Skip to content
Snippets Groups Projects
debug.c 83.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * This file is part of UBIFS.
     *
     * Copyright (C) 2006-2008 Nokia Corporation
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms of the GNU General Public License version 2 as published by
     * the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful, but WITHOUT
     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     * more details.
     *
     * You should have received a copy of the GNU General Public License along with
     * this program; if not, write to the Free Software Foundation, Inc., 51
     * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
     *
     * Authors: Artem Bityutskiy (Битюцкий Артём)
     *          Adrian Hunter
     */
    
    /*
     * This file implements most of the debugging stuff which is compiled in only
     * when it is enabled. But some debugging check functions are implemented in
     * corresponding subsystem, just because they are closely related and utilize
     * various local functions of those subsystems.
     */
    
    #include <linux/module.h>
    
    #include <linux/debugfs.h>
    
    #include <linux/math64.h>
    
    #include <linux/uaccess.h>
    
    #include <linux/random.h>
    #include "ubifs.h"
    
    static DEFINE_SPINLOCK(dbg_lock);
    
    
    static const char *get_key_fmt(int fmt)
    {
    	switch (fmt) {
    	case UBIFS_SIMPLE_KEY_FMT:
    		return "simple";
    	default:
    		return "unknown/invalid format";
    	}
    }
    
    static const char *get_key_hash(int hash)
    {
    	switch (hash) {
    	case UBIFS_KEY_HASH_R5:
    		return "R5";
    	case UBIFS_KEY_HASH_TEST:
    		return "test";
    	default:
    		return "unknown/invalid name hash";
    	}
    }
    
    static const char *get_key_type(int type)
    {
    	switch (type) {
    	case UBIFS_INO_KEY:
    		return "inode";
    	case UBIFS_DENT_KEY:
    		return "direntry";
    	case UBIFS_XENT_KEY:
    		return "xentry";
    	case UBIFS_DATA_KEY:
    		return "data";
    	case UBIFS_TRUN_KEY:
    		return "truncate";
    	default:
    		return "unknown/invalid key";
    	}
    }
    
    
    static const char *get_dent_type(int type)
    {
    	switch (type) {
    	case UBIFS_ITYPE_REG:
    		return "file";
    	case UBIFS_ITYPE_DIR:
    		return "dir";
    	case UBIFS_ITYPE_LNK:
    		return "symlink";
    	case UBIFS_ITYPE_BLK:
    		return "blkdev";
    	case UBIFS_ITYPE_CHR:
    		return "char dev";
    	case UBIFS_ITYPE_FIFO:
    		return "fifo";
    	case UBIFS_ITYPE_SOCK:
    		return "socket";
    	default:
    		return "unknown/invalid type";
    	}
    }
    
    
    const char *dbg_snprintf_key(const struct ubifs_info *c,
    			     const union ubifs_key *key, char *buffer, int len)
    
    {
    	char *p = buffer;
    	int type = key_type(c, key);
    
    	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
    		switch (type) {
    		case UBIFS_INO_KEY:
    
    			len -= snprintf(p, len, "(%lu, %s)",
    					(unsigned long)key_inum(c, key),
    					get_key_type(type));
    
    			break;
    		case UBIFS_DENT_KEY:
    		case UBIFS_XENT_KEY:
    
    			len -= snprintf(p, len, "(%lu, %s, %#08x)",
    					(unsigned long)key_inum(c, key),
    					get_key_type(type), key_hash(c, key));
    
    			break;
    		case UBIFS_DATA_KEY:
    
    			len -= snprintf(p, len, "(%lu, %s, %u)",
    					(unsigned long)key_inum(c, key),
    					get_key_type(type), key_block(c, key));
    
    			break;
    		case UBIFS_TRUN_KEY:
    
    			len -= snprintf(p, len, "(%lu, %s)",
    					(unsigned long)key_inum(c, key),
    					get_key_type(type));
    
    			break;
    		default:
    
    			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
    					key->u32[0], key->u32[1]);
    
    		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
    	ubifs_assert(len > 0);
    
    	return p;
    
    }
    
    const char *dbg_ntype(int type)
    {
    	switch (type) {
    	case UBIFS_PAD_NODE:
    		return "padding node";
    	case UBIFS_SB_NODE:
    		return "superblock node";
    	case UBIFS_MST_NODE:
    		return "master node";
    	case UBIFS_REF_NODE:
    		return "reference node";
    	case UBIFS_INO_NODE:
    		return "inode node";
    	case UBIFS_DENT_NODE:
    		return "direntry node";
    	case UBIFS_XENT_NODE:
    		return "xentry node";
    	case UBIFS_DATA_NODE:
    		return "data node";
    	case UBIFS_TRUN_NODE:
    		return "truncate node";
    	case UBIFS_IDX_NODE:
    		return "indexing node";
    	case UBIFS_CS_NODE:
    		return "commit start node";
    	case UBIFS_ORPH_NODE:
    		return "orphan node";
    	default:
    		return "unknown node";
    	}
    }
    
    static const char *dbg_gtype(int type)
    {
    	switch (type) {
    	case UBIFS_NO_NODE_GROUP:
    		return "no node group";
    	case UBIFS_IN_NODE_GROUP:
    		return "in node group";
    	case UBIFS_LAST_OF_NODE_GROUP:
    		return "last of node group";
    	default:
    		return "unknown";
    	}
    }
    
    const char *dbg_cstate(int cmt_state)
    {
    	switch (cmt_state) {
    	case COMMIT_RESTING:
    		return "commit resting";
    	case COMMIT_BACKGROUND:
    		return "background commit requested";
    	case COMMIT_REQUIRED:
    		return "commit required";
    	case COMMIT_RUNNING_BACKGROUND:
    		return "BACKGROUND commit running";
    	case COMMIT_RUNNING_REQUIRED:
    		return "commit running and required";
    	case COMMIT_BROKEN:
    		return "broken commit";
    	default:
    		return "unknown commit state";
    	}
    }
    
    
    const char *dbg_jhead(int jhead)
    {
    	switch (jhead) {
    	case GCHD:
    		return "0 (GC)";
    	case BASEHD:
    		return "1 (base)";
    	case DATAHD:
    		return "2 (data)";
    	default:
    		return "unknown journal head";
    	}
    }
    
    
    static void dump_ch(const struct ubifs_ch *ch)
    {
    
    	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
    	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
    	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
    
    	       dbg_ntype(ch->node_type));
    
    	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
    
    	       dbg_gtype(ch->group_type));
    
    	pr_err("\tsqnum          %llu\n",
    
    	       (unsigned long long)le64_to_cpu(ch->sqnum));
    
    	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
    
    void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
    
    {
    	const struct ubifs_inode *ui = ubifs_inode(inode);
    
    	struct qstr nm = { .name = NULL };
    	union ubifs_key key;
    	struct ubifs_dent_node *dent, *pdent = NULL;
    	int count = 2;
    
    	pr_err("Dump in-memory inode:");
    	pr_err("\tinode          %lu\n", inode->i_ino);
    	pr_err("\tsize           %llu\n",
    
    	       (unsigned long long)i_size_read(inode));
    
    	pr_err("\tnlink          %u\n", inode->i_nlink);
    
    	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
    	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
    
    	pr_err("\tatime          %u.%u\n",
    
    	       (unsigned int)inode->i_atime.tv_sec,
    	       (unsigned int)inode->i_atime.tv_nsec);
    
    	pr_err("\tmtime          %u.%u\n",
    
    	       (unsigned int)inode->i_mtime.tv_sec,
    	       (unsigned int)inode->i_mtime.tv_nsec);
    
    	pr_err("\tctime          %u.%u\n",
    
    	       (unsigned int)inode->i_ctime.tv_sec,
    	       (unsigned int)inode->i_ctime.tv_nsec);
    
    	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
    	pr_err("\txattr_size     %u\n", ui->xattr_size);
    	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
    	pr_err("\txattr_names    %u\n", ui->xattr_names);
    	pr_err("\tdirty          %u\n", ui->dirty);
    	pr_err("\txattr          %u\n", ui->xattr);
    	pr_err("\tbulk_read      %u\n", ui->xattr);
    	pr_err("\tsynced_i_size  %llu\n",
    
    	       (unsigned long long)ui->synced_i_size);
    
    	pr_err("\tui_size        %llu\n",
    
    	       (unsigned long long)ui->ui_size);
    
    	pr_err("\tflags          %d\n", ui->flags);
    	pr_err("\tcompr_type     %d\n", ui->compr_type);
    	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
    	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
    	pr_err("\tdata_len       %d\n", ui->data_len);
    
    
    	if (!S_ISDIR(inode->i_mode))
    		return;
    
    
    	pr_err("List of directory entries:\n");
    
    	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
    
    	lowest_dent_key(c, &key, inode->i_ino);
    	while (1) {
    		dent = ubifs_tnc_next_ent(c, &key, &nm);
    		if (IS_ERR(dent)) {
    			if (PTR_ERR(dent) != -ENOENT)
    
    				pr_err("error %ld\n", PTR_ERR(dent));
    
    		pr_err("\t%d: %s (%s)\n",
    
    		       count++, dent->name, get_dent_type(dent->type));
    
    		nm.name = dent->name;
    		nm.len = le16_to_cpu(dent->nlen);
    		kfree(pdent);
    		pdent = dent;
    		key_read(c, &dent->key, &key);
    	}
    	kfree(pdent);
    
    void ubifs_dump_node(const struct ubifs_info *c, const void *node)
    
    {
    	int i, n;
    	union ubifs_key key;
    	const struct ubifs_ch *ch = node;
    
    	char key_buf[DBG_KEY_BUF_LEN];
    
    
    	/* If the magic is incorrect, just hexdump the first bytes */
    	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
    
    		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
    
    		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
    
    			       (void *)node, UBIFS_CH_SZ, 1);
    		return;
    	}
    
    	spin_lock(&dbg_lock);
    	dump_ch(node);
    
    	switch (ch->node_type) {
    	case UBIFS_PAD_NODE:
    	{
    		const struct ubifs_pad_node *pad = node;
    
    
    		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
    
    		break;
    	}
    	case UBIFS_SB_NODE:
    	{
    		const struct ubifs_sb_node *sup = node;
    		unsigned int sup_flags = le32_to_cpu(sup->flags);
    
    
    		pr_err("\tkey_hash       %d (%s)\n",
    
    		       (int)sup->key_hash, get_key_hash(sup->key_hash));
    
    		pr_err("\tkey_fmt        %d (%s)\n",
    
    		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
    
    		pr_err("\tflags          %#x\n", sup_flags);
    		pr_err("\t  big_lpt      %u\n",
    
    		       !!(sup_flags & UBIFS_FLG_BIGLPT));
    
    		pr_err("\t  space_fixup  %u\n",
    
    		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
    
    		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
    		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
    		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
    		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
    		pr_err("\tmax_bud_bytes  %llu\n",
    
    		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
    
    		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
    		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
    		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
    		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
    		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
    		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
    		pr_err("\tdefault_compr  %u\n",
    
    		       (int)le16_to_cpu(sup->default_compr));
    
    		pr_err("\trp_size        %llu\n",
    
    		       (unsigned long long)le64_to_cpu(sup->rp_size));
    
    		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
    		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
    		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
    		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
    		pr_err("\tUUID           %pUB\n", sup->uuid);
    
    		break;
    	}
    	case UBIFS_MST_NODE:
    	{
    		const struct ubifs_mst_node *mst = node;
    
    
    		pr_err("\thighest_inum   %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->highest_inum));
    
    		pr_err("\tcommit number  %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->cmt_no));
    
    		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
    		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
    		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
    		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
    		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
    		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
    		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
    		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
    		pr_err("\tindex_size     %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->index_size));
    
    		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
    		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
    		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
    		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
    		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
    		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
    		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
    		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
    		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
    		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
    		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
    		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
    		pr_err("\ttotal_free     %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->total_free));
    
    		pr_err("\ttotal_dirty    %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->total_dirty));
    
    		pr_err("\ttotal_used     %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->total_used));
    
    		pr_err("\ttotal_dead     %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->total_dead));
    
    		pr_err("\ttotal_dark     %llu\n",
    
    		       (unsigned long long)le64_to_cpu(mst->total_dark));
    		break;
    	}
    	case UBIFS_REF_NODE:
    	{
    		const struct ubifs_ref_node *ref = node;
    
    
    		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
    		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
    		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
    
    		break;
    	}
    	case UBIFS_INO_NODE:
    	{
    		const struct ubifs_ino_node *ino = node;
    
    		key_read(c, &ino->key, &key);
    
    		pr_err("\tkey            %s\n",
    
    		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
    
    		pr_err("\tcreat_sqnum    %llu\n",
    
    		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
    
    		pr_err("\tsize           %llu\n",
    
    		       (unsigned long long)le64_to_cpu(ino->size));
    
    		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
    		pr_err("\tatime          %lld.%u\n",
    
    		       (long long)le64_to_cpu(ino->atime_sec),
    		       le32_to_cpu(ino->atime_nsec));
    
    		pr_err("\tmtime          %lld.%u\n",
    
    		       (long long)le64_to_cpu(ino->mtime_sec),
    		       le32_to_cpu(ino->mtime_nsec));
    
    		pr_err("\tctime          %lld.%u\n",
    
    		       (long long)le64_to_cpu(ino->ctime_sec),
    		       le32_to_cpu(ino->ctime_nsec));
    
    		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
    		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
    		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
    		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
    		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
    		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
    		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
    		pr_err("\tcompr_type     %#x\n",
    
    		       (int)le16_to_cpu(ino->compr_type));
    
    		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
    
    		break;
    	}
    	case UBIFS_DENT_NODE:
    	case UBIFS_XENT_NODE:
    	{
    		const struct ubifs_dent_node *dent = node;
    		int nlen = le16_to_cpu(dent->nlen);
    
    		key_read(c, &dent->key, &key);
    
    		pr_err("\tkey            %s\n",
    
    		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
    
    		pr_err("\tinum           %llu\n",
    
    		       (unsigned long long)le64_to_cpu(dent->inum));
    
    		pr_err("\ttype           %d\n", (int)dent->type);
    		pr_err("\tnlen           %d\n", nlen);
    		pr_err("\tname           ");
    
    
    		if (nlen > UBIFS_MAX_NLEN)
    
    			pr_err("(bad name length, not printing, bad or corrupted node)");
    
    		else {
    			for (i = 0; i < nlen && dent->name[i]; i++)
    
    				pr_cont("%c", dent->name[i]);
    
    
    		break;
    	}
    	case UBIFS_DATA_NODE:
    	{
    		const struct ubifs_data_node *dn = node;
    		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
    
    		key_read(c, &dn->key, &key);
    
    		pr_err("\tkey            %s\n",
    
    		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
    
    		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
    		pr_err("\tcompr_typ      %d\n",
    
    		       (int)le16_to_cpu(dn->compr_type));
    
    		pr_err("\tdata size      %d\n", dlen);
    		pr_err("\tdata:\n");
    
    		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
    
    			       (void *)&dn->data, dlen, 0);
    		break;
    	}
    	case UBIFS_TRUN_NODE:
    	{
    		const struct ubifs_trun_node *trun = node;
    
    
    		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
    		pr_err("\told_size       %llu\n",
    
    		       (unsigned long long)le64_to_cpu(trun->old_size));
    
    		pr_err("\tnew_size       %llu\n",
    
    		       (unsigned long long)le64_to_cpu(trun->new_size));
    		break;
    	}
    	case UBIFS_IDX_NODE:
    	{
    		const struct ubifs_idx_node *idx = node;
    
    		n = le16_to_cpu(idx->child_cnt);
    
    		pr_err("\tchild_cnt      %d\n", n);
    		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
    		pr_err("\tBranches:\n");
    
    
    		for (i = 0; i < n && i < c->fanout - 1; i++) {
    			const struct ubifs_branch *br;
    
    			br = ubifs_idx_branch(c, idx, i);
    			key_read(c, &br->key, &key);
    
    			pr_err("\t%d: LEB %d:%d len %d key %s\n",
    
    			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
    
    			       le32_to_cpu(br->len),
    			       dbg_snprintf_key(c, &key, key_buf,
    						DBG_KEY_BUF_LEN));
    
    		}
    		break;
    	}
    	case UBIFS_CS_NODE:
    		break;
    	case UBIFS_ORPH_NODE:
    	{
    		const struct ubifs_orph_node *orph = node;
    
    
    		pr_err("\tcommit number  %llu\n",
    
    		       (unsigned long long)
    				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
    
    		pr_err("\tlast node flag %llu\n",
    
    		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
    		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
    
    		pr_err("\t%d orphan inode numbers:\n", n);
    
    		for (i = 0; i < n; i++)
    
    			pr_err("\t  ino %llu\n",
    
    			       (unsigned long long)le64_to_cpu(orph->inos[i]));
    
    		pr_err("node type %d was not recognized\n",
    
    		       (int)ch->node_type);
    	}
    	spin_unlock(&dbg_lock);
    }
    
    
    void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
    
    {
    	spin_lock(&dbg_lock);
    
    	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
    
    	       req->new_ino, req->dirtied_ino);
    
    	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
    
    	       req->new_ino_d, req->dirtied_ino_d);
    
    	pr_err("\tnew_page    %d, dirtied_page %d\n",
    
    	       req->new_page, req->dirtied_page);
    
    	pr_err("\tnew_dent    %d, mod_dent     %d\n",
    
    	       req->new_dent, req->mod_dent);
    
    	pr_err("\tidx_growth  %d\n", req->idx_growth);
    	pr_err("\tdata_growth %d dd_growth     %d\n",
    
    	       req->data_growth, req->dd_growth);
    	spin_unlock(&dbg_lock);
    }
    
    
    void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
    
    {
    	spin_lock(&dbg_lock);
    
    	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
    
    	       current->pid, lst->empty_lebs, lst->idx_lebs);
    
    	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
    
    	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
    
    	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
    
    	       lst->total_used, lst->total_dark, lst->total_dead);
    
    	spin_unlock(&dbg_lock);
    }
    
    
    void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
    
    {
    	int i;
    	struct rb_node *rb;
    	struct ubifs_bud *bud;
    	struct ubifs_gced_idx_leb *idx_gc;
    
    	long long available, outstanding, free;
    
    	spin_lock(&c->space_lock);
    
    	spin_lock(&dbg_lock);
    
    	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
    
    	       current->pid, bi->data_growth + bi->dd_growth,
    
    	       bi->data_growth + bi->dd_growth + bi->idx_growth);
    
    	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
    
    	       bi->data_growth, bi->dd_growth, bi->idx_growth);
    
    	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
    
    	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
    
    	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
    
    	       bi->page_budget, bi->inode_budget, bi->dent_budget);
    
    	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
    	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
    
    	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
    
    
    	if (bi != &c->bi)
    		/*
    		 * If we are dumping saved budgeting data, do not print
    		 * additional information which is about the current state, not
    		 * the old one which corresponded to the saved budgeting data.
    		 */
    		goto out_unlock;
    
    
    	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
    
    	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
    
    	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
    
    	       atomic_long_read(&c->dirty_pg_cnt),
    
    	       atomic_long_read(&c->dirty_zn_cnt),
    	       atomic_long_read(&c->clean_zn_cnt));
    
    	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
    
    	/* If we are in R/O mode, journal heads do not exist */
    	if (c->jheads)
    		for (i = 0; i < c->jhead_cnt; i++)
    
    			pr_err("\tjhead %s\t LEB %d\n",
    
    			       dbg_jhead(c->jheads[i].wbuf.jhead),
    			       c->jheads[i].wbuf.lnum);
    
    	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
    		bud = rb_entry(rb, struct ubifs_bud, rb);
    
    		pr_err("\tbud LEB %d\n", bud->lnum);
    
    	}
    	list_for_each_entry(bud, &c->old_buds, list)
    
    		pr_err("\told bud LEB %d\n", bud->lnum);
    
    	list_for_each_entry(idx_gc, &c->idx_gc, list)
    
    		pr_err("\tGC'ed idx LEB %d unmap %d\n",
    
    		       idx_gc->lnum, idx_gc->unmap);
    
    	pr_err("\tcommit state %d\n", c->cmt_state);
    
    
    	/* Print budgeting predictions */
    
    	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
    	outstanding = c->bi.data_growth + c->bi.dd_growth;
    
    	free = ubifs_get_free_space_nolock(c);
    
    	pr_err("Budgeting predictions:\n");
    	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
    
    	       available, outstanding, free);
    
    	spin_unlock(&dbg_lock);
    
    	spin_unlock(&c->space_lock);
    
    void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
    
    	int i, spc, dark = 0, dead = 0;
    	struct rb_node *rb;
    	struct ubifs_bud *bud;
    
    	spc = lp->free + lp->dirty;
    	if (spc < c->dead_wm)
    		dead = spc;
    	else
    		dark = ubifs_calc_dark(c, spc);
    
    	if (lp->flags & LPROPS_INDEX)
    
    		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
    
    		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
    		       lp->flags);
    
    		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
    
    		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
    		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
    
    
    	if (lp->flags & LPROPS_TAKEN) {
    		if (lp->flags & LPROPS_INDEX)
    
    			pr_cont("index, taken");
    
    			pr_cont("taken");
    
    	} else {
    		const char *s;
    
    		if (lp->flags & LPROPS_INDEX) {
    			switch (lp->flags & LPROPS_CAT_MASK) {
    			case LPROPS_DIRTY_IDX:
    				s = "dirty index";
    				break;
    			case LPROPS_FRDI_IDX:
    				s = "freeable index";
    				break;
    			default:
    				s = "index";
    			}
    		} else {
    			switch (lp->flags & LPROPS_CAT_MASK) {
    			case LPROPS_UNCAT:
    				s = "not categorized";
    				break;
    			case LPROPS_DIRTY:
    				s = "dirty";
    				break;
    			case LPROPS_FREE:
    				s = "free";
    				break;
    			case LPROPS_EMPTY:
    				s = "empty";
    				break;
    			case LPROPS_FREEABLE:
    				s = "freeable";
    				break;
    			default:
    				s = NULL;
    				break;
    			}
    		}
    
    		pr_cont("%s", s);
    
    	}
    
    	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
    		bud = rb_entry(rb, struct ubifs_bud, rb);
    		if (bud->lnum == lp->lnum) {
    			int head = 0;
    			for (i = 0; i < c->jhead_cnt; i++) {
    
    				/*
    				 * Note, if we are in R/O mode or in the middle
    				 * of mounting/re-mounting, the write-buffers do
    				 * not exist.
    				 */
    				if (c->jheads &&
    				    lp->lnum == c->jheads[i].wbuf.lnum) {
    
    					pr_cont(", jhead %s", dbg_jhead(i));
    
    					head = 1;
    				}
    			}
    			if (!head)
    
    				pr_cont(", bud of jhead %s",
    
    				       dbg_jhead(bud->jhead));
    		}
    	}
    	if (lp->lnum == c->gc_lnum)
    
    		pr_cont(", GC LEB");
    	pr_cont(")\n");
    
    void ubifs_dump_lprops(struct ubifs_info *c)
    
    {
    	int lnum, err;
    	struct ubifs_lprops lp;
    	struct ubifs_lp_stats lst;
    
    
    	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
    
    	ubifs_get_lp_stats(c, &lst);
    
    	ubifs_dump_lstats(&lst);
    
    
    	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
    		err = ubifs_read_one_lp(c, lnum, &lp);
    		if (err)
    			ubifs_err("cannot read lprops for LEB %d", lnum);
    
    
    		ubifs_dump_lprop(c, &lp);
    
    	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
    
    void ubifs_dump_lpt_info(struct ubifs_info *c)
    
    {
    	int i;
    
    	spin_lock(&dbg_lock);
    
    	pr_err("(pid %d) dumping LPT information\n", current->pid);
    	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
    	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
    	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
    	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
    	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
    	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
    	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
    	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
    	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
    	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
    	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
    	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
    	pr_err("\tspace_bits:    %d\n", c->space_bits);
    	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
    	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
    	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
    	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
    	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
    	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
    	pr_err("\tLPT head is at %d:%d\n",
    
    	       c->nhead_lnum, c->nhead_offs);
    
    	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
    
    	if (c->big_lpt)
    
    		pr_err("\tLPT lsave is at %d:%d\n",
    
    		       c->lsave_lnum, c->lsave_offs);
    	for (i = 0; i < c->lpt_lebs; i++)
    
    		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
    
    		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
    		       c->ltab[i].tgc, c->ltab[i].cmt);
    
    	spin_unlock(&dbg_lock);
    }
    
    
    void ubifs_dump_sleb(const struct ubifs_info *c,
    		     const struct ubifs_scan_leb *sleb, int offs)
    
    {
    	struct ubifs_scan_node *snod;
    
    
    	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
    
    	       current->pid, sleb->lnum, offs);
    
    	list_for_each_entry(snod, &sleb->nodes, list) {
    		cond_resched();
    
    		pr_err("Dumping node at LEB %d:%d len %d\n",
    
    		       sleb->lnum, snod->offs, snod->len);
    
    		ubifs_dump_node(c, snod->node);
    
    void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
    
    {
    	struct ubifs_scan_leb *sleb;
    	struct ubifs_scan_node *snod;
    
    	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
    
    	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
    
    	if (!buf) {
    		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
    		return;
    	}
    
    	sleb = ubifs_scan(c, lnum, 0, buf, 0);
    
    	if (IS_ERR(sleb)) {
    		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
    
    	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
    
    	       sleb->nodes_cnt, sleb->endpt);
    
    	list_for_each_entry(snod, &sleb->nodes, list) {
    		cond_resched();
    
    		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
    
    		       snod->offs, snod->len);
    
    		ubifs_dump_node(c, snod->node);
    
    	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
    
    	ubifs_scan_destroy(sleb);
    
    void ubifs_dump_znode(const struct ubifs_info *c,
    		      const struct ubifs_znode *znode)
    
    {
    	int n;
    	const struct ubifs_zbranch *zbr;
    
    	char key_buf[DBG_KEY_BUF_LEN];
    
    
    	spin_lock(&dbg_lock);
    	if (znode->parent)
    		zbr = &znode->parent->zbranch[znode->iip];
    	else
    		zbr = &c->zroot;
    
    
    	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
    
    	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
    	       znode->level, znode->child_cnt, znode->flags);
    
    
    	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
    		spin_unlock(&dbg_lock);
    		return;
    	}
    
    
    	pr_err("zbranches:\n");
    
    	for (n = 0; n < znode->child_cnt; n++) {
    		zbr = &znode->zbranch[n];
    		if (znode->level > 0)
    
    			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
    
    			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
    			       dbg_snprintf_key(c, &zbr->key, key_buf,
    						DBG_KEY_BUF_LEN));
    
    			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
    
    			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
    			       dbg_snprintf_key(c, &zbr->key, key_buf,
    						DBG_KEY_BUF_LEN));
    
    	}
    	spin_unlock(&dbg_lock);
    }
    
    
    void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
    
    	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
    
    	       current->pid, cat, heap->cnt);
    
    	for (i = 0; i < heap->cnt; i++) {
    		struct ubifs_lprops *lprops = heap->arr[i];
    
    
    		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
    
    		       i, lprops->lnum, lprops->hpos, lprops->free,
    		       lprops->dirty, lprops->flags);
    
    	pr_err("(pid %d) finish dumping heap\n", current->pid);
    
    void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
    		      struct ubifs_nnode *parent, int iip)
    
    	pr_err("(pid %d) dumping pnode:\n", current->pid);
    	pr_err("\taddress %zx parent %zx cnext %zx\n",
    
    	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
    
    	pr_err("\tflags %lu iip %d level %d num %d\n",
    
    	       pnode->flags, iip, pnode->level, pnode->num);
    	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    		struct ubifs_lprops *lp = &pnode->lprops[i];
    
    
    		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
    
    		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
    	}
    }
    
    
    void ubifs_dump_tnc(struct ubifs_info *c)
    
    {
    	struct ubifs_znode *znode;
    	int level;
    
    
    	pr_err("\n");
    	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
    
    	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
    	level = znode->level;
    
    	pr_err("== Level %d ==\n", level);
    
    	while (znode) {
    		if (level != znode->level) {
    			level = znode->level;
    
    			pr_err("== Level %d ==\n", level);
    
    		ubifs_dump_znode(c, znode);
    
    		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
    	}
    
    	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
    
    }
    
    static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
    		      void *priv)
    {
    
    	ubifs_dump_znode(c, znode);
    
     * ubifs_dump_index - dump the on-flash index.
    
     * @c: UBIFS file-system description object
     *
    
     * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
    
     * which dumps only in-memory znodes and does not read znodes which from flash.
     */
    
    void ubifs_dump_index(struct ubifs_info *c)
    
    {
    	dbg_walk_index(c, NULL, dump_znode, NULL);
    }
    
    
    /**
     * dbg_save_space_info - save information about flash space.
     * @c: UBIFS file-system description object
     *
     * This function saves information about UBIFS free space, dirty space, etc, in
     * order to check it later.
     */
    void dbg_save_space_info(struct ubifs_info *c)
    {
    	struct ubifs_debug_info *d = c->dbg;
    
    
    	spin_lock(&c->space_lock);
    
    	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
    
    	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
    	d->saved_idx_gc_cnt = c->idx_gc_cnt;
    
    
    	/*
    	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
    	 * affects the free space calculations, and UBIFS might not know about
    	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
    	 * only when we read their lprops, and we do this only lazily, upon the
    	 * need. So at any given point of time @c->freeable_cnt might be not
    	 * exactly accurate.
    	 *
    	 * Just one example about the issue we hit when we did not zero
    	 * @c->freeable_cnt.
    	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
    	 *    amount of free space in @d->saved_free
    	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
    	 *    information from flash, where we cache LEBs from various
    	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
    	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
    	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
    	 *    -> 'ubifs_add_to_cat()').
    	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
    	 *    becomes %1.
    	 * 4. We calculate the amount of free space when the re-mount is
    	 *    finished in 'dbg_check_space_info()' and it does not match
    	 *    @d->saved_free.