Skip to content
Snippets Groups Projects
btree.c 19.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * lib/btree.c	- Simple In-memory B+Tree
     *
     * As should be obvious for Linux kernel code, license is GPLv2
     *
     * Copyright (c) 2007-2008 Joern Engel <joern@logfs.org>
     * Bits and pieces stolen from Peter Zijlstra's code, which is
     * Copyright 2007, Red Hat Inc. Peter Zijlstra <pzijlstr@redhat.com>
     * GPLv2
     *
     * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
     *
     * A relatively simple B+Tree implementation.  I have written it as a learning
    
    Lucas De Marchi's avatar
    Lucas De Marchi committed
     * exercise to understand how B+Trees work.  Turned out to be useful as well.
    
     *
     * B+Trees can be used similar to Linux radix trees (which don't have anything
     * in common with textbook radix trees, beware).  Prerequisite for them working
     * well is that access to a random tree node is much faster than a large number
     * of operations within each node.
     *
     * Disks have fulfilled the prerequisite for a long time.  More recently DRAM
     * has gained similar properties, as memory access times, when measured in cpu
     * cycles, have increased.  Cacheline sizes have increased as well, which also
     * helps B+Trees.
     *
     * Compared to radix trees, B+Trees are more efficient when dealing with a
     * sparsely populated address space.  Between 25% and 50% of the memory is
     * occupied with valid pointers.  When densely populated, radix trees contain
     * ~98% pointers - hard to beat.  Very sparse radix trees contain only ~2%
     * pointers.
     *
     * This particular implementation stores pointers identified by a long value.
     * Storing NULL pointers is illegal, lookup will return NULL when no entry
     * was found.
     *
     * A tricks was used that is not commonly found in textbooks.  The lowest
     * values are to the right, not to the left.  All used slots within a node
     * are on the left, all unused slots contain NUL values.  Most operations
     * simply loop once over all slots and terminate on the first NUL.
     */
    
    #include <linux/btree.h>
    #include <linux/cache.h>
    #include <linux/kernel.h>
    #include <linux/slab.h>
    #include <linux/module.h>
    
    #define MAX(a, b) ((a) > (b) ? (a) : (b))
    #define NODESIZE MAX(L1_CACHE_BYTES, 128)
    
    struct btree_geo {
    	int keylen;
    	int no_pairs;
    	int no_longs;
    };
    
    struct btree_geo btree_geo32 = {
    	.keylen = 1,
    	.no_pairs = NODESIZE / sizeof(long) / 2,
    	.no_longs = NODESIZE / sizeof(long) / 2,
    };
    EXPORT_SYMBOL_GPL(btree_geo32);
    
    #define LONG_PER_U64 (64 / BITS_PER_LONG)
    struct btree_geo btree_geo64 = {
    	.keylen = LONG_PER_U64,
    	.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
    	.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
    };
    EXPORT_SYMBOL_GPL(btree_geo64);
    
    struct btree_geo btree_geo128 = {
    	.keylen = 2 * LONG_PER_U64,
    	.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
    	.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
    };
    EXPORT_SYMBOL_GPL(btree_geo128);
    
    static struct kmem_cache *btree_cachep;
    
    void *btree_alloc(gfp_t gfp_mask, void *pool_data)
    {
    	return kmem_cache_alloc(btree_cachep, gfp_mask);
    }
    EXPORT_SYMBOL_GPL(btree_alloc);
    
    void btree_free(void *element, void *pool_data)
    {
    	kmem_cache_free(btree_cachep, element);
    }
    EXPORT_SYMBOL_GPL(btree_free);
    
    static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
    {
    	unsigned long *node;
    
    	node = mempool_alloc(head->mempool, gfp);
    
    	if (likely(node))
    		memset(node, 0, NODESIZE);
    
    	return node;
    }
    
    static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
    {
    	size_t i;
    
    	for (i = 0; i < n; i++) {
    		if (l1[i] < l2[i])
    			return -1;
    		if (l1[i] > l2[i])
    			return 1;
    	}
    	return 0;
    }
    
    static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
    		size_t n)
    {
    	size_t i;
    
    	for (i = 0; i < n; i++)
    		dest[i] = src[i];
    	return dest;
    }
    
    static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
    {
    	size_t i;
    
    	for (i = 0; i < n; i++)
    		s[i] = c;
    	return s;
    }
    
    static void dec_key(struct btree_geo *geo, unsigned long *key)
    {
    	unsigned long val;
    	int i;
    
    	for (i = geo->keylen - 1; i >= 0; i--) {
    		val = key[i];
    		key[i] = val - 1;
    		if (val)
    			break;
    	}
    }
    
    static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
    {
    	return &node[n * geo->keylen];
    }
    
    static void *bval(struct btree_geo *geo, unsigned long *node, int n)
    {
    	return (void *)node[geo->no_longs + n];
    }
    
    static void setkey(struct btree_geo *geo, unsigned long *node, int n,
    		   unsigned long *key)
    {
    	longcpy(bkey(geo, node, n), key, geo->keylen);
    }
    
    static void setval(struct btree_geo *geo, unsigned long *node, int n,
    		   void *val)
    {
    	node[geo->no_longs + n] = (unsigned long) val;
    }
    
    static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
    {
    	longset(bkey(geo, node, n), 0, geo->keylen);
    	node[geo->no_longs + n] = 0;
    }
    
    static inline void __btree_init(struct btree_head *head)
    {
    	head->node = NULL;
    	head->height = 0;
    }
    
    void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
    {
    	__btree_init(head);
    	head->mempool = mempool;
    }
    EXPORT_SYMBOL_GPL(btree_init_mempool);
    
    int btree_init(struct btree_head *head)
    {
    	__btree_init(head);
    	head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
    	if (!head->mempool)
    		return -ENOMEM;
    	return 0;
    }
    EXPORT_SYMBOL_GPL(btree_init);
    
    void btree_destroy(struct btree_head *head)
    {
    	mempool_destroy(head->mempool);
    	head->mempool = NULL;
    }
    EXPORT_SYMBOL_GPL(btree_destroy);
    
    void *btree_last(struct btree_head *head, struct btree_geo *geo,
    		 unsigned long *key)
    {
    	int height = head->height;
    	unsigned long *node = head->node;
    
    	if (height == 0)
    		return NULL;
    
    	for ( ; height > 1; height--)
    		node = bval(geo, node, 0);
    
    	longcpy(key, bkey(geo, node, 0), geo->keylen);
    	return bval(geo, node, 0);
    }
    EXPORT_SYMBOL_GPL(btree_last);
    
    static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
    		  unsigned long *key)
    {
    	return longcmp(bkey(geo, node, pos), key, geo->keylen);
    }
    
    static int keyzero(struct btree_geo *geo, unsigned long *key)
    {
    	int i;
    
    	for (i = 0; i < geo->keylen; i++)
    		if (key[i])
    			return 0;
    
    	return 1;
    }
    
    void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
    		unsigned long *key)
    {
    	int i, height = head->height;
    	unsigned long *node = head->node;
    
    	if (height == 0)
    		return NULL;
    
    	for ( ; height > 1; height--) {
    		for (i = 0; i < geo->no_pairs; i++)
    			if (keycmp(geo, node, i, key) <= 0)
    				break;
    		if (i == geo->no_pairs)
    			return NULL;
    		node = bval(geo, node, i);
    		if (!node)
    			return NULL;
    	}
    
    	if (!node)
    		return NULL;
    
    	for (i = 0; i < geo->no_pairs; i++)
    		if (keycmp(geo, node, i, key) == 0)
    			return bval(geo, node, i);
    	return NULL;
    }
    EXPORT_SYMBOL_GPL(btree_lookup);
    
    int btree_update(struct btree_head *head, struct btree_geo *geo,
    		 unsigned long *key, void *val)
    {
    	int i, height = head->height;
    	unsigned long *node = head->node;
    
    	if (height == 0)
    		return -ENOENT;
    
    	for ( ; height > 1; height--) {
    		for (i = 0; i < geo->no_pairs; i++)
    			if (keycmp(geo, node, i, key) <= 0)
    				break;
    		if (i == geo->no_pairs)
    			return -ENOENT;
    		node = bval(geo, node, i);
    		if (!node)
    			return -ENOENT;
    	}
    
    	if (!node)
    		return -ENOENT;
    
    	for (i = 0; i < geo->no_pairs; i++)
    		if (keycmp(geo, node, i, key) == 0) {
    			setval(geo, node, i, val);
    			return 0;
    		}
    	return -ENOENT;
    }
    EXPORT_SYMBOL_GPL(btree_update);
    
    /*
     * Usually this function is quite similar to normal lookup.  But the key of
     * a parent node may be smaller than the smallest key of all its siblings.
     * In such a case we cannot just return NULL, as we have only proven that no
     * key smaller than __key, but larger than this parent key exists.
     * So we set __key to the parent key and retry.  We have to use the smallest
     * such parent key, which is the last parent key we encountered.
     */
    void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
    		     unsigned long *__key)
    {
    	int i, height;
    	unsigned long *node, *oldnode;
    	unsigned long *retry_key = NULL, key[geo->keylen];
    
    	if (keyzero(geo, __key))
    		return NULL;
    
    	if (head->height == 0)
    		return NULL;
    	longcpy(key, __key, geo->keylen);
    
    	dec_key(geo, key);
    
    	node = head->node;
    	for (height = head->height ; height > 1; height--) {
    		for (i = 0; i < geo->no_pairs; i++)
    			if (keycmp(geo, node, i, key) <= 0)
    				break;
    		if (i == geo->no_pairs)
    			goto miss;
    		oldnode = node;
    		node = bval(geo, node, i);
    		if (!node)
    			goto miss;
    		retry_key = bkey(geo, oldnode, i);
    	}
    
    	if (!node)
    		goto miss;
    
    	for (i = 0; i < geo->no_pairs; i++) {
    		if (keycmp(geo, node, i, key) <= 0) {
    			if (bval(geo, node, i)) {
    				longcpy(__key, bkey(geo, node, i), geo->keylen);
    				return bval(geo, node, i);
    			} else
    				goto miss;
    		}
    	}
    miss:
    	if (retry_key) {
    
    		longcpy(key, retry_key, geo->keylen);
    
    		retry_key = NULL;
    		goto retry;
    	}
    	return NULL;
    }
    
    EXPORT_SYMBOL_GPL(btree_get_prev);
    
    
    static int getpos(struct btree_geo *geo, unsigned long *node,
    		unsigned long *key)
    {
    	int i;
    
    	for (i = 0; i < geo->no_pairs; i++) {
    		if (keycmp(geo, node, i, key) <= 0)
    			break;
    	}
    	return i;
    }
    
    static int getfill(struct btree_geo *geo, unsigned long *node, int start)
    {
    	int i;
    
    	for (i = start; i < geo->no_pairs; i++)
    		if (!bval(geo, node, i))
    			break;
    	return i;
    }
    
    /*
     * locate the correct leaf node in the btree
     */
    static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
    		unsigned long *key, int level)
    {
    	unsigned long *node = head->node;
    	int i, height;
    
    	for (height = head->height; height > level; height--) {
    		for (i = 0; i < geo->no_pairs; i++)
    			if (keycmp(geo, node, i, key) <= 0)
    				break;
    
    		if ((i == geo->no_pairs) || !bval(geo, node, i)) {
    			/* right-most key is too large, update it */
    			/* FIXME: If the right-most key on higher levels is
    			 * always zero, this wouldn't be necessary. */
    			i--;
    			setkey(geo, node, i, key);
    		}
    		BUG_ON(i < 0);
    		node = bval(geo, node, i);
    	}
    	BUG_ON(!node);
    	return node;
    }
    
    static int btree_grow(struct btree_head *head, struct btree_geo *geo,
    		      gfp_t gfp)
    {
    	unsigned long *node;
    	int fill;
    
    	node = btree_node_alloc(head, gfp);
    	if (!node)
    		return -ENOMEM;
    	if (head->node) {
    		fill = getfill(geo, head->node, 0);
    		setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
    		setval(geo, node, 0, head->node);
    	}
    	head->node = node;
    	head->height++;
    	return 0;
    }
    
    static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
    {
    	unsigned long *node;
    	int fill;
    
    	if (head->height <= 1)
    		return;
    
    	node = head->node;
    	fill = getfill(geo, node, 0);
    	BUG_ON(fill > 1);
    	head->node = bval(geo, node, 0);
    	head->height--;
    	mempool_free(node, head->mempool);
    }
    
    static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
    			      unsigned long *key, void *val, int level,
    			      gfp_t gfp)
    {
    	unsigned long *node;
    	int i, pos, fill, err;
    
    	BUG_ON(!val);
    	if (head->height < level) {
    		err = btree_grow(head, geo, gfp);
    		if (err)
    			return err;
    	}
    
    retry:
    	node = find_level(head, geo, key, level);
    	pos = getpos(geo, node, key);
    	fill = getfill(geo, node, pos);
    	/* two identical keys are not allowed */
    	BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
    
    	if (fill == geo->no_pairs) {
    		/* need to split node */
    		unsigned long *new;
    
    		new = btree_node_alloc(head, gfp);
    		if (!new)
    			return -ENOMEM;
    		err = btree_insert_level(head, geo,
    				bkey(geo, node, fill / 2 - 1),
    				new, level + 1, gfp);
    		if (err) {
    			mempool_free(new, head->mempool);
    			return err;
    		}
    		for (i = 0; i < fill / 2; i++) {
    			setkey(geo, new, i, bkey(geo, node, i));
    			setval(geo, new, i, bval(geo, node, i));
    			setkey(geo, node, i, bkey(geo, node, i + fill / 2));
    			setval(geo, node, i, bval(geo, node, i + fill / 2));
    			clearpair(geo, node, i + fill / 2);
    		}
    		if (fill & 1) {
    			setkey(geo, node, i, bkey(geo, node, fill - 1));
    			setval(geo, node, i, bval(geo, node, fill - 1));
    			clearpair(geo, node, fill - 1);
    		}
    		goto retry;
    	}
    	BUG_ON(fill >= geo->no_pairs);
    
    	/* shift and insert */
    	for (i = fill; i > pos; i--) {
    		setkey(geo, node, i, bkey(geo, node, i - 1));
    		setval(geo, node, i, bval(geo, node, i - 1));
    	}
    	setkey(geo, node, pos, key);
    	setval(geo, node, pos, val);
    
    	return 0;
    }
    
    int btree_insert(struct btree_head *head, struct btree_geo *geo,
    		unsigned long *key, void *val, gfp_t gfp)
    {
    
    	return btree_insert_level(head, geo, key, val, 1, gfp);
    }
    EXPORT_SYMBOL_GPL(btree_insert);
    
    static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
    		unsigned long *key, int level);
    static void merge(struct btree_head *head, struct btree_geo *geo, int level,
    		unsigned long *left, int lfill,
    		unsigned long *right, int rfill,
    		unsigned long *parent, int lpos)
    {
    	int i;
    
    	for (i = 0; i < rfill; i++) {
    		/* Move all keys to the left */
    		setkey(geo, left, lfill + i, bkey(geo, right, i));
    		setval(geo, left, lfill + i, bval(geo, right, i));
    	}
    	/* Exchange left and right child in parent */
    	setval(geo, parent, lpos, right);
    	setval(geo, parent, lpos + 1, left);
    	/* Remove left (formerly right) child from parent */
    	btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
    	mempool_free(right, head->mempool);
    }
    
    static void rebalance(struct btree_head *head, struct btree_geo *geo,
    		unsigned long *key, int level, unsigned long *child, int fill)
    {
    	unsigned long *parent, *left = NULL, *right = NULL;
    	int i, no_left, no_right;
    
    	if (fill == 0) {
    
    Lucas De Marchi's avatar
    Lucas De Marchi committed
    		/* Because we don't steal entries from a neighbour, this case
    
    		 * can happen.  Parent node contains a single child, this
    		 * node, so merging with a sibling never happens.
    		 */
    		btree_remove_level(head, geo, key, level + 1);
    		mempool_free(child, head->mempool);
    		return;
    	}
    
    	parent = find_level(head, geo, key, level + 1);
    	i = getpos(geo, parent, key);
    	BUG_ON(bval(geo, parent, i) != child);
    
    	if (i > 0) {
    		left = bval(geo, parent, i - 1);
    		no_left = getfill(geo, left, 0);
    		if (fill + no_left <= geo->no_pairs) {
    			merge(head, geo, level,
    					left, no_left,
    					child, fill,
    					parent, i - 1);
    			return;
    		}
    	}
    	if (i + 1 < getfill(geo, parent, i)) {
    		right = bval(geo, parent, i + 1);
    		no_right = getfill(geo, right, 0);
    		if (fill + no_right <= geo->no_pairs) {
    			merge(head, geo, level,
    					child, fill,
    					right, no_right,
    					parent, i);
    			return;
    		}
    	}
    	/*
    	 * We could also try to steal one entry from the left or right
    	 * neighbor.  By not doing so we changed the invariant from
    	 * "all nodes are at least half full" to "no two neighboring
    	 * nodes can be merged".  Which means that the average fill of
    	 * all nodes is still half or better.
    	 */
    }
    
    static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
    		unsigned long *key, int level)
    {
    	unsigned long *node;
    	int i, pos, fill;
    	void *ret;
    
    	if (level > head->height) {
    		/* we recursed all the way up */
    		head->height = 0;
    		head->node = NULL;
    		return NULL;
    	}
    
    	node = find_level(head, geo, key, level);
    	pos = getpos(geo, node, key);
    	fill = getfill(geo, node, pos);
    	if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
    		return NULL;
    	ret = bval(geo, node, pos);
    
    	/* remove and shift */
    	for (i = pos; i < fill - 1; i++) {
    		setkey(geo, node, i, bkey(geo, node, i + 1));
    		setval(geo, node, i, bval(geo, node, i + 1));
    	}
    	clearpair(geo, node, fill - 1);
    
    	if (fill - 1 < geo->no_pairs / 2) {
    		if (level < head->height)
    			rebalance(head, geo, key, level, node, fill - 1);
    		else if (fill - 1 == 1)
    			btree_shrink(head, geo);
    	}
    
    	return ret;
    }
    
    void *btree_remove(struct btree_head *head, struct btree_geo *geo,
    		unsigned long *key)
    {
    	if (head->height == 0)
    		return NULL;
    
    	return btree_remove_level(head, geo, key, 1);
    }
    EXPORT_SYMBOL_GPL(btree_remove);
    
    int btree_merge(struct btree_head *target, struct btree_head *victim,
    		struct btree_geo *geo, gfp_t gfp)
    {
    	unsigned long key[geo->keylen];
    	unsigned long dup[geo->keylen];
    	void *val;
    	int err;
    
    	BUG_ON(target == victim);
    
    	if (!(target->node)) {
    		/* target is empty, just copy fields over */
    		target->node = victim->node;
    		target->height = victim->height;
    		__btree_init(victim);
    		return 0;
    	}
    
    	/* TODO: This needs some optimizations.  Currently we do three tree
    	 * walks to remove a single object from the victim.
    	 */
    	for (;;) {
    		if (!btree_last(victim, geo, key))
    			break;
    		val = btree_lookup(victim, geo, key);
    		err = btree_insert(target, geo, key, val, gfp);
    		if (err)
    			return err;
    		/* We must make a copy of the key, as the original will get
    		 * mangled inside btree_remove. */
    		longcpy(dup, key, geo->keylen);
    		btree_remove(victim, geo, dup);
    	}
    	return 0;
    }
    EXPORT_SYMBOL_GPL(btree_merge);
    
    static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
    			       unsigned long *node, unsigned long opaque,
    			       void (*func)(void *elem, unsigned long opaque,
    					    unsigned long *key, size_t index,
    					    void *func2),
    			       void *func2, int reap, int height, size_t count)
    {
    	int i;
    	unsigned long *child;
    
    	for (i = 0; i < geo->no_pairs; i++) {
    		child = bval(geo, node, i);
    		if (!child)
    			break;
    		if (height > 1)
    			count = __btree_for_each(head, geo, child, opaque,
    					func, func2, reap, height - 1, count);
    		else
    			func(child, opaque, bkey(geo, node, i), count++,
    					func2);
    	}
    	if (reap)
    		mempool_free(node, head->mempool);
    	return count;
    }
    
    static void empty(void *elem, unsigned long opaque, unsigned long *key,
    		  size_t index, void *func2)
    {
    }
    
    void visitorl(void *elem, unsigned long opaque, unsigned long *key,
    	      size_t index, void *__func)
    {
    	visitorl_t func = __func;
    
    	func(elem, opaque, *key, index);
    }
    EXPORT_SYMBOL_GPL(visitorl);
    
    void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
    	       size_t index, void *__func)
    {
    	visitor32_t func = __func;
    	u32 *key = (void *)__key;
    
    	func(elem, opaque, *key, index);
    }
    EXPORT_SYMBOL_GPL(visitor32);
    
    void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
    	       size_t index, void *__func)
    {
    	visitor64_t func = __func;
    	u64 *key = (void *)__key;
    
    	func(elem, opaque, *key, index);
    }
    EXPORT_SYMBOL_GPL(visitor64);
    
    void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
    		size_t index, void *__func)
    {
    	visitor128_t func = __func;
    	u64 *key = (void *)__key;
    
    	func(elem, opaque, key[0], key[1], index);
    }
    EXPORT_SYMBOL_GPL(visitor128);
    
    size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
    		     unsigned long opaque,
    		     void (*func)(void *elem, unsigned long opaque,
    		     		  unsigned long *key,
    		     		  size_t index, void *func2),
    		     void *func2)
    {
    	size_t count = 0;
    
    	if (!func2)
    		func = empty;
    	if (head->node)
    		count = __btree_for_each(head, geo, head->node, opaque, func,
    				func2, 0, head->height, 0);
    	return count;
    }
    EXPORT_SYMBOL_GPL(btree_visitor);
    
    size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
    			  unsigned long opaque,
    			  void (*func)(void *elem, unsigned long opaque,
    				       unsigned long *key,
    				       size_t index, void *func2),
    			  void *func2)
    {
    	size_t count = 0;
    
    	if (!func2)
    		func = empty;
    	if (head->node)
    		count = __btree_for_each(head, geo, head->node, opaque, func,
    				func2, 1, head->height, 0);
    	__btree_init(head);
    	return count;
    }
    EXPORT_SYMBOL_GPL(btree_grim_visitor);
    
    static int __init btree_module_init(void)
    {
    	btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
    			SLAB_HWCACHE_ALIGN, NULL);
    	return 0;
    }
    
    static void __exit btree_module_exit(void)
    {
    	kmem_cache_destroy(btree_cachep);
    }
    
    /* If core code starts using btree, initialization should happen even earlier */
    module_init(btree_module_init);
    module_exit(btree_module_exit);
    
    MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
    MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
    MODULE_LICENSE("GPL");