Newer
Older
vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
}
r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
kvm_queue_exception(vcpu, DB_VECTOR);
else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
kvm_queue_exception(vcpu, BP_VECTOR);
vcpu_put(vcpu);
return r;
}
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
/*
* fxsave fpu state. Taken from x86_64/processor.h. To be killed when
* we have asm/x86/processor.h
*/
struct fxsave {
u16 cwd;
u16 swd;
u16 twd;
u16 fop;
u64 rip;
u64 rdp;
u32 mxcsr;
u32 mxcsr_mask;
u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
#else
u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};
/*
* Translate a guest virtual address to a guest physical address.
*/
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
gpa_t gpa;
vcpu_load(vcpu);
down_read(&vcpu->kvm->slots_lock);
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
up_read(&vcpu->kvm->slots_lock);
tr->physical_address = gpa;
tr->valid = gpa != UNMAPPED_GVA;
tr->writeable = 1;
tr->usermode = 0;
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
vcpu_load(vcpu);
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
fpu->ftwx = fxsave->twd;
fpu->last_opcode = fxsave->fop;
fpu->last_ip = fxsave->rip;
fpu->last_dp = fxsave->rdp;
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
vcpu_load(vcpu);
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fxsave->swd = fpu->fsw;
fxsave->twd = fpu->ftwx;
fxsave->fop = fpu->last_opcode;
fxsave->rip = fpu->last_ip;
fxsave->rdp = fpu->last_dp;
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
void fx_init(struct kvm_vcpu *vcpu)
{
unsigned after_mxcsr_mask;
/*
* Touch the fpu the first time in non atomic context as if
* this is the first fpu instruction the exception handler
* will fire before the instruction returns and it'll have to
* allocate ram with GFP_KERNEL.
*/
if (!used_math())
kvm_fx_save(&vcpu->arch.host_fx_image);
/* Initialize guest FPU by resetting ours and saving into guest's */
preempt_disable();
kvm_fx_save(&vcpu->arch.host_fx_image);
kvm_fx_finit();
kvm_fx_save(&vcpu->arch.guest_fx_image);
kvm_fx_restore(&vcpu->arch.host_fx_image);
preempt_enable();
vcpu->arch.cr0 |= X86_CR0_ET;
after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 1;
kvm_fx_save(&vcpu->arch.host_fx_image);
kvm_fx_restore(&vcpu->arch.guest_fx_image);
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 0;
kvm_fx_save(&vcpu->arch.guest_fx_image);
kvm_fx_restore(&vcpu->arch.host_fx_image);
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->vcpu_free(vcpu);
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
unsigned int id)
{
return kvm_x86_ops->vcpu_create(kvm, id);
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int r;
/* We do fxsave: this must be aligned. */
BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
vcpu_load(vcpu);
r = kvm_arch_vcpu_reset(vcpu);
if (r == 0)
r = kvm_mmu_setup(vcpu);
vcpu_put(vcpu);
if (r < 0)
goto free_vcpu;
return 0;
free_vcpu:
kvm_x86_ops->vcpu_free(vcpu);
return r;
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
kvm_x86_ops->vcpu_free(vcpu);
}
int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
vcpu->arch.nmi_pending = false;
vcpu->arch.nmi_injected = false;
vcpu->arch.switch_db_regs = 0;
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
vcpu->arch.dr6 = DR6_FIXED_1;
vcpu->arch.dr7 = DR7_FIXED_1;
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
return kvm_x86_ops->vcpu_reset(vcpu);
}
void kvm_arch_hardware_enable(void *garbage)
{
kvm_x86_ops->hardware_enable(garbage);
}
void kvm_arch_hardware_disable(void *garbage)
{
kvm_x86_ops->hardware_disable(garbage);
}
int kvm_arch_hardware_setup(void)
{
return kvm_x86_ops->hardware_setup();
}
void kvm_arch_hardware_unsetup(void)
{
kvm_x86_ops->hardware_unsetup();
}
void kvm_arch_check_processor_compat(void *rtn)
{
kvm_x86_ops->check_processor_compatibility(rtn);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
struct page *page;
struct kvm *kvm;
int r;
BUG_ON(vcpu->kvm == NULL);
kvm = vcpu->kvm;
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->arch.pio_data = page_address(page);
r = kvm_mmu_create(vcpu);
if (r < 0)
goto fail_free_pio_data;
if (irqchip_in_kernel(kvm)) {
r = kvm_create_lapic(vcpu);
if (r < 0)
goto fail_mmu_destroy;
}
return 0;
fail_mmu_destroy:
kvm_mmu_destroy(vcpu);
fail_free_pio_data:
free_page((unsigned long)vcpu->arch.pio_data);
fail:
return r;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kvm_free_lapic(vcpu);
kvm_mmu_destroy(vcpu);
free_page((unsigned long)vcpu->arch.pio_data);
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
rdtscll(kvm->arch.vm_init_tsc);
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
return kvm;
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
/*
* Unpin any mmu pages first.
*/
for (i = 0; i < KVM_MAX_VCPUS; ++i)
if (kvm->vcpus[i])
kvm_unload_vcpu_mmu(kvm->vcpus[i]);
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (kvm->vcpus[i]) {
kvm_arch_vcpu_free(kvm->vcpus[i]);
kvm->vcpus[i] = NULL;
}
}
}
void kvm_arch_sync_events(struct kvm *kvm)
{
kvm_free_all_assigned_devices(kvm);
void kvm_arch_destroy_vm(struct kvm *kvm)
{
kvm_iommu_unmap_guest(kvm);
kfree(kvm->arch.vpic);
kfree(kvm->arch.vioapic);
kvm_free_vcpus(kvm);
kvm_free_physmem(kvm);
if (kvm->arch.apic_access_page)
put_page(kvm->arch.apic_access_page);
if (kvm->arch.ept_identity_pagetable)
put_page(kvm->arch.ept_identity_pagetable);
kfree(kvm);
}
int kvm_arch_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc)
{
int npages = mem->memory_size >> PAGE_SHIFT;
struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
/*To keep backward compatibility with older userspace,
*x86 needs to hanlde !user_alloc case.
*/
if (!user_alloc) {
if (npages && !old.rmap) {
unsigned long userspace_addr;
down_write(¤t->mm->mmap_sem);
userspace_addr = do_mmap(NULL, 0,
npages * PAGE_SIZE,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
up_write(¤t->mm->mmap_sem);
if (IS_ERR((void *)userspace_addr))
return PTR_ERR((void *)userspace_addr);
/* set userspace_addr atomically for kvm_hva_to_rmapp */
spin_lock(&kvm->mmu_lock);
memslot->userspace_addr = userspace_addr;
spin_unlock(&kvm->mmu_lock);
} else {
if (!old.user_alloc && old.rmap) {
int ret;
down_write(¤t->mm->mmap_sem);
ret = do_munmap(current->mm, old.userspace_addr,
old.npages * PAGE_SIZE);
up_write(¤t->mm->mmap_sem);
if (ret < 0)
printk(KERN_WARNING
"kvm_vm_ioctl_set_memory_region: "
"failed to munmap memory\n");
}
}
}
if (!kvm->arch.n_requested_mmu_pages) {
unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
}
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
kvm_flush_remote_tlbs(kvm);
return 0;
}
void kvm_arch_flush_shadow(struct kvm *kvm)
{
kvm_mmu_zap_all(kvm);
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
|| vcpu->arch.nmi_pending;
static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
int ipi_pcpu = vcpu->cpu;
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
++vcpu->stat.halt_wakeup;
}
/*
* We may be called synchronously with irqs disabled in guest mode,
* So need not to call smp_call_function_single() in that case.
*/
if (vcpu->guest_mode && vcpu->cpu != cpu)
smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);