Skip to content
Snippets Groups Projects
avc.c 23 KiB
Newer Older
  • Learn to ignore specific revisions
  • Linus Torvalds's avatar
    Linus Torvalds committed
    /*
     * Implementation of the kernel access vector cache (AVC).
     *
     * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
     *           James Morris <jmorris@redhat.com>
     *
     * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
     *     Replaced the avc_lock spinlock by RCU.
     *
     * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
     *
     *	This program is free software; you can redistribute it and/or modify
     *	it under the terms of the GNU General Public License version 2,
     *      as published by the Free Software Foundation.
     */
    #include <linux/types.h>
    #include <linux/stddef.h>
    #include <linux/kernel.h>
    #include <linux/slab.h>
    #include <linux/fs.h>
    #include <linux/dcache.h>
    #include <linux/init.h>
    #include <linux/skbuff.h>
    #include <linux/percpu.h>
    #include <net/sock.h>
    #include <linux/un.h>
    #include <net/af_unix.h>
    #include <linux/ip.h>
    #include <linux/audit.h>
    #include <linux/ipv6.h>
    #include <net/ipv6.h>
    #include "avc.h"
    #include "avc_ss.h"
    
    static const struct av_perm_to_string
    {
      u16 tclass;
      u32 value;
      const char *name;
    } av_perm_to_string[] = {
    #define S_(c, v, s) { c, v, s },
    #include "av_perm_to_string.h"
    #undef S_
    };
    
    #ifdef CONFIG_AUDIT
    static const char *class_to_string[] = {
    #define S_(s) s,
    #include "class_to_string.h"
    #undef S_
    };
    #endif
    
    #define TB_(s) static const char * s [] = {
    #define TE_(s) };
    #define S_(s) s,
    #include "common_perm_to_string.h"
    #undef TB_
    #undef TE_
    #undef S_
    
    static const struct av_inherit
    {
        u16 tclass;
        const char **common_pts;
        u32 common_base;
    } av_inherit[] = {
    #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
    #include "av_inherit.h"
    #undef S_
    };
    
    #define AVC_CACHE_SLOTS			512
    #define AVC_DEF_CACHE_THRESHOLD		512
    #define AVC_CACHE_RECLAIM		16
    
    #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
    #define avc_cache_stats_incr(field) 				\
    do {								\
    	per_cpu(avc_cache_stats, get_cpu()).field++;		\
    	put_cpu();						\
    } while (0)
    #else
    #define avc_cache_stats_incr(field)	do {} while (0)
    #endif
    
    struct avc_entry {
    	u32			ssid;
    	u32			tsid;
    	u16			tclass;
    	struct av_decision	avd;
    	atomic_t		used;	/* used recently */
    };
    
    struct avc_node {
    	struct avc_entry	ae;
    	struct list_head	list;
    	struct rcu_head         rhead;
    };
    
    struct avc_cache {
    	struct list_head	slots[AVC_CACHE_SLOTS];
    	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
    	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
    	atomic_t		active_nodes;
    	u32			latest_notif;	/* latest revocation notification */
    };
    
    struct avc_callback_node {
    	int (*callback) (u32 event, u32 ssid, u32 tsid,
    	                 u16 tclass, u32 perms,
    	                 u32 *out_retained);
    	u32 events;
    	u32 ssid;
    	u32 tsid;
    	u16 tclass;
    	u32 perms;
    	struct avc_callback_node *next;
    };
    
    /* Exported via selinufs */
    unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
    
    #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
    DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
    #endif
    
    static struct avc_cache avc_cache;
    static struct avc_callback_node *avc_callbacks;
    static kmem_cache_t *avc_node_cachep;
    
    static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
    {
    	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
    }
    
    /**
     * avc_dump_av - Display an access vector in human-readable form.
     * @tclass: target security class
     * @av: access vector
     */
    static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
    {
    	const char **common_pts = NULL;
    	u32 common_base = 0;
    	int i, i2, perm;
    
    	if (av == 0) {
    		audit_log_format(ab, " null");
    		return;
    	}
    
    	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
    		if (av_inherit[i].tclass == tclass) {
    			common_pts = av_inherit[i].common_pts;
    			common_base = av_inherit[i].common_base;
    			break;
    		}
    	}
    
    	audit_log_format(ab, " {");
    	i = 0;
    	perm = 1;
    	while (perm < common_base) {
    		if (perm & av) {
    			audit_log_format(ab, " %s", common_pts[i]);
    			av &= ~perm;
    		}
    		i++;
    		perm <<= 1;
    	}
    
    	while (i < sizeof(av) * 8) {
    		if (perm & av) {
    			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
    				if ((av_perm_to_string[i2].tclass == tclass) &&
    				    (av_perm_to_string[i2].value == perm))
    					break;
    			}
    			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
    				audit_log_format(ab, " %s",
    						 av_perm_to_string[i2].name);
    				av &= ~perm;
    			}
    		}
    		i++;
    		perm <<= 1;
    	}
    
    	if (av)
    		audit_log_format(ab, " 0x%x", av);
    
    	audit_log_format(ab, " }");
    }
    
    /**
     * avc_dump_query - Display a SID pair and a class in human-readable form.
     * @ssid: source security identifier
     * @tsid: target security identifier
     * @tclass: target security class
     */
    static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
    {
    	int rc;
    	char *scontext;
    	u32 scontext_len;
    
     	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
    	if (rc)
    		audit_log_format(ab, "ssid=%d", ssid);
    	else {
    		audit_log_format(ab, "scontext=%s", scontext);
    		kfree(scontext);
    	}
    
    	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
    	if (rc)
    		audit_log_format(ab, " tsid=%d", tsid);
    	else {
    		audit_log_format(ab, " tcontext=%s", scontext);
    		kfree(scontext);
    	}
    	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
    }
    
    /**
     * avc_init - Initialize the AVC.
     *
     * Initialize the access vector cache.
     */
    void __init avc_init(void)
    {
    	int i;
    
    	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
    		INIT_LIST_HEAD(&avc_cache.slots[i]);
    		spin_lock_init(&avc_cache.slots_lock[i]);
    	}
    	atomic_set(&avc_cache.active_nodes, 0);
    	atomic_set(&avc_cache.lru_hint, 0);
    
    	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
    					     0, SLAB_PANIC, NULL, NULL);
    
    
    	audit_log(current->audit_context, AUDIT_KERNEL, "AVC INITIALIZED\n");
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    }
    
    int avc_get_hash_stats(char *page)
    {
    	int i, chain_len, max_chain_len, slots_used;
    	struct avc_node *node;
    
    	rcu_read_lock();
    
    	slots_used = 0;
    	max_chain_len = 0;
    	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
    		if (!list_empty(&avc_cache.slots[i])) {
    			slots_used++;
    			chain_len = 0;
    			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
    				chain_len++;
    			if (chain_len > max_chain_len)
    				max_chain_len = chain_len;
    		}
    	}
    
    	rcu_read_unlock();
    
    	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
    			 "longest chain: %d\n",
    			 atomic_read(&avc_cache.active_nodes),
    			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
    }
    
    static void avc_node_free(struct rcu_head *rhead)
    {
    	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
    	kmem_cache_free(avc_node_cachep, node);
    	avc_cache_stats_incr(frees);
    }
    
    static void avc_node_delete(struct avc_node *node)
    {
    	list_del_rcu(&node->list);
    	call_rcu(&node->rhead, avc_node_free);
    	atomic_dec(&avc_cache.active_nodes);
    }
    
    static void avc_node_kill(struct avc_node *node)
    {
    	kmem_cache_free(avc_node_cachep, node);
    	avc_cache_stats_incr(frees);
    	atomic_dec(&avc_cache.active_nodes);
    }
    
    static void avc_node_replace(struct avc_node *new, struct avc_node *old)
    {
    	list_replace_rcu(&old->list, &new->list);
    	call_rcu(&old->rhead, avc_node_free);
    	atomic_dec(&avc_cache.active_nodes);
    }
    
    static inline int avc_reclaim_node(void)
    {
    	struct avc_node *node;
    	int hvalue, try, ecx;
    	unsigned long flags;
    
    	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
    		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
    
    		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
    			continue;
    
    		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
    			if (atomic_dec_and_test(&node->ae.used)) {
    				/* Recently Unused */
    				avc_node_delete(node);
    				avc_cache_stats_incr(reclaims);
    				ecx++;
    				if (ecx >= AVC_CACHE_RECLAIM) {
    					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
    					goto out;
    				}
    			}
    		}
    		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
    	}
    out:
    	return ecx;
    }
    
    static struct avc_node *avc_alloc_node(void)
    {
    	struct avc_node *node;
    
    	node = kmem_cache_alloc(avc_node_cachep, SLAB_ATOMIC);
    	if (!node)
    		goto out;
    
    	memset(node, 0, sizeof(*node));
    	INIT_RCU_HEAD(&node->rhead);
    	INIT_LIST_HEAD(&node->list);
    	atomic_set(&node->ae.used, 1);
    	avc_cache_stats_incr(allocations);
    
    	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
    		avc_reclaim_node();
    
    out:
    	return node;
    }
    
    static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
    {
    	node->ae.ssid = ssid;
    	node->ae.tsid = tsid;
    	node->ae.tclass = tclass;
    	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
    }
    
    static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
    {
    	struct avc_node *node, *ret = NULL;
    	int hvalue;
    
    	hvalue = avc_hash(ssid, tsid, tclass);
    	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
    		if (ssid == node->ae.ssid &&
    		    tclass == node->ae.tclass &&
    		    tsid == node->ae.tsid) {
    			ret = node;
    			break;
    		}
    	}
    
    	if (ret == NULL) {
    		/* cache miss */
    		goto out;
    	}
    
    	/* cache hit */
    	if (atomic_read(&ret->ae.used) != 1)
    		atomic_set(&ret->ae.used, 1);
    out:
    	return ret;
    }
    
    /**
     * avc_lookup - Look up an AVC entry.
     * @ssid: source security identifier
     * @tsid: target security identifier
     * @tclass: target security class
     * @requested: requested permissions, interpreted based on @tclass
     *
     * Look up an AVC entry that is valid for the
     * @requested permissions between the SID pair
     * (@ssid, @tsid), interpreting the permissions
     * based on @tclass.  If a valid AVC entry exists,
     * then this function return the avc_node.
     * Otherwise, this function returns NULL.
     */
    static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
    {
    	struct avc_node *node;
    
    	avc_cache_stats_incr(lookups);
    	node = avc_search_node(ssid, tsid, tclass);
    
    	if (node && ((node->ae.avd.decided & requested) == requested)) {
    		avc_cache_stats_incr(hits);
    		goto out;
    	}
    
    	node = NULL;
    	avc_cache_stats_incr(misses);
    out:
    	return node;
    }
    
    static int avc_latest_notif_update(int seqno, int is_insert)
    {
    	int ret = 0;
    	static DEFINE_SPINLOCK(notif_lock);
    	unsigned long flag;
    
    	spin_lock_irqsave(&notif_lock, flag);
    	if (is_insert) {
    		if (seqno < avc_cache.latest_notif) {
    			printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",
    			       seqno, avc_cache.latest_notif);
    			ret = -EAGAIN;
    		}
    	} else {
    		if (seqno > avc_cache.latest_notif)
    			avc_cache.latest_notif = seqno;
    	}
    	spin_unlock_irqrestore(&notif_lock, flag);
    
    	return ret;
    }
    
    /**
     * avc_insert - Insert an AVC entry.
     * @ssid: source security identifier
     * @tsid: target security identifier
     * @tclass: target security class
     * @ae: AVC entry
     *
     * Insert an AVC entry for the SID pair
     * (@ssid, @tsid) and class @tclass.
     * The access vectors and the sequence number are
     * normally provided by the security server in
     * response to a security_compute_av() call.  If the
     * sequence number @ae->avd.seqno is not less than the latest
     * revocation notification, then the function copies
     * the access vectors into a cache entry, returns
     * avc_node inserted. Otherwise, this function returns NULL.
     */
    static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
    {
    	struct avc_node *pos, *node = NULL;
    	int hvalue;
    	unsigned long flag;
    
    	if (avc_latest_notif_update(ae->avd.seqno, 1))
    		goto out;
    
    	node = avc_alloc_node();
    	if (node) {
    		hvalue = avc_hash(ssid, tsid, tclass);
    		avc_node_populate(node, ssid, tsid, tclass, ae);
    
    		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
    		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
    			if (pos->ae.ssid == ssid &&
    			    pos->ae.tsid == tsid &&
    			    pos->ae.tclass == tclass) {
    			    	avc_node_replace(node, pos);
    				goto found;
    			}
    		}
    		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
    found:
    		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
    	}
    out:
    	return node;
    }
    
    static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
    				       struct in6_addr *addr, u16 port,
    				       char *name1, char *name2)
    {
    	if (!ipv6_addr_any(addr))
    		audit_log_format(ab, " %s=%04x:%04x:%04x:%04x:%04x:"
    				 "%04x:%04x:%04x", name1, NIP6(*addr));
    	if (port)
    		audit_log_format(ab, " %s=%d", name2, ntohs(port));
    }
    
    static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr,
    				       u16 port, char *name1, char *name2)
    {
    	if (addr)
    		audit_log_format(ab, " %s=%d.%d.%d.%d", name1, NIPQUAD(addr));
    	if (port)
    		audit_log_format(ab, " %s=%d", name2, ntohs(port));
    }
    
    /**
     * avc_audit - Audit the granting or denial of permissions.
     * @ssid: source security identifier
     * @tsid: target security identifier
     * @tclass: target security class
     * @requested: requested permissions
     * @avd: access vector decisions
     * @result: result from avc_has_perm_noaudit
     * @a:  auxiliary audit data
     *
     * Audit the granting or denial of permissions in accordance
     * with the policy.  This function is typically called by
     * avc_has_perm() after a permission check, but can also be
     * called directly by callers who use avc_has_perm_noaudit()
     * in order to separate the permission check from the auditing.
     * For example, this separation is useful when the permission check must
     * be performed under a lock, to allow the lock to be released
     * before calling the auditing code.
     */
    void avc_audit(u32 ssid, u32 tsid,
                   u16 tclass, u32 requested,
                   struct av_decision *avd, int result, struct avc_audit_data *a)
    {
    
    	struct task_struct *tsk = current;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	struct inode *inode = NULL;
    	u32 denied, audited;
    	struct audit_buffer *ab;
    
    	denied = requested & ~avd->allowed;
    	if (denied) {
    		audited = denied;
    		if (!(audited & avd->auditdeny))
    			return;
    	} else if (result) {
    		audited = denied = requested;
            } else {
    		audited = requested;
    		if (!(audited & avd->auditallow))
    			return;
    	}
    
    
    	ab = audit_log_start(current->audit_context, AUDIT_AVC);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	if (!ab)
    		return;		/* audit_panic has been called */
    	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
    	avc_dump_av(ab, tclass,audited);
    	audit_log_format(ab, " for ");
    
    	if (a && a->tsk)
    		tsk = a->tsk;
    
    	if (tsk && tsk->pid) {
    
    		audit_log_format(ab, " pid=%d comm=", tsk->pid);
    		audit_log_untrustedstring(ab, tsk->comm);
    	}
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	if (a) {
    		switch (a->type) {
    		case AVC_AUDIT_DATA_IPC:
    			audit_log_format(ab, " key=%d", a->u.ipc_id);
    			break;
    		case AVC_AUDIT_DATA_CAP:
    			audit_log_format(ab, " capability=%d", a->u.cap);
    			break;
    		case AVC_AUDIT_DATA_FS:
    			if (a->u.fs.dentry) {
    				struct dentry *dentry = a->u.fs.dentry;
    
    				if (a->u.fs.mnt)
    					audit_avc_path(dentry, a->u.fs.mnt);
    
    				audit_log_format(ab, " name=");
    				audit_log_untrustedstring(ab, dentry->d_name.name);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    				inode = dentry->d_inode;
    			} else if (a->u.fs.inode) {
    				struct dentry *dentry;
    				inode = a->u.fs.inode;
    				dentry = d_find_alias(inode);
    				if (dentry) {
    
    					audit_log_format(ab, " name=");
    					audit_log_untrustedstring(ab, dentry->d_name.name);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    					dput(dentry);
    				}
    			}
    			if (inode)
    				audit_log_format(ab, " dev=%s ino=%ld",
    						 inode->i_sb->s_id,
    						 inode->i_ino);
    			break;
    		case AVC_AUDIT_DATA_NET:
    			if (a->u.net.sk) {
    				struct sock *sk = a->u.net.sk;
    				struct unix_sock *u;
    				int len = 0;
    				char *p = NULL;
    
    				switch (sk->sk_family) {
    				case AF_INET: {
    					struct inet_sock *inet = inet_sk(sk);
    
    					avc_print_ipv4_addr(ab, inet->rcv_saddr,
    							    inet->sport,
    							    "laddr", "lport");
    					avc_print_ipv4_addr(ab, inet->daddr,
    							    inet->dport,
    							    "faddr", "fport");
    					break;
    				}
    				case AF_INET6: {
    					struct inet_sock *inet = inet_sk(sk);
    					struct ipv6_pinfo *inet6 = inet6_sk(sk);
    
    					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
    							    inet->sport,
    							    "laddr", "lport");
    					avc_print_ipv6_addr(ab, &inet6->daddr,
    							    inet->dport,
    							    "faddr", "fport");
    					break;
    				}
    				case AF_UNIX:
    					u = unix_sk(sk);
    					if (u->dentry) {
    
    						audit_avc_path(u->dentry, u->mnt);
    
    						audit_log_format(ab, " name=");
    						audit_log_untrustedstring(ab, u->dentry->d_name.name);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    						break;
    					}
    					if (!u->addr)
    						break;
    					len = u->addr->len-sizeof(short);
    					p = &u->addr->name->sun_path[0];
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    					if (*p)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    					else
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    					break;
    				}
    			}
    			
    			switch (a->u.net.family) {
    			case AF_INET:
    				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
    						    a->u.net.sport,
    						    "saddr", "src");
    				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
    						    a->u.net.dport,
    						    "daddr", "dest");
    				break;
    			case AF_INET6:
    				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
    						    a->u.net.sport,
    						    "saddr", "src");
    				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
    						    a->u.net.dport,
    						    "daddr", "dest");
    				break;
    			}
    			if (a->u.net.netif)
    				audit_log_format(ab, " netif=%s",
    					a->u.net.netif);
    			break;
    		}
    	}
    	audit_log_format(ab, " ");
    	avc_dump_query(ab, ssid, tsid, tclass);
    	audit_log_end(ab);
    }
    
    /**
     * avc_add_callback - Register a callback for security events.
     * @callback: callback function
     * @events: security events
     * @ssid: source security identifier or %SECSID_WILD
     * @tsid: target security identifier or %SECSID_WILD
     * @tclass: target security class
     * @perms: permissions
     *
     * Register a callback function for events in the set @events
     * related to the SID pair (@ssid, @tsid) and
     * and the permissions @perms, interpreting
     * @perms based on @tclass.  Returns %0 on success or
     * -%ENOMEM if insufficient memory exists to add the callback.
     */
    int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
                                         u16 tclass, u32 perms,
                                         u32 *out_retained),
                         u32 events, u32 ssid, u32 tsid,
                         u16 tclass, u32 perms)
    {
    	struct avc_callback_node *c;
    	int rc = 0;
    
    	c = kmalloc(sizeof(*c), GFP_ATOMIC);
    	if (!c) {
    		rc = -ENOMEM;
    		goto out;
    	}
    
    	c->callback = callback;
    	c->events = events;
    	c->ssid = ssid;
    	c->tsid = tsid;
    	c->perms = perms;
    	c->next = avc_callbacks;
    	avc_callbacks = c;
    out:
    	return rc;
    }
    
    static inline int avc_sidcmp(u32 x, u32 y)
    {
    	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
    }
    
    /**
     * avc_update_node Update an AVC entry
     * @event : Updating event
     * @perms : Permission mask bits
     * @ssid,@tsid,@tclass : identifier of an AVC entry
     *
     * if a valid AVC entry doesn't exist,this function returns -ENOENT.
     * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
     * otherwise, this function update the AVC entry. The original AVC-entry object
     * will release later by RCU.
     */
    static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
    {
    	int hvalue, rc = 0;
    	unsigned long flag;
    	struct avc_node *pos, *node, *orig = NULL;
    
    	node = avc_alloc_node();
    	if (!node) {
    		rc = -ENOMEM;
    		goto out;
    	}
    
    	/* Lock the target slot */
    	hvalue = avc_hash(ssid, tsid, tclass);
    	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
    
    	list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
    		if ( ssid==pos->ae.ssid &&
    		     tsid==pos->ae.tsid &&
    		     tclass==pos->ae.tclass ){
    			orig = pos;
    			break;
    		}
    	}
    
    	if (!orig) {
    		rc = -ENOENT;
    		avc_node_kill(node);
    		goto out_unlock;
    	}
    
    	/*
    	 * Copy and replace original node.
    	 */
    
    	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
    
    	switch (event) {
    	case AVC_CALLBACK_GRANT:
    		node->ae.avd.allowed |= perms;
    		break;
    	case AVC_CALLBACK_TRY_REVOKE:
    	case AVC_CALLBACK_REVOKE:
    		node->ae.avd.allowed &= ~perms;
    		break;
    	case AVC_CALLBACK_AUDITALLOW_ENABLE:
    		node->ae.avd.auditallow |= perms;
    		break;
    	case AVC_CALLBACK_AUDITALLOW_DISABLE:
    		node->ae.avd.auditallow &= ~perms;
    		break;
    	case AVC_CALLBACK_AUDITDENY_ENABLE:
    		node->ae.avd.auditdeny |= perms;
    		break;
    	case AVC_CALLBACK_AUDITDENY_DISABLE:
    		node->ae.avd.auditdeny &= ~perms;
    		break;
    	}
    	avc_node_replace(node, orig);
    out_unlock:
    	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
    out:
    	return rc;
    }
    
    /**
     * avc_ss_reset - Flush the cache and revalidate migrated permissions.
     * @seqno: policy sequence number
     */
    int avc_ss_reset(u32 seqno)
    {
    	struct avc_callback_node *c;
    	int i, rc = 0;
    	unsigned long flag;
    	struct avc_node *node;
    
    	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
    		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
    		list_for_each_entry(node, &avc_cache.slots[i], list)
    			avc_node_delete(node);
    		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
    	}
    
    	for (c = avc_callbacks; c; c = c->next) {
    		if (c->events & AVC_CALLBACK_RESET) {
    			rc = c->callback(AVC_CALLBACK_RESET,
    					 0, 0, 0, 0, NULL);
    			if (rc)
    				goto out;
    		}
    	}
    
    	avc_latest_notif_update(seqno, 0);
    out:
    	return rc;
    }
    
    /**
     * avc_has_perm_noaudit - Check permissions but perform no auditing.
     * @ssid: source security identifier
     * @tsid: target security identifier
     * @tclass: target security class
     * @requested: requested permissions, interpreted based on @tclass
     * @avd: access vector decisions
     *
     * Check the AVC to determine whether the @requested permissions are granted
     * for the SID pair (@ssid, @tsid), interpreting the permissions
     * based on @tclass, and call the security server on a cache miss to obtain
     * a new decision and add it to the cache.  Return a copy of the decisions
     * in @avd.  Return %0 if all @requested permissions are granted,
     * -%EACCES if any permissions are denied, or another -errno upon
     * other errors.  This function is typically called by avc_has_perm(),
     * but may also be called directly to separate permission checking from
     * auditing, e.g. in cases where a lock must be held for the check but
     * should be released for the auditing.
     */
    int avc_has_perm_noaudit(u32 ssid, u32 tsid,
                             u16 tclass, u32 requested,
                             struct av_decision *avd)
    {
    	struct avc_node *node;
    	struct avc_entry entry, *p_ae;
    	int rc = 0;
    	u32 denied;
    
    	rcu_read_lock();
    
    	node = avc_lookup(ssid, tsid, tclass, requested);
    	if (!node) {
    		rcu_read_unlock();
    		rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
    		if (rc)
    			goto out;
    		rcu_read_lock();
    		node = avc_insert(ssid,tsid,tclass,&entry);
    	}
    
    	p_ae = node ? &node->ae : &entry;
    
    	if (avd)
    		memcpy(avd, &p_ae->avd, sizeof(*avd));
    
    	denied = requested & ~(p_ae->avd.allowed);
    
    	if (!requested || denied) {
    		if (selinux_enforcing)
    			rc = -EACCES;
    		else
    			if (node)
    				avc_update_node(AVC_CALLBACK_GRANT,requested,
    						ssid,tsid,tclass);
    	}
    
    	rcu_read_unlock();
    out:
    	return rc;
    }
    
    /**
     * avc_has_perm - Check permissions and perform any appropriate auditing.
     * @ssid: source security identifier
     * @tsid: target security identifier
     * @tclass: target security class
     * @requested: requested permissions, interpreted based on @tclass
     * @auditdata: auxiliary audit data
     *
     * Check the AVC to determine whether the @requested permissions are granted
     * for the SID pair (@ssid, @tsid), interpreting the permissions
     * based on @tclass, and call the security server on a cache miss to obtain
     * a new decision and add it to the cache.  Audit the granting or denial of
     * permissions in accordance with the policy.  Return %0 if all @requested
     * permissions are granted, -%EACCES if any permissions are denied, or
     * another -errno upon other errors.
     */
    int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
                     u32 requested, struct avc_audit_data *auditdata)
    {
    	struct av_decision avd;
    	int rc;
    
    	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
    	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
    	return rc;
    }