Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
* data. If BH_New is set, we know that the block was newly
* allocated in the above loop.
*/
bh = head;
block_start = 0;
do {
block_end = block_start+blocksize;
if (block_end <= from)
goto next_bh;
if (block_start >= to)
break;
if (buffer_new(bh)) {
void *kaddr;
clear_buffer_new(bh);
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr+block_start, 0, bh->b_size);
kunmap_atomic(kaddr, KM_USER0);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
}
next_bh:
block_start = block_end;
bh = bh->b_this_page;
} while (bh != head);
return err;
}
static int __block_commit_write(struct inode *inode, struct page *page,
unsigned from, unsigned to)
{
unsigned block_start, block_end;
int partial = 0;
unsigned blocksize;
struct buffer_head *bh, *head;
blocksize = 1 << inode->i_blkbits;
for(bh = head = page_buffers(page), block_start = 0;
bh != head || !block_start;
block_start=block_end, bh = bh->b_this_page) {
block_end = block_start + blocksize;
if (block_end <= from || block_start >= to) {
if (!buffer_uptodate(bh))
partial = 1;
} else {
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
}
}
/*
* If this is a partial write which happened to make all buffers
* uptodate then we can optimize away a bogus readpage() for
* the next read(). Here we 'discover' whether the page went
* uptodate as a result of this (potentially partial) write.
*/
if (!partial)
SetPageUptodate(page);
return 0;
}
/*
* Generic "read page" function for block devices that have the normal
* get_block functionality. This is most of the block device filesystems.
* Reads the page asynchronously --- the unlock_buffer() and
* set/clear_buffer_uptodate() functions propagate buffer state into the
* page struct once IO has completed.
*/
int block_read_full_page(struct page *page, get_block_t *get_block)
{
struct inode *inode = page->mapping->host;
sector_t iblock, lblock;
struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
unsigned int blocksize;
int nr, i;
int fully_mapped = 1;
blocksize = 1 << inode->i_blkbits;
if (!page_has_buffers(page))
create_empty_buffers(page, blocksize, 0);
head = page_buffers(page);
iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
bh = head;
nr = 0;
i = 0;
do {
if (buffer_uptodate(bh))
continue;
if (!buffer_mapped(bh)) {
int err = 0;
err = get_block(inode, iblock, bh, 0);
if (err)
SetPageError(page);
}
if (!buffer_mapped(bh)) {
void *kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + i * blocksize, 0, blocksize);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
if (!err)
set_buffer_uptodate(bh);
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
continue;
}
/*
* get_block() might have updated the buffer
* synchronously
*/
if (buffer_uptodate(bh))
continue;
}
arr[nr++] = bh;
} while (i++, iblock++, (bh = bh->b_this_page) != head);
if (fully_mapped)
SetPageMappedToDisk(page);
if (!nr) {
/*
* All buffers are uptodate - we can set the page uptodate
* as well. But not if get_block() returned an error.
*/
if (!PageError(page))
SetPageUptodate(page);
unlock_page(page);
return 0;
}
/* Stage two: lock the buffers */
for (i = 0; i < nr; i++) {
bh = arr[i];
lock_buffer(bh);
mark_buffer_async_read(bh);
}
/*
* Stage 3: start the IO. Check for uptodateness
* inside the buffer lock in case another process reading
* the underlying blockdev brought it uptodate (the sct fix).
*/
for (i = 0; i < nr; i++) {
bh = arr[i];
if (buffer_uptodate(bh))
end_buffer_async_read(bh, 1);
else
submit_bh(READ, bh);
}
return 0;
}
/* utility function for filesystems that need to do work on expanding
* truncates. Uses prepare/commit_write to allow the filesystem to
* deal with the hole.
*/
int generic_cont_expand(struct inode *inode, loff_t size)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
unsigned long index, offset, limit;
int err;
err = -EFBIG;
limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
if (limit != RLIM_INFINITY && size > (loff_t)limit) {
send_sig(SIGXFSZ, current, 0);
goto out;
}
if (size > inode->i_sb->s_maxbytes)
goto out;
offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
/* ugh. in prepare/commit_write, if from==to==start of block, we
** skip the prepare. make sure we never send an offset for the start
** of a block
*/
if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
offset++;
}
index = size >> PAGE_CACHE_SHIFT;
err = -ENOMEM;
page = grab_cache_page(mapping, index);
if (!page)
goto out;
err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
if (!err) {
err = mapping->a_ops->commit_write(NULL, page, offset, offset);
}
unlock_page(page);
page_cache_release(page);
if (err > 0)
err = 0;
out:
return err;
}
/*
* For moronic filesystems that do not allow holes in file.
* We may have to extend the file.
*/
int cont_prepare_write(struct page *page, unsigned offset,
unsigned to, get_block_t *get_block, loff_t *bytes)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
struct page *new_page;
pgoff_t pgpos;
long status;
unsigned zerofrom;
unsigned blocksize = 1 << inode->i_blkbits;
void *kaddr;
while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
status = -ENOMEM;
new_page = grab_cache_page(mapping, pgpos);
if (!new_page)
goto out;
/* we might sleep */
if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
unlock_page(new_page);
page_cache_release(new_page);
continue;
}
zerofrom = *bytes & ~PAGE_CACHE_MASK;
if (zerofrom & (blocksize-1)) {
*bytes |= (blocksize-1);
(*bytes)++;
}
status = __block_prepare_write(inode, new_page, zerofrom,
PAGE_CACHE_SIZE, get_block);
if (status)
goto out_unmap;
kaddr = kmap_atomic(new_page, KM_USER0);
memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
flush_dcache_page(new_page);
kunmap_atomic(kaddr, KM_USER0);
generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
unlock_page(new_page);
page_cache_release(new_page);
}
if (page->index < pgpos) {
/* completely inside the area */
zerofrom = offset;
} else {
/* page covers the boundary, find the boundary offset */
zerofrom = *bytes & ~PAGE_CACHE_MASK;
/* if we will expand the thing last block will be filled */
if (to > zerofrom && (zerofrom & (blocksize-1))) {
*bytes |= (blocksize-1);
(*bytes)++;
}
/* starting below the boundary? Nothing to zero out */
if (offset <= zerofrom)
zerofrom = offset;
}
status = __block_prepare_write(inode, page, zerofrom, to, get_block);
if (status)
goto out1;
if (zerofrom < offset) {
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr+zerofrom, 0, offset-zerofrom);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
__block_commit_write(inode, page, zerofrom, offset);
}
return 0;
out1:
ClearPageUptodate(page);
return status;
out_unmap:
ClearPageUptodate(new_page);
unlock_page(new_page);
page_cache_release(new_page);
out:
return status;
}
int block_prepare_write(struct page *page, unsigned from, unsigned to,
get_block_t *get_block)
{
struct inode *inode = page->mapping->host;
int err = __block_prepare_write(inode, page, from, to, get_block);
if (err)
ClearPageUptodate(page);
return err;
}
int block_commit_write(struct page *page, unsigned from, unsigned to)
{
struct inode *inode = page->mapping->host;
__block_commit_write(inode,page,from,to);
return 0;
}
int generic_commit_write(struct file *file, struct page *page,
unsigned from, unsigned to)
{
struct inode *inode = page->mapping->host;
loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
__block_commit_write(inode,page,from,to);
/*
* No need to use i_size_read() here, the i_size
* cannot change under us because we hold i_sem.
*/
if (pos > inode->i_size) {
i_size_write(inode, pos);
mark_inode_dirty(inode);
}
return 0;
}
/*
* nobh_prepare_write()'s prereads are special: the buffer_heads are freed
* immediately, while under the page lock. So it needs a special end_io
* handler which does not touch the bh after unlocking it.
*
* Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
* a race there is benign: unlock_buffer() only use the bh's address for
* hashing after unlocking the buffer, so it doesn't actually touch the bh
* itself.
*/
static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
{
if (uptodate) {
set_buffer_uptodate(bh);
} else {
/* This happens, due to failed READA attempts. */
clear_buffer_uptodate(bh);
}
unlock_buffer(bh);
}
/*
* On entry, the page is fully not uptodate.
* On exit the page is fully uptodate in the areas outside (from,to)
*/
int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
get_block_t *get_block)
{
struct inode *inode = page->mapping->host;
const unsigned blkbits = inode->i_blkbits;
const unsigned blocksize = 1 << blkbits;
struct buffer_head map_bh;
struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
unsigned block_in_page;
unsigned block_start;
sector_t block_in_file;
char *kaddr;
int nr_reads = 0;
int i;
int ret = 0;
int is_mapped_to_disk = 1;
int dirtied_it = 0;
if (PageMappedToDisk(page))
return 0;
block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
map_bh.b_page = page;
/*
* We loop across all blocks in the page, whether or not they are
* part of the affected region. This is so we can discover if the
* page is fully mapped-to-disk.
*/
for (block_start = 0, block_in_page = 0;
block_start < PAGE_CACHE_SIZE;
block_in_page++, block_start += blocksize) {
unsigned block_end = block_start + blocksize;
int create;
map_bh.b_state = 0;
create = 1;
if (block_start >= to)
create = 0;
ret = get_block(inode, block_in_file + block_in_page,
&map_bh, create);
if (ret)
goto failed;
if (!buffer_mapped(&map_bh))
is_mapped_to_disk = 0;
if (buffer_new(&map_bh))
unmap_underlying_metadata(map_bh.b_bdev,
map_bh.b_blocknr);
if (PageUptodate(page))
continue;
if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
kaddr = kmap_atomic(page, KM_USER0);
if (block_start < from) {
memset(kaddr+block_start, 0, from-block_start);
dirtied_it = 1;
}
if (block_end > to) {
memset(kaddr + to, 0, block_end - to);
dirtied_it = 1;
}
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
continue;
}
if (buffer_uptodate(&map_bh))
continue; /* reiserfs does this */
if (block_start < from || block_end > to) {
struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
if (!bh) {
ret = -ENOMEM;
goto failed;
}
bh->b_state = map_bh.b_state;
atomic_set(&bh->b_count, 0);
bh->b_this_page = NULL;
bh->b_page = page;
bh->b_blocknr = map_bh.b_blocknr;
bh->b_size = blocksize;
bh->b_data = (char *)(long)block_start;
bh->b_bdev = map_bh.b_bdev;
bh->b_private = NULL;
read_bh[nr_reads++] = bh;
}
}
if (nr_reads) {
struct buffer_head *bh;
/*
* The page is locked, so these buffers are protected from
* any VM or truncate activity. Hence we don't need to care
* for the buffer_head refcounts.
*/
for (i = 0; i < nr_reads; i++) {
bh = read_bh[i];
lock_buffer(bh);
bh->b_end_io = end_buffer_read_nobh;
submit_bh(READ, bh);
}
for (i = 0; i < nr_reads; i++) {
bh = read_bh[i];
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
ret = -EIO;
free_buffer_head(bh);
read_bh[i] = NULL;
}
if (ret)
goto failed;
}
if (is_mapped_to_disk)
SetPageMappedToDisk(page);
SetPageUptodate(page);
/*
* Setting the page dirty here isn't necessary for the prepare_write
* function - commit_write will do that. But if/when this function is
* used within the pagefault handler to ensure that all mmapped pages
* have backing space in the filesystem, we will need to dirty the page
* if its contents were altered.
*/
if (dirtied_it)
set_page_dirty(page);
return 0;
failed:
for (i = 0; i < nr_reads; i++) {
if (read_bh[i])
free_buffer_head(read_bh[i]);
}
/*
* Error recovery is pretty slack. Clear the page and mark it dirty
* so we'll later zero out any blocks which _were_ allocated.
*/
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr, 0, PAGE_CACHE_SIZE);
kunmap_atomic(kaddr, KM_USER0);
SetPageUptodate(page);
set_page_dirty(page);
return ret;
}
EXPORT_SYMBOL(nobh_prepare_write);
int nobh_commit_write(struct file *file, struct page *page,
unsigned from, unsigned to)
{
struct inode *inode = page->mapping->host;
loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
set_page_dirty(page);
if (pos > inode->i_size) {
i_size_write(inode, pos);
mark_inode_dirty(inode);
}
return 0;
}
EXPORT_SYMBOL(nobh_commit_write);
/*
* nobh_writepage() - based on block_full_write_page() except
* that it tries to operate without attaching bufferheads to
* the page.
*/
int nobh_writepage(struct page *page, get_block_t *get_block,
struct writeback_control *wbc)
{
struct inode * const inode = page->mapping->host;
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
unsigned offset;
void *kaddr;
int ret;
/* Is the page fully inside i_size? */
if (page->index < end_index)
goto out;
/* Is the page fully outside i_size? (truncate in progress) */
offset = i_size & (PAGE_CACHE_SIZE-1);
if (page->index >= end_index+1 || !offset) {
/*
* The page may have dirty, unmapped buffers. For example,
* they may have been added in ext3_writepage(). Make them
* freeable here, so the page does not leak.
*/
#if 0
/* Not really sure about this - do we need this ? */
if (page->mapping->a_ops->invalidatepage)
page->mapping->a_ops->invalidatepage(page, offset);
#endif
unlock_page(page);
return 0; /* don't care */
}
/*
* The page straddles i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
out:
ret = mpage_writepage(page, get_block, wbc);
if (ret == -EAGAIN)
ret = __block_write_full_page(inode, page, get_block, wbc);
return ret;
}
EXPORT_SYMBOL(nobh_writepage);
/*
* This function assumes that ->prepare_write() uses nobh_prepare_write().
*/
int nobh_truncate_page(struct address_space *mapping, loff_t from)
{
struct inode *inode = mapping->host;
unsigned blocksize = 1 << inode->i_blkbits;
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
unsigned to;
struct page *page;
struct address_space_operations *a_ops = mapping->a_ops;
char *kaddr;
int ret = 0;
if ((offset & (blocksize - 1)) == 0)
goto out;
ret = -ENOMEM;
page = grab_cache_page(mapping, index);
if (!page)
goto out;
to = (offset + blocksize) & ~(blocksize - 1);
ret = a_ops->prepare_write(NULL, page, offset, to);
if (ret == 0) {
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
set_page_dirty(page);
}
unlock_page(page);
page_cache_release(page);
out:
return ret;
}
EXPORT_SYMBOL(nobh_truncate_page);
int block_truncate_page(struct address_space *mapping,
loff_t from, get_block_t *get_block)
{
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
unsigned blocksize;
pgoff_t iblock;
unsigned length, pos;
struct inode *inode = mapping->host;
struct page *page;
struct buffer_head *bh;
void *kaddr;
int err;
blocksize = 1 << inode->i_blkbits;
length = offset & (blocksize - 1);
/* Block boundary? Nothing to do */
if (!length)
return 0;
length = blocksize - length;
iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
page = grab_cache_page(mapping, index);
err = -ENOMEM;
if (!page)
goto out;
if (!page_has_buffers(page))
create_empty_buffers(page, blocksize, 0);
/* Find the buffer that contains "offset" */
bh = page_buffers(page);
pos = blocksize;
while (offset >= pos) {
bh = bh->b_this_page;
iblock++;
pos += blocksize;
}
err = 0;
if (!buffer_mapped(bh)) {
err = get_block(inode, iblock, bh, 0);
if (err)
goto unlock;
/* unmapped? It's a hole - nothing to do */
if (!buffer_mapped(bh))
goto unlock;
}
/* Ok, it's mapped. Make sure it's up-to-date */
if (PageUptodate(page))
set_buffer_uptodate(bh);
if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
err = -EIO;
ll_rw_block(READ, 1, &bh);
wait_on_buffer(bh);
/* Uhhuh. Read error. Complain and punt. */
if (!buffer_uptodate(bh))
goto unlock;
}
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + offset, 0, length);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
mark_buffer_dirty(bh);
err = 0;
unlock:
unlock_page(page);
page_cache_release(page);
out:
return err;
}
/*
* The generic ->writepage function for buffer-backed address_spaces
*/
int block_write_full_page(struct page *page, get_block_t *get_block,
struct writeback_control *wbc)
{
struct inode * const inode = page->mapping->host;
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
unsigned offset;
void *kaddr;
/* Is the page fully inside i_size? */
if (page->index < end_index)
return __block_write_full_page(inode, page, get_block, wbc);
/* Is the page fully outside i_size? (truncate in progress) */
offset = i_size & (PAGE_CACHE_SIZE-1);
if (page->index >= end_index+1 || !offset) {
/*
* The page may have dirty, unmapped buffers. For example,
* they may have been added in ext3_writepage(). Make them
* freeable here, so the page does not leak.
*/
do_invalidatepage(page, 0);
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
unlock_page(page);
return 0; /* don't care */
}
/*
* The page straddles i_size. It must be zeroed out on each and every
* writepage invokation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
return __block_write_full_page(inode, page, get_block, wbc);
}
sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
get_block_t *get_block)
{
struct buffer_head tmp;
struct inode *inode = mapping->host;
tmp.b_state = 0;
tmp.b_blocknr = 0;
get_block(inode, block, &tmp, 0);
return tmp.b_blocknr;
}
static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
{
struct buffer_head *bh = bio->bi_private;
if (bio->bi_size)
return 1;
if (err == -EOPNOTSUPP) {
set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
set_bit(BH_Eopnotsupp, &bh->b_state);
}
bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
bio_put(bio);
return 0;
}
int submit_bh(int rw, struct buffer_head * bh)
{
struct bio *bio;
int ret = 0;
BUG_ON(!buffer_locked(bh));
BUG_ON(!buffer_mapped(bh));
BUG_ON(!bh->b_end_io);
if (buffer_ordered(bh) && (rw == WRITE))
rw = WRITE_BARRIER;
/*
* Only clear out a write error when rewriting, should this
* include WRITE_SYNC as well?
*/
if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
clear_buffer_write_io_error(bh);
/*
* from here on down, it's all bio -- do the initial mapping,
* submit_bio -> generic_make_request may further map this bio around
*/
bio = bio_alloc(GFP_NOIO, 1);
bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
bio->bi_bdev = bh->b_bdev;
bio->bi_io_vec[0].bv_page = bh->b_page;
bio->bi_io_vec[0].bv_len = bh->b_size;
bio->bi_io_vec[0].bv_offset = bh_offset(bh);
bio->bi_vcnt = 1;
bio->bi_idx = 0;
bio->bi_size = bh->b_size;
bio->bi_end_io = end_bio_bh_io_sync;
bio->bi_private = bh;
bio_get(bio);
submit_bio(rw, bio);
if (bio_flagged(bio, BIO_EOPNOTSUPP))
ret = -EOPNOTSUPP;
bio_put(bio);
return ret;
}
/**
* ll_rw_block: low-level access to block devices (DEPRECATED)
* @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
* @nr: number of &struct buffer_heads in the array
* @bhs: array of pointers to &struct buffer_head
*
* ll_rw_block() takes an array of pointers to &struct buffer_heads, and
* requests an I/O operation on them, either a %READ or a %WRITE. The third
* %SWRITE is like %WRITE only we make sure that the *current* data in buffers
* are sent to disk. The fourth %READA option is described in the documentation
* for generic_make_request() which ll_rw_block() calls.
*
* This function drops any buffer that it cannot get a lock on (with the
* BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
* clean when doing a write request, and any buffer that appears to be
* up-to-date when doing read request. Further it marks as clean buffers that
* are processed for writing (the buffer cache won't assume that they are
* actually clean until the buffer gets unlocked).
*
* ll_rw_block sets b_end_io to simple completion handler that marks
* the buffer up-to-date (if approriate), unlocks the buffer and wakes
* any waiters.
*
* All of the buffers must be for the same device, and must also be a
* multiple of the current approved size for the device.
*/
void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
{
int i;
for (i = 0; i < nr; i++) {
struct buffer_head *bh = bhs[i];
if (rw == SWRITE)
lock_buffer(bh);
else if (test_set_buffer_locked(bh))
if (rw == WRITE || rw == SWRITE) {
bh->b_end_io = end_buffer_write_sync;
submit_bh(WRITE, bh);
continue;
}
} else {
if (!buffer_uptodate(bh)) {
bh->b_end_io = end_buffer_read_sync;
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
submit_bh(rw, bh);
continue;
}
}
unlock_buffer(bh);
put_bh(bh);
}
}
/*
* For a data-integrity writeout, we need to wait upon any in-progress I/O
* and then start new I/O and then wait upon it. The caller must have a ref on
* the buffer_head.
*/
int sync_dirty_buffer(struct buffer_head *bh)
{
int ret = 0;
WARN_ON(atomic_read(&bh->b_count) < 1);
lock_buffer(bh);
if (test_clear_buffer_dirty(bh)) {
get_bh(bh);
bh->b_end_io = end_buffer_write_sync;
ret = submit_bh(WRITE, bh);
wait_on_buffer(bh);
if (buffer_eopnotsupp(bh)) {
clear_buffer_eopnotsupp(bh);
ret = -EOPNOTSUPP;
}
if (!ret && !buffer_uptodate(bh))
ret = -EIO;
} else {
unlock_buffer(bh);
}
return ret;
}
/*
* try_to_free_buffers() checks if all the buffers on this particular page
* are unused, and releases them if so.
*
* Exclusion against try_to_free_buffers may be obtained by either
* locking the page or by holding its mapping's private_lock.
*
* If the page is dirty but all the buffers are clean then we need to
* be sure to mark the page clean as well. This is because the page
* may be against a block device, and a later reattachment of buffers
* to a dirty page will set *all* buffers dirty. Which would corrupt
* filesystem data on the same device.
*
* The same applies to regular filesystem pages: if all the buffers are
* clean then we set the page clean and proceed. To do that, we require
* total exclusion from __set_page_dirty_buffers(). That is obtained with
* private_lock.
*
* try_to_free_buffers() is non-blocking.
*/
static inline int buffer_busy(struct buffer_head *bh)
{
return atomic_read(&bh->b_count) |
(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
}
static int
drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
{
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh;
bh = head;
do {
if (buffer_write_io_error(bh) && page->mapping)
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
set_bit(AS_EIO, &page->mapping->flags);
if (buffer_busy(bh))
goto failed;
bh = bh->b_this_page;
} while (bh != head);
do {
struct buffer_head *next = bh->b_this_page;
if (!list_empty(&bh->b_assoc_buffers))
__remove_assoc_queue(bh);
bh = next;
} while (bh != head);
*buffers_to_free = head;
__clear_page_buffers(page);
return 1;
failed:
return 0;
}
int try_to_free_buffers(struct page *page)
{
struct address_space * const mapping = page->mapping;
struct buffer_head *buffers_to_free = NULL;
int ret = 0;
BUG_ON(!PageLocked(page));
if (PageWriteback(page))
return 0;
if (mapping == NULL) { /* can this still happen? */
ret = drop_buffers(page, &buffers_to_free);
goto out;
}
spin_lock(&mapping->private_lock);
ret = drop_buffers(page, &buffers_to_free);
if (ret) {
/*
* If the filesystem writes its buffers by hand (eg ext3)
* then we can have clean buffers against a dirty page. We
* clean the page here; otherwise later reattachment of buffers
* could encounter a non-uptodate page, which is unresolvable.
* This only applies in the rare case where try_to_free_buffers
* succeeds but the page is not freed.
*/
clear_page_dirty(page);
}
spin_unlock(&mapping->private_lock);
out:
if (buffers_to_free) {
struct buffer_head *bh = buffers_to_free;
do {
struct buffer_head *next = bh->b_this_page;
free_buffer_head(bh);
bh = next;
} while (bh != buffers_to_free);
}
return ret;
}
EXPORT_SYMBOL(try_to_free_buffers);
int block_sync_page(struct page *page)
{
struct address_space *mapping;
smp_mb();
mapping = page_mapping(page);
if (mapping)
blk_run_backing_dev(mapping->backing_dev_info, page);
return 0;
}
/*
* There are no bdflush tunables left. But distributions are