 0, pTDI , pTDO,
 SHIFTRAW_OPTION_LASTTMS_ONE))
 goto error;
 /*Drive From Exit1-IR to RUN-Test/Idle (1 0)*/
 pTMS[0] = 0x1;
 if (err = T32_TAPAccessShiftRaw(handle , 2 , pTMS, 0 , 0,
 SHIFTRAW_OPTION_NONE))
 goto error;

 if (err = T32_TAPAccessExecute(handle,T32_TAPACCESS_HOLD))
 goto error;
error:
 T32_TAPAccessRelease();
 T32_TAPAccessFree(handle);
 return err;
}

 API for Remote Control and JTAG Access 65 API Functions

T32_TAPAccessAlloc Retrieve a Handle for Bundled Access Mode

Prototype:

Parameters:

none

Returns:

Handle for bundled TAP accesses

Use this function to retrieve a handle for bundled TAP accesses. The execution sequence associated with a
handle can be used multiple times.

Example:

T32_TAPACCESS_HANDLE T32_TAPAccessAlloc();

unsigned char status;
unsigned char pvrnr[4];
unsigned char tap_instr = TAP_COP_PVR;

T32_TAPACCESS_HANDLE handle = T32_TAPAccessAlloc ();

T32_TAPAccessShiftIR (handle, 8, &tap_instr, &status);
T32_TAPAccessShiftDR (handle, 32, NULL, pvrnr);
T32_TAPAccessExecute (handle, T32_TAPACCESS_RELEASE);

T32_TAPAccessFree (handle);
 API for Remote Control and JTAG Access 66 API Functions

T32_TAPAccessFree Release Handle for Bundled Access Mode

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Use this function to release the handle returned by T32_TAPAccessAlloc when it is no longer needed.

Example:

see 4.3.5 T32_TAPAccessAlloc for an example

T32_TAPAccessExecute Execute a Bundled TAP Access

Prototype:

Parameters:

Returns:

0 for ok, otherwise Error value

Use this function, to execute all DR, IR and direct TAP accesses associated with given handle.

Example:

see 4.3.5 T32_TAPAccessAlloc for an example

int T32_TAPAccessFree(T32_TAPACCESS_HANDLE connection);

connection ; TAP access handle (see 4.3)

int T32_TAPAccessExecute(T32_TAPACCESS_HANDLE connection,
T32_TAPACCESS_HANDLE connectionhold);

connection
connectionhold

; Handle for a bundled TAP access
; TAP access handle (see 4.3)
 API for Remote Control and JTAG Access 67 API Functions

T32_TAPAccessRelease Unlock Debugger

Prototype:

Parameters:

none

Returns:

0 for ok, otherwise Error value

If debugger accesses are suspended due to a IR, DR, direct access or the T32_TAPAccessExecute call
with the access handle T32_TAPACCESS_HOLD, use this function to resume debugger accesses.

Example:

int T32_TAPAccessRelease();

// Retrieve the PVR value (PowerPC)
unsigned char status;
unsigned char pvrnr[4];
unsigned char tap_instr = TAP_COP_PVR;

T32_TAPAccessShiftIR (T32_TAPACCESS_HOLD, 8, &tap_instr, &status);
T32_TAPAccessShiftDR (T32_TAPACCESS_HOLD, 32, NULL, pvrnr);

// At this point, the debugger is still locked

T32_TAPAccessRelease ();
 API for Remote Control and JTAG Access 68 API Functions

Version Control

Document version control:

Version Date Change

4.1 new commands T32_TAPACCESS_SLEEP_MS,
T32_TAPACCESS_SLEEP_US,
T32_TAPACCESS_SLEEP_HALF_CLOCK

4.0SP1 15.03.05 Corrected endianess documentation in T32_GetCpuInfo()

4.0 20.08.04 Added Multi-Debugger access: T32_GetChannel*(),
T32_SetChannel()

3.6 30.09.03 T32_TAPACCESS_nENOUT added.

3.5 15.03.03 New Section 4.3 ICD TAP Access API Functions:

3.4 26.10.99 Changes in handling of big messages
Correction of error at T32_GetMessage without T32_Attach
T32_Cmd() can now handle long command names e.g. data.load
instead of d.l

3.3 12.04.99 New Functions:
T32_GetSocketHandle(SOCKET *soc)
T32_NotifyStateEnable(int event,void (*func)())
T32_CheckStateNotify(unsigned param1, unsigned param2)

3.2 01.12.98 Format of logical address class of T32_AnaRecordGet changed

3.1 13.03.98 T32_GetSymbol description extended
T32_GetTriggerMessage, T32AnaStatusGet, T32AnaRecordGet
added

3.0 03.03.98 Document format changed (LWP to FM)

2.1 18.12.96 T32_GetSymbol added

2.0 28.10.96 Incompatibility to previous versions in socket communications
T32_StepMode added

1.4 23.09.96 PACKLEN definitions added
Chapter numbering added

1.3 15.08.96 T32_GetSelectedSource added
Table of Versions added

1.2 29.05.96 Overall revision
 API for Remote Control and JTAG Access 69 Version Control

 API for Remote Control and JTAG Access 70 Version Control

	API for Remote Control and JTAG Access
	Basic Concepts
	Release Information
	Introduction
	Interfaces
	Operating of the API Requests

	Building an Application with API
	API Files
	Connecting API and Application

	Communication Setup
	Preparing TRACE32 Software
	Configuring the API

	API Functions
	Generic API Functions
	T32_Config Configure Driver
	T32_Init Initialize driver and connect
	T32_Exit Close connection
	T32_Attach Attach TRACE32 device
	T32_Nop Send Empty Message
	T32_Ping Send Ping Message
	T32_Cmd Execute PRACTICE Command
	T32_CmdWin Execute PRACTICE Command
	T32_Stop Stop PRACTICE program
	T32_EvalGet Get Evaluation Result
	T32_GetMessage Get Message Line Contents
	T32_GetPracticeState Check if a PRACTICE script is running

	Functions for using the API with Multiple Debuggers
	T32_GetChannelSize Get size of channel structure
	T32_GetChannelDefaults Get default channel parameters
	T32_SetChannel Set active channel

	ICD/ICE API Functions
	T32_GetState Get State of ICE/ICD
	T32_GetCpuInfo Get Information about used CPU
	T32_GetRam Get Memory Mapping
	T32_ResetCPU Prepare for Emulation
	T32_ReadMemory Read Target Memory
	T32_WriteMemory Write to Target Memory
	T32_WriteMemoryPipe Write to Target Memory pipelined
	T32_ReadRegister Read CPU Registers
	T32_WriteRegister Write CPU Registers
	T32_ReadPP Read Program Pointer
	T32_ReadBreakpoint Read Breakpoints
	T32_WriteBreakpoint Write Breakpoints
	T32_Step Single Step
	T32_StepMode Single Step with Mode Control
	T32_Go Start Realtime
	T32_Break Stop Realtime
	T32_GetTriggerMessage Get Trigger Message Contents
	T32_GetSymbol Get Symbol Information
	T32_GetSource Get Source Filename and Line
	T32_GetSelectedSource Get Source Filename and Line of Selection
	T32_AnaStatusGet Get State of State Analyzer
	T32_AnaRecordGet Get One Record of State Analyzer
	T32_GetTraceState Get State of Trace
	T32_ReadTrace Get One Record of Trace
	T32_GetSocketHandle Get the handle of the TRACE32 socket
	T32_NotifyStateEnable Register a function to be called at special event
	T32_CheckStateNotify Check message to receive for state notify

	ICD TAP Access API Functions
	T32_TAPAccessSetInfo Configure JTAG Interface
	T32_TAPAccessShiftIR Shift Data to/from Instruction Register
	T32_TAPAccessShiftDR Shift Data to/from Data Register
	T32_TAPAccessDirect Direct JTAG Port Access
	T32_TAPAccessShiftRaw RAW JTAG Shifts
	T32_TAPAccessAlloc Retrieve a Handle for Bundled Access Mode
	T32_TAPAccessFree Release Handle for Bundled Access Mode
	T32_TAPAccessExecute Execute a Bundled TAP Access
	T32_TAPAccessRelease Unlock Debugger

	Version Control

