-
Fabian Gabel authoredFabian Gabel authored
Linearisation of vector-valued functions
Working Groups: aa
Collaborators (MAT): kkruse
Description
It is a classical idea to represent vector-valued functions by continuous linear operators [3]. Let
Supposing that the point-evaluations
is a well-defined topological isomorphism.
In [11] we derive sufficient conditions on
Nuclearity can be used to transfer the surjectivity of a continuous linear map
Another application of the topological isomorphism
Let
References
[1] A. Grothendieck. Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16. AMS, Providence, RI, 1966. doi: 10.1090/memo/0016.
[2] K. Kruse. Surjectivity of the \overline{\partial}-operator between spaces of weighted smooth vector-valued functions, 2018. arXiv:1810.05069.
[3] K. Kruse. Extension of vector-valued functions and sequence space representation, 2019. arXiv:1808.05182.
[4] K. Kruse. The approximation property for weighted spaces of differentiable functions. In M. Kosek, editor, Function Spaces XII, volume 119 of Banach Center Publ., 233--258, Inst. Math., Polish Acad. Sci., Warszawa, 2019. doi: 10.4064/bc119-14.
[5] K. Kruse. The Cauchy-Riemann operator on smooth Fréchet-valued functions with exponential growth on rotated strips. PAMM, 19(1):1--2, 2019. doi: 10.1002/pamm.201900141.
[6] K. Kruse. The inhomogeneous Cauchy-Riemann equation for weighted smooth vector-valued functions on strips with holes, 2019. arXiv:1901.02093.
[7] K. Kruse. On the nuclearity of weighted spaces of smooth functions. Ann. Polon. Math., 124(2):173--196, 2020. doi: 10.4064/ap190728-17-11.
[8] K. Kruse. Parameter dependence of solutions of the Cauchy-Riemann equation on spaces of weighted smooth functions. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 114(141):1--24, 2020. doi: 10.1007/s13398-020-00863-x.
[9] K. Kruse. Series representations in spaces of vector-valued functions via Schauder decompositions. Math. Nachr., 294(2):354--376, 2021. doi: 10.1002/mana.201900172.
[10] K. Kruse. Vector-valued holomorphic functions in several variables. Funct. Approx. Comment. Math., 63(2):247--275, 2020. doi: 10.7169/facm/1861.
[11] K. Kruse. Weighted spaces of vector-valued functions and the \varepsilon-product, Banach J. Math. Anal., 14(4):1509--1531, 2020. doi: 10.1007/s43037-020-00072-z.
[12] K. Kruse. Extension of vector-valued functions and weak-strong principles for differentiable functions of finite order, 2021. arXiv:1910.01952.
[13] L. Schwartz. Espaces de fonctions différentiables à valeurs vectorielles. J. Analyse Math., 4:88--148, 1955. doi: 10.1007/BF02787718.