Skip to content
Snippets Groups Projects
sched_fair.c 26.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
     *
     *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
     *
     *  Interactivity improvements by Mike Galbraith
     *  (C) 2007 Mike Galbraith <efault@gmx.de>
     *
     *  Various enhancements by Dmitry Adamushko.
     *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
     *
     *  Group scheduling enhancements by Srivatsa Vaddagiri
     *  Copyright IBM Corporation, 2007
     *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
     *
     *  Scaled math optimizations by Thomas Gleixner
     *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
     */
    
    /*
     * Preemption granularity:
     * (default: 2 msec, units: nanoseconds)
     *
     * NOTE: this granularity value is not the same as the concept of
     * 'timeslice length' - timeslices in CFS will typically be somewhat
     * larger than this value. (to see the precise effective timeslice
     * length of your workload, run vmstat and monitor the context-switches
     * field)
     *
     * On SMP systems the value of this is multiplied by the log2 of the
     * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
     * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
     */
    unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
    
    /*
     * SCHED_BATCH wake-up granularity.
     * (default: 10 msec, units: nanoseconds)
     *
     * This option delays the preemption effects of decoupled workloads
     * and reduces their over-scheduling. Synchronous workloads will still
     * have immediate wakeup/sleep latencies.
     */
    unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
    							10000000000ULL/HZ;
    
    /*
     * SCHED_OTHER wake-up granularity.
     * (default: 1 msec, units: nanoseconds)
     *
     * This option delays the preemption effects of decoupled workloads
     * and reduces their over-scheduling. Synchronous workloads will still
     * have immediate wakeup/sleep latencies.
     */
    unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
    
    unsigned int sysctl_sched_stat_granularity __read_mostly;
    
    /*
     * Initialized in sched_init_granularity():
     */
    unsigned int sysctl_sched_runtime_limit __read_mostly;
    
    /*
     * Debugging: various feature bits
     */
    enum {
    	SCHED_FEAT_FAIR_SLEEPERS	= 1,
    	SCHED_FEAT_SLEEPER_AVG		= 2,
    	SCHED_FEAT_SLEEPER_LOAD_AVG	= 4,
    	SCHED_FEAT_PRECISE_CPU_LOAD	= 8,
    	SCHED_FEAT_START_DEBIT		= 16,
    	SCHED_FEAT_SKIP_INITIAL		= 32,
    };
    
    unsigned int sysctl_sched_features __read_mostly =
    		SCHED_FEAT_FAIR_SLEEPERS	*1 |
    		SCHED_FEAT_SLEEPER_AVG		*1 |
    		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
    		SCHED_FEAT_PRECISE_CPU_LOAD	*1 |
    		SCHED_FEAT_START_DEBIT		*1 |
    		SCHED_FEAT_SKIP_INITIAL		*0;
    
    extern struct sched_class fair_sched_class;
    
    /**************************************************************
     * CFS operations on generic schedulable entities:
     */
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    
    /* cpu runqueue to which this cfs_rq is attached */
    static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
    {
    	return cfs_rq->rq;
    }
    
    /* currently running entity (if any) on this cfs_rq */
    static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
    {
    	return cfs_rq->curr;
    }
    
    /* An entity is a task if it doesn't "own" a runqueue */
    #define entity_is_task(se)	(!se->my_q)
    
    static inline void
    set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    	cfs_rq->curr = se;
    }
    
    #else	/* CONFIG_FAIR_GROUP_SCHED */
    
    static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
    {
    	return container_of(cfs_rq, struct rq, cfs);
    }
    
    static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
    {
    	struct rq *rq = rq_of(cfs_rq);
    
    	if (unlikely(rq->curr->sched_class != &fair_sched_class))
    		return NULL;
    
    	return &rq->curr->se;
    }
    
    #define entity_is_task(se)	1
    
    static inline void
    set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    
    #endif	/* CONFIG_FAIR_GROUP_SCHED */
    
    static inline struct task_struct *task_of(struct sched_entity *se)
    {
    	return container_of(se, struct task_struct, se);
    }
    
    
    /**************************************************************
     * Scheduling class tree data structure manipulation methods:
     */
    
    /*
     * Enqueue an entity into the rb-tree:
     */
    static inline void
    __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
    	struct rb_node *parent = NULL;
    	struct sched_entity *entry;
    	s64 key = se->fair_key;
    	int leftmost = 1;
    
    	/*
    	 * Find the right place in the rbtree:
    	 */
    	while (*link) {
    		parent = *link;
    		entry = rb_entry(parent, struct sched_entity, run_node);
    		/*
    		 * We dont care about collisions. Nodes with
    		 * the same key stay together.
    		 */
    		if (key - entry->fair_key < 0) {
    			link = &parent->rb_left;
    		} else {
    			link = &parent->rb_right;
    			leftmost = 0;
    		}
    	}
    
    	/*
    	 * Maintain a cache of leftmost tree entries (it is frequently
    	 * used):
    	 */
    	if (leftmost)
    		cfs_rq->rb_leftmost = &se->run_node;
    
    	rb_link_node(&se->run_node, parent, link);
    	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
    	update_load_add(&cfs_rq->load, se->load.weight);
    	cfs_rq->nr_running++;
    	se->on_rq = 1;
    }
    
    static inline void
    __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    	if (cfs_rq->rb_leftmost == &se->run_node)
    		cfs_rq->rb_leftmost = rb_next(&se->run_node);
    	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
    	update_load_sub(&cfs_rq->load, se->load.weight);
    	cfs_rq->nr_running--;
    	se->on_rq = 0;
    }
    
    static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
    {
    	return cfs_rq->rb_leftmost;
    }
    
    static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
    {
    	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
    }
    
    /**************************************************************
     * Scheduling class statistics methods:
     */
    
    /*
     * We rescale the rescheduling granularity of tasks according to their
     * nice level, but only linearly, not exponentially:
     */
    static long
    niced_granularity(struct sched_entity *curr, unsigned long granularity)
    {
    	u64 tmp;
    
    
    	if (likely(curr->load.weight == NICE_0_LOAD))
    		return granularity;
    
    	 * Positive nice levels get the same granularity as nice-0:
    
    	if (likely(curr->load.weight < NICE_0_LOAD)) {
    		tmp = curr->load.weight * (u64)granularity;
    		return (long) (tmp >> NICE_0_SHIFT);
    	}
    
    	 * Negative nice level tasks get linearly finer
    
    	 * granularity:
    	 */
    
    	tmp = curr->load.inv_weight * (u64)granularity;
    
    
    	/*
    	 * It will always fit into 'long':
    	 */
    
    	return (long) (tmp >> WMULT_SHIFT);
    
    }
    
    static inline void
    limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    	long limit = sysctl_sched_runtime_limit;
    
    	/*
    	 * Niced tasks have the same history dynamic range as
    	 * non-niced tasks:
    	 */
    	if (unlikely(se->wait_runtime > limit)) {
    		se->wait_runtime = limit;
    		schedstat_inc(se, wait_runtime_overruns);
    		schedstat_inc(cfs_rq, wait_runtime_overruns);
    	}
    	if (unlikely(se->wait_runtime < -limit)) {
    		se->wait_runtime = -limit;
    		schedstat_inc(se, wait_runtime_underruns);
    		schedstat_inc(cfs_rq, wait_runtime_underruns);
    	}
    }
    
    static inline void
    __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
    {
    	se->wait_runtime += delta;
    	schedstat_add(se, sum_wait_runtime, delta);
    	limit_wait_runtime(cfs_rq, se);
    }
    
    static void
    add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
    {
    	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
    	__add_wait_runtime(cfs_rq, se, delta);
    	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
    }
    
    /*
     * Update the current task's runtime statistics. Skip current tasks that
     * are not in our scheduling class.
     */
    static inline void
    
    __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	unsigned long delta, delta_exec, delta_fair, delta_mine;
    
    	struct load_weight *lw = &cfs_rq->load;
    	unsigned long load = lw->weight;
    
    	delta_exec = curr->delta_exec;
    
    	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
    
    
    	curr->sum_exec_runtime += delta_exec;
    	cfs_rq->exec_clock += delta_exec;
    
    
    	if (unlikely(!load))
    		return;
    
    
    	delta_fair = calc_delta_fair(delta_exec, lw);
    	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
    
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
    
    		delta = calc_delta_mine(cfs_rq->sleeper_bonus,
    					curr->load.weight, lw);
    		if (unlikely(delta > cfs_rq->sleeper_bonus))
    			delta = cfs_rq->sleeper_bonus;
    
    		cfs_rq->sleeper_bonus -= delta;
    		delta_mine -= delta;
    	}
    
    	cfs_rq->fair_clock += delta_fair;
    	/*
    	 * We executed delta_exec amount of time on the CPU,
    	 * but we were only entitled to delta_mine amount of
    	 * time during that period (if nr_running == 1 then
    	 * the two values are equal)
    	 * [Note: delta_mine - delta_exec is negative]:
    	 */
    	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
    }
    
    
    static void update_curr(struct cfs_rq *cfs_rq)
    
    {
    	struct sched_entity *curr = cfs_rq_curr(cfs_rq);
    	unsigned long delta_exec;
    
    	if (unlikely(!curr))
    		return;
    
    	/*
    	 * Get the amount of time the current task was running
    	 * since the last time we changed load (this cannot
    	 * overflow on 32 bits):
    	 */
    
    	delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
    
    
    	curr->delta_exec += delta_exec;
    
    	if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
    
    		__update_curr(cfs_rq, curr);
    
    		curr->delta_exec = 0;
    	}
    
    	curr->exec_start = rq_of(cfs_rq)->clock;
    
    }
    
    static inline void
    
    update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	se->wait_start_fair = cfs_rq->fair_clock;
    
    	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
    
    }
    
    /*
     * We calculate fair deltas here, so protect against the random effects
     * of a multiplication overflow by capping it to the runtime limit:
     */
    #if BITS_PER_LONG == 32
    static inline unsigned long
    calc_weighted(unsigned long delta, unsigned long weight, int shift)
    {
    	u64 tmp = (u64)delta * weight >> shift;
    
    	if (unlikely(tmp > sysctl_sched_runtime_limit*2))
    		return sysctl_sched_runtime_limit*2;
    	return tmp;
    }
    #else
    static inline unsigned long
    calc_weighted(unsigned long delta, unsigned long weight, int shift)
    {
    	return delta * weight >> shift;
    }
    #endif
    
    /*
     * Task is being enqueued - update stats:
     */
    
    static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	s64 key;
    
    	/*
    	 * Are we enqueueing a waiting task? (for current tasks
    	 * a dequeue/enqueue event is a NOP)
    	 */
    	if (se != cfs_rq_curr(cfs_rq))
    
    		update_stats_wait_start(cfs_rq, se);
    
    	/*
    	 * Update the key:
    	 */
    	key = cfs_rq->fair_clock;
    
    	/*
    	 * Optimize the common nice 0 case:
    	 */
    	if (likely(se->load.weight == NICE_0_LOAD)) {
    		key -= se->wait_runtime;
    	} else {
    		u64 tmp;
    
    		if (se->wait_runtime < 0) {
    			tmp = -se->wait_runtime;
    			key += (tmp * se->load.inv_weight) >>
    					(WMULT_SHIFT - NICE_0_SHIFT);
    		} else {
    			tmp = se->wait_runtime;
    
    			key -= (tmp * se->load.inv_weight) >>
    					(WMULT_SHIFT - NICE_0_SHIFT);
    
    		}
    	}
    
    	se->fair_key = key;
    }
    
    /*
     * Note: must be called with a freshly updated rq->fair_clock.
     */
    static inline void
    
    __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	unsigned long delta_fair = se->delta_fair_run;
    
    
    	schedstat_set(se->wait_max, max(se->wait_max,
    			rq_of(cfs_rq)->clock - se->wait_start));
    
    
    	if (unlikely(se->load.weight != NICE_0_LOAD))
    		delta_fair = calc_weighted(delta_fair, se->load.weight,
    							NICE_0_SHIFT);
    
    	add_wait_runtime(cfs_rq, se, delta_fair);
    }
    
    static void
    
    update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	unsigned long delta_fair;
    
    	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
    			(u64)(cfs_rq->fair_clock - se->wait_start_fair));
    
    	se->delta_fair_run += delta_fair;
    	if (unlikely(abs(se->delta_fair_run) >=
    				sysctl_sched_stat_granularity)) {
    
    		__update_stats_wait_end(cfs_rq, se);
    
    		se->delta_fair_run = 0;
    	}
    
    	se->wait_start_fair = 0;
    
    	schedstat_set(se->wait_start, 0);
    
    }
    
    static inline void
    
    update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    	/*
    	 * Mark the end of the wait period if dequeueing a
    	 * waiting task:
    	 */
    	if (se != cfs_rq_curr(cfs_rq))
    
    		update_stats_wait_end(cfs_rq, se);
    
    }
    
    /*
     * We are picking a new current task - update its stats:
     */
    static inline void
    
    update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	/*
    	 * We are starting a new run period:
    	 */
    
    	se->exec_start = rq_of(cfs_rq)->clock;
    
    }
    
    /*
     * We are descheduling a task - update its stats:
     */
    static inline void
    
    update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	se->exec_start = 0;
    }
    
    /**************************************************
     * Scheduling class queueing methods:
     */
    
    
    static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	unsigned long load = cfs_rq->load.weight, delta_fair;
    	long prev_runtime;
    
    	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
    		load = rq_of(cfs_rq)->cpu_load[2];
    
    	delta_fair = se->delta_fair_sleep;
    
    	/*
    	 * Fix up delta_fair with the effect of us running
    	 * during the whole sleep period:
    	 */
    	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
    		delta_fair = div64_likely32((u64)delta_fair * load,
    						load + se->load.weight);
    
    	if (unlikely(se->load.weight != NICE_0_LOAD))
    		delta_fair = calc_weighted(delta_fair, se->load.weight,
    							NICE_0_SHIFT);
    
    	prev_runtime = se->wait_runtime;
    	__add_wait_runtime(cfs_rq, se, delta_fair);
    	delta_fair = se->wait_runtime - prev_runtime;
    
    	/*
    	 * Track the amount of bonus we've given to sleepers:
    	 */
    	cfs_rq->sleeper_bonus += delta_fair;
    
    	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
    }
    
    
    static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	struct task_struct *tsk = task_of(se);
    	unsigned long delta_fair;
    
    	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
    			 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
    		return;
    
    	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
    		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));
    
    	se->delta_fair_sleep += delta_fair;
    	if (unlikely(abs(se->delta_fair_sleep) >=
    				sysctl_sched_stat_granularity)) {
    
    		__enqueue_sleeper(cfs_rq, se);
    
    		se->delta_fair_sleep = 0;
    	}
    
    	se->sleep_start_fair = 0;
    
    #ifdef CONFIG_SCHEDSTATS
    	if (se->sleep_start) {
    
    		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
    
    
    		if ((s64)delta < 0)
    			delta = 0;
    
    		if (unlikely(delta > se->sleep_max))
    			se->sleep_max = delta;
    
    		se->sleep_start = 0;
    		se->sum_sleep_runtime += delta;
    	}
    	if (se->block_start) {
    
    		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
    
    
    		if ((s64)delta < 0)
    			delta = 0;
    
    		if (unlikely(delta > se->block_max))
    			se->block_max = delta;
    
    		se->block_start = 0;
    		se->sum_sleep_runtime += delta;
    	}
    #endif
    }
    
    static void
    
    enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
    
    {
    	/*
    	 * Update the fair clock.
    	 */
    
    		enqueue_sleeper(cfs_rq, se);
    
    	update_stats_enqueue(cfs_rq, se);
    
    	__enqueue_entity(cfs_rq, se);
    }
    
    static void
    
    dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
    
    	update_stats_dequeue(cfs_rq, se);
    
    	if (sleep) {
    		se->sleep_start_fair = cfs_rq->fair_clock;
    #ifdef CONFIG_SCHEDSTATS
    		if (entity_is_task(se)) {
    			struct task_struct *tsk = task_of(se);
    
    			if (tsk->state & TASK_INTERRUPTIBLE)
    
    				se->sleep_start = rq_of(cfs_rq)->clock;
    
    			if (tsk->state & TASK_UNINTERRUPTIBLE)
    
    				se->block_start = rq_of(cfs_rq)->clock;
    
    		}
    		cfs_rq->wait_runtime -= se->wait_runtime;
    #endif
    	}
    	__dequeue_entity(cfs_rq, se);
    }
    
    /*
     * Preempt the current task with a newly woken task if needed:
     */
    static void
    __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
    			  struct sched_entity *curr, unsigned long granularity)
    {
    	s64 __delta = curr->fair_key - se->fair_key;
    
    	/*
    	 * Take scheduling granularity into account - do not
    	 * preempt the current task unless the best task has
    	 * a larger than sched_granularity fairness advantage:
    	 */
    	if (__delta > niced_granularity(curr, granularity))
    		resched_task(rq_of(cfs_rq)->curr);
    }
    
    static inline void
    
    set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	/*
    	 * Any task has to be enqueued before it get to execute on
    	 * a CPU. So account for the time it spent waiting on the
    	 * runqueue. (note, here we rely on pick_next_task() having
    	 * done a put_prev_task_fair() shortly before this, which
    	 * updated rq->fair_clock - used by update_stats_wait_end())
    	 */
    
    	update_stats_wait_end(cfs_rq, se);
    
    	update_stats_curr_start(cfs_rq, se);
    
    	set_cfs_rq_curr(cfs_rq, se);
    }
    
    
    static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
    
    {
    	struct sched_entity *se = __pick_next_entity(cfs_rq);
    
    
    	set_next_entity(cfs_rq, se);
    
    static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
    
    {
    	/*
    	 * If still on the runqueue then deactivate_task()
    	 * was not called and update_curr() has to be done:
    	 */
    	if (prev->on_rq)
    
    	update_stats_curr_end(cfs_rq, prev);
    
    
    	if (prev->on_rq)
    
    		update_stats_wait_start(cfs_rq, prev);
    
    	set_cfs_rq_curr(cfs_rq, NULL);
    }
    
    static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    {
    	struct sched_entity *next;
    
    	/*
    	 * Dequeue and enqueue the task to update its
    	 * position within the tree:
    	 */
    
    	dequeue_entity(cfs_rq, curr, 0);
    
    	enqueue_entity(cfs_rq, curr, 0);
    
    
    	/*
    	 * Reschedule if another task tops the current one.
    	 */
    	next = __pick_next_entity(cfs_rq);
    	if (next == curr)
    		return;
    
    	__check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
    }
    
    /**************************************************
     * CFS operations on tasks:
     */
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    
    /* Walk up scheduling entities hierarchy */
    #define for_each_sched_entity(se) \
    		for (; se; se = se->parent)
    
    static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
    {
    	return p->se.cfs_rq;
    }
    
    /* runqueue on which this entity is (to be) queued */
    static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
    {
    	return se->cfs_rq;
    }
    
    /* runqueue "owned" by this group */
    static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
    {
    	return grp->my_q;
    }
    
    /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
     * another cpu ('this_cpu')
     */
    static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
    {
    	/* A later patch will take group into account */
    	return &cpu_rq(this_cpu)->cfs;
    }
    
    /* Iterate thr' all leaf cfs_rq's on a runqueue */
    #define for_each_leaf_cfs_rq(rq, cfs_rq) \
    	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
    
    /* Do the two (enqueued) tasks belong to the same group ? */
    static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
    {
    	if (curr->se.cfs_rq == p->se.cfs_rq)
    		return 1;
    
    	return 0;
    }
    
    #else	/* CONFIG_FAIR_GROUP_SCHED */
    
    #define for_each_sched_entity(se) \
    		for (; se; se = NULL)
    
    static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
    {
    	return &task_rq(p)->cfs;
    }
    
    static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
    {
    	struct task_struct *p = task_of(se);
    	struct rq *rq = task_rq(p);
    
    	return &rq->cfs;
    }
    
    /* runqueue "owned" by this group */
    static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
    {
    	return NULL;
    }
    
    static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
    {
    	return &cpu_rq(this_cpu)->cfs;
    }
    
    #define for_each_leaf_cfs_rq(rq, cfs_rq) \
    		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
    
    static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
    {
    	return 1;
    }
    
    #endif	/* CONFIG_FAIR_GROUP_SCHED */
    
    /*
     * The enqueue_task method is called before nr_running is
     * increased. Here we update the fair scheduling stats and
     * then put the task into the rbtree:
     */
    
    static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
    
    {
    	struct cfs_rq *cfs_rq;
    	struct sched_entity *se = &p->se;
    
    	for_each_sched_entity(se) {
    		if (se->on_rq)
    			break;
    		cfs_rq = cfs_rq_of(se);
    
    		enqueue_entity(cfs_rq, se, wakeup);
    
    	}
    }
    
    /*
     * The dequeue_task method is called before nr_running is
     * decreased. We remove the task from the rbtree and
     * update the fair scheduling stats:
     */
    
    static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
    
    {
    	struct cfs_rq *cfs_rq;
    	struct sched_entity *se = &p->se;
    
    	for_each_sched_entity(se) {
    		cfs_rq = cfs_rq_of(se);
    
    		dequeue_entity(cfs_rq, se, sleep);
    
    		/* Don't dequeue parent if it has other entities besides us */
    		if (cfs_rq->load.weight)
    			break;
    	}
    }
    
    /*
     * sched_yield() support is very simple - we dequeue and enqueue
     */
    static void yield_task_fair(struct rq *rq, struct task_struct *p)
    {
    	struct cfs_rq *cfs_rq = task_cfs_rq(p);
    
    
    	__update_rq_clock(rq);
    
    	/*
    	 * Dequeue and enqueue the task to update its
    	 * position within the tree:
    	 */
    
    	dequeue_entity(cfs_rq, &p->se, 0);
    
    	enqueue_entity(cfs_rq, &p->se, 0);
    
    }
    
    /*
     * Preempt the current task with a newly woken task if needed:
     */
    static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
    {
    	struct task_struct *curr = rq->curr;
    	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    	unsigned long gran;
    
    	if (unlikely(rt_prio(p->prio))) {
    
    		update_rq_clock(rq);
    
    		resched_task(curr);
    		return;
    	}
    
    	gran = sysctl_sched_wakeup_granularity;
    	/*
    	 * Batch tasks prefer throughput over latency:
    	 */
    	if (unlikely(p->policy == SCHED_BATCH))
    		gran = sysctl_sched_batch_wakeup_granularity;
    
    	if (is_same_group(curr, p))
    		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
    }
    
    
    static struct task_struct *pick_next_task_fair(struct rq *rq)
    
    {
    	struct cfs_rq *cfs_rq = &rq->cfs;
    	struct sched_entity *se;
    
    	if (unlikely(!cfs_rq->nr_running))
    		return NULL;
    
    	do {
    
    		se = pick_next_entity(cfs_rq);
    
    		cfs_rq = group_cfs_rq(se);
    	} while (cfs_rq);
    
    	return task_of(se);
    }
    
    /*
     * Account for a descheduled task:
     */
    
    static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
    
    {
    	struct sched_entity *se = &prev->se;
    	struct cfs_rq *cfs_rq;
    
    	for_each_sched_entity(se) {
    		cfs_rq = cfs_rq_of(se);
    
    		put_prev_entity(cfs_rq, se);
    
    	}
    }
    
    /**************************************************
     * Fair scheduling class load-balancing methods:
     */
    
    /*
     * Load-balancing iterator. Note: while the runqueue stays locked
     * during the whole iteration, the current task might be
     * dequeued so the iterator has to be dequeue-safe. Here we
     * achieve that by always pre-iterating before returning
     * the current task:
     */
    static inline struct task_struct *
    __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
    {
    	struct task_struct *p;
    
    	if (!curr)
    		return NULL;
    
    	p = rb_entry(curr, struct task_struct, se.run_node);
    	cfs_rq->rb_load_balance_curr = rb_next(curr);
    
    	return p;
    }
    
    static struct task_struct *load_balance_start_fair(void *arg)
    {
    	struct cfs_rq *cfs_rq = arg;
    
    	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
    }
    
    static struct task_struct *load_balance_next_fair(void *arg)
    {
    	struct cfs_rq *cfs_rq = arg;
    
    	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
    }
    
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    
    static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
    {
    	struct sched_entity *curr;
    	struct task_struct *p;
    
    	if (!cfs_rq->nr_running)
    		return MAX_PRIO;
    
    	curr = __pick_next_entity(cfs_rq);
    	p = task_of(curr);
    
    	return p->prio;
    }
    
    static unsigned long
    
    load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
    
    		  unsigned long max_nr_move, unsigned long max_load_move,
    		  struct sched_domain *sd, enum cpu_idle_type idle,
    		  int *all_pinned, int *this_best_prio)
    
    {
    	struct cfs_rq *busy_cfs_rq;
    	unsigned long load_moved, total_nr_moved = 0, nr_moved;
    	long rem_load_move = max_load_move;
    	struct rq_iterator cfs_rq_iterator;
    
    	cfs_rq_iterator.start = load_balance_start_fair;
    	cfs_rq_iterator.next = load_balance_next_fair;
    
    	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    
    		struct cfs_rq *this_cfs_rq;
    
    		long imbalances;
    
    		unsigned long maxload;
    
    		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
    
    		imbalance = busy_cfs_rq->load.weight -
    						 this_cfs_rq->load.weight;
    		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
    		if (imbalance <= 0)
    			continue;
    
    		/* Don't pull more than imbalance/2 */
    		imbalance /= 2;
    		maxload = min(rem_load_move, imbalance);
    
    
    		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
    #else
    #define maxload rem_load_move
    #endif
    
    		/* pass busy_cfs_rq argument into
    		 * load_balance_[start|next]_fair iterators
    		 */
    		cfs_rq_iterator.arg = busy_cfs_rq;
    		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
    				max_nr_move, maxload, sd, idle, all_pinned,
    
    				&load_moved, this_best_prio, &cfs_rq_iterator);
    
    
    		total_nr_moved += nr_moved;
    		max_nr_move -= nr_moved;
    		rem_load_move -= load_moved;
    
    		if (max_nr_move <= 0 || rem_load_move <= 0)
    			break;
    	}
    
    
    	return max_load_move - rem_load_move;