Skip to content
Snippets Groups Projects
memcontrol.c 142 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
     * In that cases, pages are freed continuously and we can expect pages
     * are in the same memcg. All these calls itself limits the number of
     * pages freed at once, then uncharge_start/end() is called properly.
     * This may be called prural(2) times in a context,
     */
    
    void mem_cgroup_uncharge_start(void)
    {
    	current->memcg_batch.do_batch++;
    	/* We can do nest. */
    	if (current->memcg_batch.do_batch == 1) {
    		current->memcg_batch.memcg = NULL;
    
    		current->memcg_batch.nr_pages = 0;
    		current->memcg_batch.memsw_nr_pages = 0;
    
    	}
    }
    
    void mem_cgroup_uncharge_end(void)
    {
    	struct memcg_batch_info *batch = &current->memcg_batch;
    
    	if (!batch->do_batch)
    		return;
    
    	batch->do_batch--;
    	if (batch->do_batch) /* If stacked, do nothing. */
    		return;
    
    	if (!batch->memcg)
    		return;
    	/*
    	 * This "batch->memcg" is valid without any css_get/put etc...
    	 * bacause we hide charges behind us.
    	 */
    
    	if (batch->nr_pages)
    		res_counter_uncharge(&batch->memcg->res,
    				     batch->nr_pages * PAGE_SIZE);
    	if (batch->memsw_nr_pages)
    		res_counter_uncharge(&batch->memcg->memsw,
    				     batch->memsw_nr_pages * PAGE_SIZE);
    
    	memcg_oom_recover(batch->memcg);
    
    	/* forget this pointer (for sanity check) */
    	batch->memcg = NULL;
    }
    
    
     * called after __delete_from_swap_cache() and drop "page" account.
    
     * memcg information is recorded to swap_cgroup of "ent"
     */
    
    void
    mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
    
    {
    	struct mem_cgroup *memcg;
    
    	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
    
    	if (!swapout) /* this was a swap cache but the swap is unused ! */
    		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
    
    	memcg = __mem_cgroup_uncharge_common(page, ctype);
    
    	/*
    	 * record memcg information,  if swapout && memcg != NULL,
    	 * mem_cgroup_get() was called in uncharge().
    	 */
    	if (do_swap_account && swapout && memcg)
    
    		swap_cgroup_record(ent, css_id(&memcg->css));
    
    
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
    /*
     * called from swap_entry_free(). remove record in swap_cgroup and
     * uncharge "memsw" account.
     */
    void mem_cgroup_uncharge_swap(swp_entry_t ent)
    
    	struct mem_cgroup *memcg;
    
    
    	if (!do_swap_account)
    		return;
    
    
    	id = swap_cgroup_record(ent, 0);
    	rcu_read_lock();
    	memcg = mem_cgroup_lookup(id);
    
    	if (memcg) {
    
    		/*
    		 * We uncharge this because swap is freed.
    		 * This memcg can be obsolete one. We avoid calling css_tryget
    		 */
    
    		if (!mem_cgroup_is_root(memcg))
    
    			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
    
    		mem_cgroup_swap_statistics(memcg, false);
    
    		mem_cgroup_put(memcg);
    	}
    
    
    /**
     * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
     * @entry: swap entry to be moved
     * @from:  mem_cgroup which the entry is moved from
     * @to:  mem_cgroup which the entry is moved to
     *
     * It succeeds only when the swap_cgroup's record for this entry is the same
     * as the mem_cgroup's id of @from.
     *
     * Returns 0 on success, -EINVAL on failure.
     *
     * The caller must have charged to @to, IOW, called res_counter_charge() about
     * both res and memsw, and called css_get().
     */
    static int mem_cgroup_move_swap_account(swp_entry_t entry,
    
    				struct mem_cgroup *from, struct mem_cgroup *to)
    
    {
    	unsigned short old_id, new_id;
    
    	old_id = css_id(&from->css);
    	new_id = css_id(&to->css);
    
    	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
    		mem_cgroup_swap_statistics(from, false);
    
    		mem_cgroup_swap_statistics(to, true);
    
    		 * This function is only called from task migration context now.
    		 * It postpones res_counter and refcount handling till the end
    		 * of task migration(mem_cgroup_clear_mc()) for performance
    		 * improvement. But we cannot postpone mem_cgroup_get(to)
    		 * because if the process that has been moved to @to does
    		 * swap-in, the refcount of @to might be decreased to 0.
    
    		 */
    		mem_cgroup_get(to);
    		return 0;
    	}
    	return -EINVAL;
    }
    #else
    static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
    
    				struct mem_cgroup *from, struct mem_cgroup *to)
    
     * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
     * page belongs to.
    
    int mem_cgroup_prepare_migration(struct page *page,
    
    	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
    
    	struct mem_cgroup *memcg = NULL;
    
    	int ret = 0;
    
    Andrea Arcangeli's avatar
    Andrea Arcangeli committed
    	VM_BUG_ON(PageTransHuge(page));
    
    	if (mem_cgroup_disabled())
    
    	pc = lookup_page_cgroup(page);
    	lock_page_cgroup(pc);
    	if (PageCgroupUsed(pc)) {
    
    		memcg = pc->mem_cgroup;
    		css_get(&memcg->css);
    
    		/*
    		 * At migrating an anonymous page, its mapcount goes down
    		 * to 0 and uncharge() will be called. But, even if it's fully
    		 * unmapped, migration may fail and this page has to be
    		 * charged again. We set MIGRATION flag here and delay uncharge
    		 * until end_migration() is called
    		 *
    		 * Corner Case Thinking
    		 * A)
    		 * When the old page was mapped as Anon and it's unmap-and-freed
    		 * while migration was ongoing.
    		 * If unmap finds the old page, uncharge() of it will be delayed
    		 * until end_migration(). If unmap finds a new page, it's
    		 * uncharged when it make mapcount to be 1->0. If unmap code
    		 * finds swap_migration_entry, the new page will not be mapped
    		 * and end_migration() will find it(mapcount==0).
    		 *
    		 * B)
    		 * When the old page was mapped but migraion fails, the kernel
    		 * remaps it. A charge for it is kept by MIGRATION flag even
    		 * if mapcount goes down to 0. We can do remap successfully
    		 * without charging it again.
    		 *
    		 * C)
    		 * The "old" page is under lock_page() until the end of
    		 * migration, so, the old page itself will not be swapped-out.
    		 * If the new page is swapped out before end_migraton, our
    		 * hook to usual swap-out path will catch the event.
    		 */
    		if (PageAnon(page))
    			SetPageCgroupMigration(pc);
    
    	unlock_page_cgroup(pc);
    
    	/*
    	 * If the page is not charged at this point,
    	 * we return here.
    	 */
    
    	*memcgp = memcg;
    	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
    
    	css_put(&memcg->css);/* drop extra refcnt */
    
    		if (PageAnon(page)) {
    			lock_page_cgroup(pc);
    			ClearPageCgroupMigration(pc);
    			unlock_page_cgroup(pc);
    			/*
    			 * The old page may be fully unmapped while we kept it.
    			 */
    			mem_cgroup_uncharge_page(page);
    		}
    
    		/* we'll need to revisit this error code (we have -EINTR) */
    
    	/*
    	 * We charge new page before it's used/mapped. So, even if unlock_page()
    	 * is called before end_migration, we can catch all events on this new
    	 * page. In the case new page is migrated but not remapped, new page's
    	 * mapcount will be finally 0 and we call uncharge in end_migration().
    	 */
    	if (PageAnon(page))
    		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
    	else if (page_is_file_cache(page))
    		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
    	else
    		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
    
    	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
    
    	return ret;
    
    /* remove redundant charge if migration failed*/
    
    void mem_cgroup_end_migration(struct mem_cgroup *memcg,
    
    	struct page *oldpage, struct page *newpage, bool migration_ok)
    
    	struct page *used, *unused;
    
    	struct page_cgroup *pc;
    
    	cgroup_exclude_rmdir(&memcg->css);
    
    		used = oldpage;
    		unused = newpage;
    
    		unused = oldpage;
    	}
    
    	 * We disallowed uncharge of pages under migration because mapcount
    	 * of the page goes down to zero, temporarly.
    	 * Clear the flag and check the page should be charged.
    
    	pc = lookup_page_cgroup(oldpage);
    	lock_page_cgroup(pc);
    	ClearPageCgroupMigration(pc);
    	unlock_page_cgroup(pc);
    
    	anon = PageAnon(used);
    	__mem_cgroup_uncharge_common(unused,
    		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
    		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
    
    	 * If a page is a file cache, radix-tree replacement is very atomic
    	 * and we can skip this check. When it was an Anon page, its mapcount
    	 * goes down to 0. But because we added MIGRATION flage, it's not
    	 * uncharged yet. There are several case but page->mapcount check
    	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
    	 * check. (see prepare_charge() also)
    
    		mem_cgroup_uncharge_page(used);
    
    	 * At migration, we may charge account against cgroup which has no
    	 * tasks.
    
    	 * So, rmdir()->pre_destroy() can be called while we do this charge.
    	 * In that case, we need to call pre_destroy() again. check it here.
    	 */
    
    	cgroup_release_and_wakeup_rmdir(&memcg->css);
    
    /*
     * At replace page cache, newpage is not under any memcg but it's on
     * LRU. So, this function doesn't touch res_counter but handles LRU
     * in correct way. Both pages are locked so we cannot race with uncharge.
     */
    void mem_cgroup_replace_page_cache(struct page *oldpage,
    				  struct page *newpage)
    {
    
    	struct mem_cgroup *memcg = NULL;
    
    	struct page_cgroup *pc;
    	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	pc = lookup_page_cgroup(oldpage);
    	/* fix accounting on old pages */
    	lock_page_cgroup(pc);
    
    	if (PageCgroupUsed(pc)) {
    		memcg = pc->mem_cgroup;
    		mem_cgroup_charge_statistics(memcg, false, -1);
    		ClearPageCgroupUsed(pc);
    	}
    
    	/*
    	 * When called from shmem_replace_page(), in some cases the
    	 * oldpage has already been charged, and in some cases not.
    	 */
    	if (!memcg)
    		return;
    
    
    	if (PageSwapBacked(oldpage))
    		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
    
    	/*
    	 * Even if newpage->mapping was NULL before starting replacement,
    	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
    	 * LRU while we overwrite pc->mem_cgroup.
    	 */
    
    	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
    
    #ifdef CONFIG_DEBUG_VM
    static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
    {
    	struct page_cgroup *pc;
    
    	pc = lookup_page_cgroup(page);
    
    	/*
    	 * Can be NULL while feeding pages into the page allocator for
    	 * the first time, i.e. during boot or memory hotplug;
    	 * or when mem_cgroup_disabled().
    	 */
    
    	if (likely(pc) && PageCgroupUsed(pc))
    		return pc;
    	return NULL;
    }
    
    bool mem_cgroup_bad_page_check(struct page *page)
    {
    	if (mem_cgroup_disabled())
    		return false;
    
    	return lookup_page_cgroup_used(page) != NULL;
    }
    
    void mem_cgroup_print_bad_page(struct page *page)
    {
    	struct page_cgroup *pc;
    
    	pc = lookup_page_cgroup_used(page);
    	if (pc) {
    
    		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
    
    static DEFINE_MUTEX(set_limit_mutex);
    
    
    static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
    
    				unsigned long long val)
    
    	u64 memswlimit, memlimit;
    
    	int ret = 0;
    
    	int children = mem_cgroup_count_children(memcg);
    	u64 curusage, oldusage;
    
    
    	/*
    	 * For keeping hierarchical_reclaim simple, how long we should retry
    	 * is depends on callers. We set our retry-count to be function
    	 * of # of children which we should visit in this loop.
    	 */
    	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
    
    	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
    
    	while (retry_count) {
    
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    
    		/*
    		 * Rather than hide all in some function, I do this in
    		 * open coded manner. You see what this really does.
    
    		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
    
    		 */
    		mutex_lock(&set_limit_mutex);
    		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		if (memswlimit < val) {
    			ret = -EINVAL;
    			mutex_unlock(&set_limit_mutex);
    
    
    		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		if (memlimit < val)
    			enlarge = 1;
    
    
    		ret = res_counter_set_limit(&memcg->res, val);
    
    		if (!ret) {
    			if (memswlimit == val)
    				memcg->memsw_is_minimum = true;
    			else
    				memcg->memsw_is_minimum = false;
    		}
    
    		mutex_unlock(&set_limit_mutex);
    
    		if (!ret)
    			break;
    
    
    		mem_cgroup_reclaim(memcg, GFP_KERNEL,
    				   MEM_CGROUP_RECLAIM_SHRINK);
    
    		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
    		/* Usage is reduced ? */
      		if (curusage >= oldusage)
    			retry_count--;
    		else
    			oldusage = curusage;
    
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    
    static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
    					unsigned long long val)
    
    	u64 memlimit, memswlimit, oldusage, curusage;
    
    	int children = mem_cgroup_count_children(memcg);
    	int ret = -EBUSY;
    
    	int enlarge = 0;
    
    	/* see mem_cgroup_resize_res_limit */
     	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
    	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
    
    	while (retry_count) {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    		/*
    		 * Rather than hide all in some function, I do this in
    		 * open coded manner. You see what this really does.
    
    		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
    
    		 */
    		mutex_lock(&set_limit_mutex);
    		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		if (memlimit > val) {
    			ret = -EINVAL;
    			mutex_unlock(&set_limit_mutex);
    			break;
    		}
    
    		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		if (memswlimit < val)
    			enlarge = 1;
    
    		ret = res_counter_set_limit(&memcg->memsw, val);
    
    		if (!ret) {
    			if (memlimit == val)
    				memcg->memsw_is_minimum = true;
    			else
    				memcg->memsw_is_minimum = false;
    		}
    
    		mutex_unlock(&set_limit_mutex);
    
    		if (!ret)
    			break;
    
    
    		mem_cgroup_reclaim(memcg, GFP_KERNEL,
    				   MEM_CGROUP_RECLAIM_NOSWAP |
    				   MEM_CGROUP_RECLAIM_SHRINK);
    
    		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
    
    		if (curusage >= oldusage)
    
    			retry_count--;
    
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    
    unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
    
    					    gfp_t gfp_mask,
    					    unsigned long *total_scanned)
    
    {
    	unsigned long nr_reclaimed = 0;
    	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
    	unsigned long reclaimed;
    	int loop = 0;
    	struct mem_cgroup_tree_per_zone *mctz;
    
    	unsigned long long excess;
    
    	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
    
    	/*
    	 * This loop can run a while, specially if mem_cgroup's continuously
    	 * keep exceeding their soft limit and putting the system under
    	 * pressure
    	 */
    	do {
    		if (next_mz)
    			mz = next_mz;
    		else
    			mz = mem_cgroup_largest_soft_limit_node(mctz);
    		if (!mz)
    			break;
    
    
    		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
    
    		nr_reclaimed += reclaimed;
    
    		*total_scanned += nr_scanned;
    
    		spin_lock(&mctz->lock);
    
    		/*
    		 * If we failed to reclaim anything from this memory cgroup
    		 * it is time to move on to the next cgroup
    		 */
    		next_mz = NULL;
    		if (!reclaimed) {
    			do {
    				/*
    				 * Loop until we find yet another one.
    				 *
    				 * By the time we get the soft_limit lock
    				 * again, someone might have aded the
    				 * group back on the RB tree. Iterate to
    				 * make sure we get a different mem.
    				 * mem_cgroup_largest_soft_limit_node returns
    				 * NULL if no other cgroup is present on
    				 * the tree
    				 */
    				next_mz =
    				__mem_cgroup_largest_soft_limit_node(mctz);
    
    					css_put(&next_mz->memcg->css);
    
    				else /* next_mz == NULL or other memcg */
    
    		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
    		excess = res_counter_soft_limit_excess(&mz->memcg->res);
    
    		/*
    		 * One school of thought says that we should not add
    		 * back the node to the tree if reclaim returns 0.
    		 * But our reclaim could return 0, simply because due
    		 * to priority we are exposing a smaller subset of
    		 * memory to reclaim from. Consider this as a longer
    		 * term TODO.
    		 */
    
    		/* If excess == 0, no tree ops */
    
    		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
    
    		spin_unlock(&mctz->lock);
    
    		css_put(&mz->memcg->css);
    
    		loop++;
    		/*
    		 * Could not reclaim anything and there are no more
    		 * mem cgroups to try or we seem to be looping without
    		 * reclaiming anything.
    		 */
    		if (!nr_reclaimed &&
    			(next_mz == NULL ||
    			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
    			break;
    	} while (!nr_reclaimed);
    	if (next_mz)
    
    		css_put(&next_mz->memcg->css);
    
    /*
     * This routine traverse page_cgroup in given list and drop them all.
     * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
     */
    
    static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
    
    				int node, int zid, enum lru_list lru)
    
    	struct mem_cgroup_per_zone *mz;
    	unsigned long flags, loop;
    
    	struct page *busy;
    	struct zone *zone;
    
    	zone = &NODE_DATA(node)->node_zones[zid];
    
    	mz = mem_cgroup_zoneinfo(memcg, node, zid);
    
    	list = &mz->lruvec.lists[lru];
    
    	loop = mz->lru_size[lru];
    
    	/* give some margin against EBUSY etc...*/
    	loop += 256;
    	busy = NULL;
    	while (loop--) {
    
    		struct page_cgroup *pc;
    
    		spin_lock_irqsave(&zone->lru_lock, flags);
    
    		if (list_empty(list)) {
    
    			spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    		page = list_entry(list->prev, struct page, lru);
    		if (busy == page) {
    			list_move(&page->lru, list);
    
    			spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    		spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    		pc = lookup_page_cgroup(page);
    
    		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
    
    		if (ret == -ENOMEM || ret == -EINTR)
    
    
    		if (ret == -EBUSY || ret == -EINVAL) {
    			/* found lock contention or "pc" is obsolete. */
    
    			cond_resched();
    		} else
    			busy = NULL;
    
    	if (!ret && !list_empty(list))
    		return -EBUSY;
    	return ret;
    
    }
    
    /*
     * make mem_cgroup's charge to be 0 if there is no task.
     * This enables deleting this mem_cgroup.
     */
    
    static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
    
    	int ret;
    	int node, zid, shrink;
    	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
    
    	struct cgroup *cgrp = memcg->css.cgroup;
    
    	css_get(&memcg->css);
    
    	/* should free all ? */
    	if (free_all)
    		goto try_to_free;
    
    		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
    			goto out;
    		ret = -EINTR;
    		if (signal_pending(current))
    
    		/* This is for making all *used* pages to be on LRU. */
    		lru_add_drain_all();
    
    		drain_all_stock_sync(memcg);
    
    		mem_cgroup_start_move(memcg);
    
    		for_each_node_state(node, N_HIGH_MEMORY) {
    
    			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
    
    Hugh Dickins's avatar
    Hugh Dickins committed
    				enum lru_list lru;
    				for_each_lru(lru) {
    
    					ret = mem_cgroup_force_empty_list(memcg,
    
    Hugh Dickins's avatar
    Hugh Dickins committed
    							node, zid, lru);
    
    		mem_cgroup_end_move(memcg);
    		memcg_oom_recover(memcg);
    
    		/* it seems parent cgroup doesn't have enough mem */
    		if (ret == -ENOMEM)
    			goto try_to_free;
    
    	/* "ret" should also be checked to ensure all lists are empty. */
    
    	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
    
    	css_put(&memcg->css);
    
    	/* returns EBUSY if there is a task or if we come here twice. */
    	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
    
    	/* we call try-to-free pages for make this cgroup empty */
    	lru_add_drain_all();
    
    	/* try to free all pages in this cgroup */
    	shrink = 1;
    
    	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
    
    
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			goto out;
    		}
    
    		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
    
    			/* maybe some writeback is necessary */
    
    			congestion_wait(BLK_RW_ASYNC, HZ/10);
    
    	lru_add_drain();
    
    	/* try move_account...there may be some *locked* pages. */
    
    	goto move_account;
    
    static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
    
    {
    	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
    }
    
    
    
    static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
    {
    	return mem_cgroup_from_cont(cont)->use_hierarchy;
    }
    
    static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
    					u64 val)
    {
    	int retval = 0;
    
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
    
    	struct cgroup *parent = cont->parent;
    
    	struct mem_cgroup *parent_memcg = NULL;
    
    		parent_memcg = mem_cgroup_from_cont(parent);
    
    	 * If parent's use_hierarchy is set, we can't make any modifications
    
    	 * in the child subtrees. If it is unset, then the change can
    	 * occur, provided the current cgroup has no children.
    	 *
    	 * For the root cgroup, parent_mem is NULL, we allow value to be
    	 * set if there are no children.
    	 */
    
    	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
    
    				(val == 1 || val == 0)) {
    		if (list_empty(&cont->children))
    
    			memcg->use_hierarchy = val;
    
    		else
    			retval = -EBUSY;
    	} else
    		retval = -EINVAL;
    	cgroup_unlock();
    
    	return retval;
    }
    
    
    static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
    
    					       enum mem_cgroup_stat_index idx)
    
    	struct mem_cgroup *iter;
    
    	/* Per-cpu values can be negative, use a signed accumulator */
    
    	for_each_mem_cgroup_tree(iter, memcg)
    
    		val += mem_cgroup_read_stat(iter, idx);
    
    	if (val < 0) /* race ? */
    		val = 0;
    	return val;
    
    static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
    
    	if (!mem_cgroup_is_root(memcg)) {
    
    			return res_counter_read_u64(&memcg->res, RES_USAGE);
    
    			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
    
    	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
    	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
    
    		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
    
    static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
    			       struct file *file, char __user *buf,
    			       size_t nbytes, loff_t *ppos)
    
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
    
    
    	type = MEMFILE_TYPE(cft->private);
    	name = MEMFILE_ATTR(cft->private);
    
    
    	if (!do_swap_account && type == _MEMSWAP)
    		return -EOPNOTSUPP;
    
    
    	switch (type) {
    	case _MEM:
    
    			val = mem_cgroup_usage(memcg, false);
    
    			val = res_counter_read_u64(&memcg->res, name);
    
    		break;
    	case _MEMSWAP:
    
    			val = mem_cgroup_usage(memcg, true);
    
    			val = res_counter_read_u64(&memcg->memsw, name);
    
    
    	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
    	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
    
    /*
     * The user of this function is...
     * RES_LIMIT.
     */
    
    static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
    			    const char *buffer)
    
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
    
    	int type, name;
    
    	unsigned long long val;
    	int ret;
    
    
    	type = MEMFILE_TYPE(cft->private);
    	name = MEMFILE_ATTR(cft->private);
    
    
    	if (!do_swap_account && type == _MEMSWAP)
    		return -EOPNOTSUPP;
    
    
    	switch (name) {
    
    	case RES_LIMIT:
    
    		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
    			ret = -EINVAL;
    			break;
    		}
    
    		/* This function does all necessary parse...reuse it */
    		ret = res_counter_memparse_write_strategy(buffer, &val);
    
    		if (ret)
    			break;
    		if (type == _MEM)
    
    			ret = mem_cgroup_resize_limit(memcg, val);
    
    		else
    			ret = mem_cgroup_resize_memsw_limit(memcg, val);
    
    	case RES_SOFT_LIMIT:
    		ret = res_counter_memparse_write_strategy(buffer, &val);
    		if (ret)
    			break;
    		/*
    		 * For memsw, soft limits are hard to implement in terms
    		 * of semantics, for now, we support soft limits for
    		 * control without swap
    		 */
    		if (type == _MEM)
    			ret = res_counter_set_soft_limit(&memcg->res, val);
    		else
    			ret = -EINVAL;
    		break;
    
    	default:
    		ret = -EINVAL; /* should be BUG() ? */
    		break;
    	}
    	return ret;
    
    static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
    		unsigned long long *mem_limit, unsigned long long *memsw_limit)
    {
    	struct cgroup *cgroup;
    	unsigned long long min_limit, min_memsw_limit, tmp;
    
    	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    	cgroup = memcg->css.cgroup;
    	if (!memcg->use_hierarchy)
    		goto out;
    
    	while (cgroup->parent) {
    		cgroup = cgroup->parent;
    		memcg = mem_cgroup_from_cont(cgroup);
    		if (!memcg->use_hierarchy)
    			break;
    		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		min_limit = min(min_limit, tmp);
    		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		min_memsw_limit = min(min_memsw_limit, tmp);
    	}
    out:
    	*mem_limit = min_limit;
    	*memsw_limit = min_memsw_limit;
    }
    
    
    static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
    
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
    
    	int type, name;
    
    	type = MEMFILE_TYPE(event);
    	name = MEMFILE_ATTR(event);
    
    
    	if (!do_swap_account && type == _MEMSWAP)
    		return -EOPNOTSUPP;
    
    
    	switch (name) {
    
    	case RES_MAX_USAGE:
    
    		if (type == _MEM)
    
    			res_counter_reset_max(&memcg->res);
    
    			res_counter_reset_max(&memcg->memsw);
    
    		break;
    	case RES_FAILCNT:
    
    		if (type == _MEM)
    
    			res_counter_reset_failcnt(&memcg->res);
    
    			res_counter_reset_failcnt(&memcg->memsw);
    
    static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
    					struct cftype *cft)
    {
    	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
    }
    
    
    #ifdef CONFIG_MMU
    
    static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
    					struct cftype *cft, u64 val)
    {
    
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
    
    
    	if (val >= (1 << NR_MOVE_TYPE))
    		return -EINVAL;
    	/*
    	 * We check this value several times in both in can_attach() and
    	 * attach(), so we need cgroup lock to prevent this value from being
    	 * inconsistent.
    	 */
    	cgroup_lock();
    
    	memcg->move_charge_at_immigrate = val;
    
    #else
    static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
    					struct cftype *cft, u64 val)
    {
    	return -ENOSYS;
    }
    #endif