From b685aad981519e40423b7eb8c693fd4b845aa6ca Mon Sep 17 00:00:00 2001 From: Fabian Gabel <fabian.gabel@tuhh.de> Date: Mon, 13 Jun 2022 16:36:35 +0200 Subject: [PATCH] fix reference --- nodes/114/114.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/nodes/114/114.tex b/nodes/114/114.tex index f351ee98..3603dd93 100644 --- a/nodes/114/114.tex +++ b/nodes/114/114.tex @@ -46,7 +46,7 @@ Using this inequality, we obtain for $n\geq1$ \[a_{n+1}=\frac{a_n+\frac{2}{a_n}}{2}\geq \sqrt{a_n\cdot\frac2{a_n}}=\sqrt{2}.\] Thus, $(a_n)$ is bounded from below. For showing monotonicity, we consider \[a_{n+1}-a_n=\frac{a_n+\frac2{a_n}}{2}-a_n=\frac{1}{2a_n}(2-a_n^2).\] -In particular, if $n\geq2$, we have that $a_n>0$ and $2-a_n^2\leq0$. Thus, $a_{n+1}-a_n\leq0$ for $n\geq2$. An~application of Theorem~\ref{thm:bndmonseq} (resp.\ the slight generalisation in Remark %\ref{rem:monseqgen} +In particular, if $n\geq2$, we have that $a_n>0$ and $2-a_n^2\leq0$. Thus, $a_{n+1}-a_n\leq0$ for $n\geq2$. An~application of Theorem~\ref{thm:monbndseq} (resp.\ the slight generalisation in Remark %\ref{rem:monseqgen} from above) now leads to the existence of some $a\in\mathbb{R}$ with $a=\lim_{n \to\infty}a_n$.\\[2ex] To compute the limit, we make use of the relation $\lim_{n \to\infty}a_n=\lim_{n\to\infty}a_{n+1}$ (follows directly from the Definition of limits) and the formulae for limits. This yields -- GitLab