Skip to content
Snippets Groups Projects
lowcomms-tcp.c 26.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /******************************************************************************
    *******************************************************************************
    **
    **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
    **  Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
    **
    **  This copyrighted material is made available to anyone wishing to use,
    **  modify, copy, or redistribute it subject to the terms and conditions
    **  of the GNU General Public License v.2.
    **
    *******************************************************************************
    ******************************************************************************/
    
    /*
     * lowcomms.c
     *
     * This is the "low-level" comms layer.
     *
     * It is responsible for sending/receiving messages
     * from other nodes in the cluster.
     *
     * Cluster nodes are referred to by their nodeids. nodeids are
     * simply 32 bit numbers to the locking module - if they need to
     * be expanded for the cluster infrastructure then that is it's
     * responsibility. It is this layer's
     * responsibility to resolve these into IP address or
     * whatever it needs for inter-node communication.
     *
     * The comms level is two kernel threads that deal mainly with
     * the receiving of messages from other nodes and passing them
     * up to the mid-level comms layer (which understands the
     * message format) for execution by the locking core, and
     * a send thread which does all the setting up of connections
     * to remote nodes and the sending of data. Threads are not allowed
     * to send their own data because it may cause them to wait in times
     * of high load. Also, this way, the sending thread can collect together
     * messages bound for one node and send them in one block.
     *
     * I don't see any problem with the recv thread executing the locking
     * code on behalf of remote processes as the locking code is
     * short, efficient and never waits.
     *
     */
    
    
    #include <asm/ioctls.h>
    #include <net/sock.h>
    #include <net/tcp.h>
    #include <linux/pagemap.h>
    
    #include "dlm_internal.h"
    #include "lowcomms.h"
    #include "midcomms.h"
    #include "config.h"
    
    struct cbuf {
    
    	unsigned int base;
    	unsigned int len;
    	unsigned int mask;
    
    };
    
    #define NODE_INCREMENT 32
    
    static void cbuf_add(struct cbuf *cb, int n)
    {
    	cb->len += n;
    }
    
    static int cbuf_data(struct cbuf *cb)
    {
    	return ((cb->base + cb->len) & cb->mask);
    }
    
    static void cbuf_init(struct cbuf *cb, int size)
    {
    	cb->base = cb->len = 0;
    	cb->mask = size-1;
    }
    
    static void cbuf_eat(struct cbuf *cb, int n)
    {
    	cb->len  -= n;
    	cb->base += n;
    	cb->base &= cb->mask;
    }
    
    static bool cbuf_empty(struct cbuf *cb)
    {
    	return cb->len == 0;
    }
    
    
    /* Maximum number of incoming messages to process before
    
       doing a cond_resched()
    
    */
    #define MAX_RX_MSG_COUNT 25
    
    struct connection {
    	struct socket *sock;	/* NULL if not connected */
    	uint32_t nodeid;	/* So we know who we are in the list */
    
    	struct rw_semaphore sock_sem; /* Stop connect races */
    	struct list_head read_list;   /* On this list when ready for reading */
    	struct list_head write_list;  /* On this list when ready for writing */
    	struct list_head state_list;  /* On this list when ready to connect */
    
    	unsigned long flags;	/* bit 1,2 = We are on the read/write lists */
    #define CF_READ_PENDING 1
    #define CF_WRITE_PENDING 2
    #define CF_CONNECT_PENDING 3
    #define CF_IS_OTHERCON 4
    
    	struct list_head writequeue;  /* List of outgoing writequeue_entries */
    	struct list_head listenlist;  /* List of allocated listening sockets */
    
    	spinlock_t writequeue_lock;
    	int (*rx_action) (struct connection *);	/* What to do when active */
    	struct page *rx_page;
    	struct cbuf cb;
    	int retries;
    	atomic_t waiting_requests;
    #define MAX_CONNECT_RETRIES 3
    	struct connection *othercon;
    };
    #define sock2con(x) ((struct connection *)(x)->sk_user_data)
    
    /* An entry waiting to be sent */
    struct writequeue_entry {
    	struct list_head list;
    	struct page *page;
    	int offset;
    	int len;
    	int end;
    	int users;
    	struct connection *con;
    };
    
    static struct sockaddr_storage dlm_local_addr;
    
    /* Manage daemons */
    static struct task_struct *recv_task;
    static struct task_struct *send_task;
    
    static wait_queue_t lowcomms_send_waitq_head;
    
    static DECLARE_WAIT_QUEUE_HEAD(lowcomms_send_waitq);
    
    static wait_queue_t lowcomms_recv_waitq_head;
    
    static DECLARE_WAIT_QUEUE_HEAD(lowcomms_recv_waitq);
    
    
    /* An array of pointers to connections, indexed by NODEID */
    static struct connection **connections;
    
    static DECLARE_MUTEX(connections_lock);
    
    static struct kmem_cache *con_cache;
    
    static int conn_array_size;
    
    /* List of sockets that have reads pending */
    
    static LIST_HEAD(read_sockets);
    static DEFINE_SPINLOCK(read_sockets_lock);
    
    
    /* List of sockets which have writes pending */
    
    static LIST_HEAD(write_sockets);
    static DEFINE_SPINLOCK(write_sockets_lock);
    
    
    /* List of sockets which have connects pending */
    
    static LIST_HEAD(state_sockets);
    static DEFINE_SPINLOCK(state_sockets_lock);
    
    
    static struct connection *nodeid2con(int nodeid, gfp_t allocation)
    {
    	struct connection *con = NULL;
    
    	down(&connections_lock);
    	if (nodeid >= conn_array_size) {
    		int new_size = nodeid + NODE_INCREMENT;
    		struct connection **new_conns;
    
    
    		new_conns = kzalloc(sizeof(struct connection *) *
    
    				    new_size, allocation);
    		if (!new_conns)
    			goto finish;
    
    		memcpy(new_conns, connections,  sizeof(struct connection *) * conn_array_size);
    		conn_array_size = new_size;
    		kfree(connections);
    		connections = new_conns;
    
    	}
    
    	con = connections[nodeid];
    	if (con == NULL && allocation) {
    
    		con = kmem_cache_zalloc(con_cache, allocation);
    
    		if (!con)
    			goto finish;
    
    		con->nodeid = nodeid;
    		init_rwsem(&con->sock_sem);
    		INIT_LIST_HEAD(&con->writequeue);
    		spin_lock_init(&con->writequeue_lock);
    
    		connections[nodeid] = con;
    	}
    
    
    finish:
    
    	up(&connections_lock);
    	return con;
    }
    
    /* Data available on socket or listen socket received a connect */
    static void lowcomms_data_ready(struct sock *sk, int count_unused)
    {
    	struct connection *con = sock2con(sk);
    
    	atomic_inc(&con->waiting_requests);
    	if (test_and_set_bit(CF_READ_PENDING, &con->flags))
    		return;
    
    	spin_lock_bh(&read_sockets_lock);
    	list_add_tail(&con->read_list, &read_sockets);
    	spin_unlock_bh(&read_sockets_lock);
    
    	wake_up_interruptible(&lowcomms_recv_waitq);
    }
    
    static void lowcomms_write_space(struct sock *sk)
    {
    	struct connection *con = sock2con(sk);
    
    	if (test_and_set_bit(CF_WRITE_PENDING, &con->flags))
    		return;
    
    	spin_lock_bh(&write_sockets_lock);
    	list_add_tail(&con->write_list, &write_sockets);
    	spin_unlock_bh(&write_sockets_lock);
    
    	wake_up_interruptible(&lowcomms_send_waitq);
    }
    
    static inline void lowcomms_connect_sock(struct connection *con)
    {
    	if (test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
    		return;
    
    	spin_lock_bh(&state_sockets_lock);
    	list_add_tail(&con->state_list, &state_sockets);
    	spin_unlock_bh(&state_sockets_lock);
    
    	wake_up_interruptible(&lowcomms_send_waitq);
    }
    
    static void lowcomms_state_change(struct sock *sk)
    {
    
    	if (sk->sk_state == TCP_ESTABLISHED)
    
    		lowcomms_write_space(sk);
    }
    
    /* Make a socket active */
    static int add_sock(struct socket *sock, struct connection *con)
    {
    	con->sock = sock;
    
    	/* Install a data_ready callback */
    	con->sock->sk->sk_data_ready = lowcomms_data_ready;
    	con->sock->sk->sk_write_space = lowcomms_write_space;
    	con->sock->sk->sk_state_change = lowcomms_state_change;
    
    	return 0;
    }
    
    /* Add the port number to an IP6 or 4 sockaddr and return the address
       length */
    static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
    			  int *addr_len)
    {
    
    	saddr->ss_family =  dlm_local_addr.ss_family;
    	if (saddr->ss_family == AF_INET) {
    
    		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
    		in4_addr->sin_port = cpu_to_be16(port);
    		*addr_len = sizeof(struct sockaddr_in);
    
    	} else {
    
    		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
    		in6_addr->sin6_port = cpu_to_be16(port);
    		*addr_len = sizeof(struct sockaddr_in6);
    	}
    }
    
    /* Close a remote connection and tidy up */
    
    static void close_connection(struct connection *con, bool and_other)
    
    {
    	down_write(&con->sock_sem);
    
    	if (con->sock) {
    		sock_release(con->sock);
    		con->sock = NULL;
    	}
    	if (con->othercon && and_other) {
    
    		/* Will only re-enter once. */
    		close_connection(con->othercon, false);
    
    	}
    	if (con->rx_page) {
    		__free_page(con->rx_page);
    		con->rx_page = NULL;
    	}
    	con->retries = 0;
    	up_write(&con->sock_sem);
    }
    
    /* Data received from remote end */
    static int receive_from_sock(struct connection *con)
    {
    	int ret = 0;
    	struct msghdr msg;
    	struct iovec iov[2];
    	mm_segment_t fs;
    	unsigned len;
    	int r;
    	int call_again_soon = 0;
    
    	down_read(&con->sock_sem);
    
    	if (con->sock == NULL)
    		goto out;
    	if (con->rx_page == NULL) {
    		/*
    		 * This doesn't need to be atomic, but I think it should
    		 * improve performance if it is.
    		 */
    		con->rx_page = alloc_page(GFP_ATOMIC);
    		if (con->rx_page == NULL)
    			goto out_resched;
    
    		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
    
    	}
    
    	msg.msg_control = NULL;
    	msg.msg_controllen = 0;
    	msg.msg_iovlen = 1;
    	msg.msg_iov = iov;
    	msg.msg_name = NULL;
    	msg.msg_namelen = 0;
    	msg.msg_flags = 0;
    
    	/*
    	 * iov[0] is the bit of the circular buffer between the current end
    	 * point (cb.base + cb.len) and the end of the buffer.
    	 */
    
    	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
    	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
    
    	iov[1].iov_len = 0;
    
    	/*
    	 * iov[1] is the bit of the circular buffer between the start of the
    	 * buffer and the start of the currently used section (cb.base)
    	 */
    
    	if (cbuf_data(&con->cb) >= con->cb.base) {
    		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
    
    		iov[1].iov_len = con->cb.base;
    		iov[1].iov_base = page_address(con->rx_page);
    		msg.msg_iovlen = 2;
    	}
    	len = iov[0].iov_len + iov[1].iov_len;
    
    	fs = get_fs();
    	set_fs(get_ds());
    	r = ret = sock_recvmsg(con->sock, &msg, len,
    			       MSG_DONTWAIT | MSG_NOSIGNAL);
    	set_fs(fs);
    
    	if (ret <= 0)
    		goto out_close;
    	if (ret == len)
    		call_again_soon = 1;
    
    	cbuf_add(&con->cb, ret);
    
    	ret = dlm_process_incoming_buffer(con->nodeid,
    					  page_address(con->rx_page),
    					  con->cb.base, con->cb.len,
    					  PAGE_CACHE_SIZE);
    	if (ret == -EBADMSG) {
    		printk(KERN_INFO "dlm: lowcomms: addr=%p, base=%u, len=%u, "
    		       "iov_len=%u, iov_base[0]=%p, read=%d\n",
    		       page_address(con->rx_page), con->cb.base, con->cb.len,
    		       len, iov[0].iov_base, r);
    	}
    	if (ret < 0)
    		goto out_close;
    
    	cbuf_eat(&con->cb, ret);
    
    	if (cbuf_empty(&con->cb) && !call_again_soon) {
    
    		__free_page(con->rx_page);
    		con->rx_page = NULL;
    	}
    
    
    	if (call_again_soon)
    		goto out_resched;
    	up_read(&con->sock_sem);
    
    	return 0;
    
    out_resched:
    
    	lowcomms_data_ready(con->sock->sk, 0);
    	up_read(&con->sock_sem);
    
    	cond_resched();
    	return 0;
    
    out_close:
    
    	up_read(&con->sock_sem);
    	if (ret != -EAGAIN && !test_bit(CF_IS_OTHERCON, &con->flags)) {
    
    		close_connection(con, false);
    
    		/* Reconnect when there is something to send */
    	}
    
    	return ret;
    }
    
    /* Listening socket is busy, accept a connection */
    static int accept_from_sock(struct connection *con)
    {
    	int result;
    	struct sockaddr_storage peeraddr;
    	struct socket *newsock;
    	int len;
    	int nodeid;
    	struct connection *newcon;
    
    	memset(&peeraddr, 0, sizeof(peeraddr));
    
    	result = sock_create_kern(dlm_local_addr.ss_family, SOCK_STREAM,
    				  IPPROTO_TCP, &newsock);
    
    	if (result < 0)
    		return -ENOMEM;
    
    	down_read(&con->sock_sem);
    
    	result = -ENOTCONN;
    	if (con->sock == NULL)
    		goto accept_err;
    
    	newsock->type = con->sock->type;
    	newsock->ops = con->sock->ops;
    
    	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
    	if (result < 0)
    		goto accept_err;
    
    	/* Get the connected socket's peer */
    	memset(&peeraddr, 0, sizeof(peeraddr));
    	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
    				  &len, 2)) {
    		result = -ECONNABORTED;
    		goto accept_err;
    	}
    
    	/* Get the new node's NODEID */
    	make_sockaddr(&peeraddr, 0, &len);
    	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
    
    		printk("dlm: connect from non cluster node\n");
    
    		sock_release(newsock);
    		up_read(&con->sock_sem);
    		return -1;
    	}
    
    	log_print("got connection from %d", nodeid);
    
    	/*  Check to see if we already have a connection to this node. This
    	 *  could happen if the two nodes initiate a connection at roughly
    	 *  the same time and the connections cross on the wire.
    	 * TEMPORARY FIX:
    	 *  In this case we store the incoming one in "othercon"
    	 */
    	newcon = nodeid2con(nodeid, GFP_KERNEL);
    	if (!newcon) {
    		result = -ENOMEM;
    		goto accept_err;
    	}
    	down_write(&newcon->sock_sem);
    	if (newcon->sock) {
    
    		struct connection *othercon = newcon->othercon;
    
    			othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
    
    			if (!othercon) {
    				printk("dlm: failed to allocate incoming socket\n");
    				up_write(&newcon->sock_sem);
    				result = -ENOMEM;
    				goto accept_err;
    			}
    			othercon->nodeid = nodeid;
    			othercon->rx_action = receive_from_sock;
    			init_rwsem(&othercon->sock_sem);
    			set_bit(CF_IS_OTHERCON, &othercon->flags);
    			newcon->othercon = othercon;
    		}
    		othercon->sock = newsock;
    		newsock->sk->sk_user_data = othercon;
    		add_sock(newsock, othercon);
    	}
    	else {
    		newsock->sk->sk_user_data = newcon;
    		newcon->rx_action = receive_from_sock;
    		add_sock(newsock, newcon);
    
    	}
    
    	up_write(&newcon->sock_sem);
    
    	/*
    	 * Add it to the active queue in case we got data
    	 * beween processing the accept adding the socket
    	 * to the read_sockets list
    	 */
    	lowcomms_data_ready(newsock->sk, 0);
    	up_read(&con->sock_sem);
    
    	return 0;
    
    
    accept_err:
    
    	up_read(&con->sock_sem);
    	sock_release(newsock);
    
    	if (result != -EAGAIN)
    		printk("dlm: error accepting connection from node: %d\n", result);
    	return result;
    }
    
    /* Connect a new socket to its peer */
    
    static void connect_to_sock(struct connection *con)
    
    {
    	int result = -EHOSTUNREACH;
    	struct sockaddr_storage saddr;
    	int addr_len;
    	struct socket *sock;
    
    	if (con->nodeid == 0) {
    		log_print("attempt to connect sock 0 foiled");
    
    		return;
    
    	}
    
    	down_write(&con->sock_sem);
    	if (con->retries++ > MAX_CONNECT_RETRIES)
    		goto out;
    
    	/* Some odd races can cause double-connects, ignore them */
    	if (con->sock) {
    		result = 0;
    		goto out;
    	}
    
    	/* Create a socket to communicate with */
    
    	result = sock_create_kern(dlm_local_addr.ss_family, SOCK_STREAM,
    				  IPPROTO_TCP, &sock);
    
    	if (result < 0)
    		goto out_err;
    
    	memset(&saddr, 0, sizeof(saddr));
    	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
    
    		goto out_err;
    
    
    	sock->sk->sk_user_data = con;
    	con->rx_action = receive_from_sock;
    
    	make_sockaddr(&saddr, dlm_config.tcp_port, &addr_len);
    
    	add_sock(sock, con);
    
    	log_print("connecting to %d", con->nodeid);
    	result =
    		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
    
    				   O_NONBLOCK);
    
    	if (result == -EINPROGRESS)
    		result = 0;
    
    	if (result == 0)
    		goto out;
    
    out_err:
    
    	if (con->sock) {
    		sock_release(con->sock);
    		con->sock = NULL;
    	}
    	/*
    	 * Some errors are fatal and this list might need adjusting. For other
    	 * errors we try again until the max number of retries is reached.
    	 */
    	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
    	    result != -ENETDOWN && result != EINVAL
    	    && result != -EPROTONOSUPPORT) {
    		lowcomms_connect_sock(con);
    		result = 0;
    	}
    
    out:
    	up_write(&con->sock_sem);
    	return;
    
    static struct socket *create_listen_sock(struct connection *con,
    					 struct sockaddr_storage *saddr)
    
    	struct socket *sock = NULL;
    
    	mm_segment_t fs;
    	int result = 0;
    	int one = 1;
    	int addr_len;
    
    	if (dlm_local_addr.ss_family == AF_INET)
    		addr_len = sizeof(struct sockaddr_in);
    	else
    		addr_len = sizeof(struct sockaddr_in6);
    
    	/* Create a socket to communicate with */
    	result = sock_create_kern(dlm_local_addr.ss_family, SOCK_STREAM, IPPROTO_TCP, &sock);
    	if (result < 0) {
    		printk("dlm: Can't create listening comms socket\n");
    		goto create_out;
    	}
    
    	fs = get_fs();
    	set_fs(get_ds());
    
    	result = sock_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
    				 (char *)&one, sizeof(one));
    
    	set_fs(fs);
    	if (result < 0) {
    
    		printk("dlm: Failed to set SO_REUSEADDR on socket: result=%d\n",
    		       result);
    
    	}
    	sock->sk->sk_user_data = con;
    	con->rx_action = accept_from_sock;
    	con->sock = sock;
    
    	/* Bind to our port */
    	make_sockaddr(saddr, dlm_config.tcp_port, &addr_len);
    	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
    	if (result < 0) {
    		printk("dlm: Can't bind to port %d\n", dlm_config.tcp_port);
    		sock_release(sock);
    		sock = NULL;
    		con->sock = NULL;
    		goto create_out;
    	}
    
    	fs = get_fs();
    	set_fs(get_ds());
    
    
    	result = sock_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
    				 (char *)&one, sizeof(one));
    
    	set_fs(fs);
    	if (result < 0) {
    		printk("dlm: Set keepalive failed: %d\n", result);
    	}
    
    	result = sock->ops->listen(sock, 5);
    	if (result < 0) {
    		printk("dlm: Can't listen on port %d\n", dlm_config.tcp_port);
    		sock_release(sock);
    		sock = NULL;
    		goto create_out;
    	}
    
    
    create_out:
    
    	return sock;
    }
    
    
    /* Listen on all interfaces */
    static int listen_for_all(void)
    {
    	struct socket *sock = NULL;
    	struct connection *con = nodeid2con(0, GFP_KERNEL);
    	int result = -EINVAL;
    
    	/* We don't support multi-homed hosts */
    	set_bit(CF_IS_OTHERCON, &con->flags);
    
    	sock = create_listen_sock(con, &dlm_local_addr);
    	if (sock) {
    		add_sock(sock, con);
    		result = 0;
    	}
    	else {
    		result = -EADDRINUSE;
    	}
    
    	return result;
    }
    
    
    
    static struct writequeue_entry *new_writequeue_entry(struct connection *con,
    						     gfp_t allocation)
    {
    	struct writequeue_entry *entry;
    
    	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
    	if (!entry)
    		return NULL;
    
    	entry->page = alloc_page(allocation);
    	if (!entry->page) {
    		kfree(entry);
    		return NULL;
    	}
    
    	entry->offset = 0;
    	entry->len = 0;
    	entry->end = 0;
    	entry->users = 0;
    	entry->con = con;
    
    	return entry;
    }
    
    void *dlm_lowcomms_get_buffer(int nodeid, int len,
    			      gfp_t allocation, char **ppc)
    {
    	struct connection *con;
    	struct writequeue_entry *e;
    	int offset = 0;
    	int users = 0;
    
    	con = nodeid2con(nodeid, allocation);
    	if (!con)
    		return NULL;
    
    	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
    
    	if ((&e->list == &con->writequeue) ||
    
    	    (PAGE_CACHE_SIZE - e->end < len)) {
    		e = NULL;
    	} else {
    		offset = e->end;
    		e->end += len;
    		users = e->users++;
    	}
    	spin_unlock(&con->writequeue_lock);
    
    	if (e) {
    
    	got_one:
    
    		if (users == 0)
    			kmap(e->page);
    		*ppc = page_address(e->page) + offset;
    		return e;
    	}
    
    	e = new_writequeue_entry(con, allocation);
    	if (e) {
    		spin_lock(&con->writequeue_lock);
    		offset = e->end;
    		e->end += len;
    		users = e->users++;
    		list_add_tail(&e->list, &con->writequeue);
    		spin_unlock(&con->writequeue_lock);
    		goto got_one;
    	}
    	return NULL;
    }
    
    void dlm_lowcomms_commit_buffer(void *mh)
    {
    	struct writequeue_entry *e = (struct writequeue_entry *)mh;
    	struct connection *con = e->con;
    	int users;
    
    	users = --e->users;
    	if (users)
    		goto out;
    	e->len = e->end - e->offset;
    	kunmap(e->page);
    	spin_unlock(&con->writequeue_lock);
    
    	if (test_and_set_bit(CF_WRITE_PENDING, &con->flags) == 0) {
    		spin_lock_bh(&write_sockets_lock);
    		list_add_tail(&con->write_list, &write_sockets);
    		spin_unlock_bh(&write_sockets_lock);
    
    		wake_up_interruptible(&lowcomms_send_waitq);
    	}
    	return;
    
    
    	spin_unlock(&con->writequeue_lock);
    	return;
    }
    
    static void free_entry(struct writequeue_entry *e)
    {
    	__free_page(e->page);
    	kfree(e);
    }
    
    /* Send a message */
    
    static void send_to_sock(struct connection *con)
    
    {
    	int ret = 0;
    	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
    	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
    	struct writequeue_entry *e;
    	int len, offset;
    
    	down_read(&con->sock_sem);
    	if (con->sock == NULL)
    		goto out_connect;
    
    	sendpage = con->sock->ops->sendpage;
    
    	spin_lock(&con->writequeue_lock);
    	for (;;) {
    		e = list_entry(con->writequeue.next, struct writequeue_entry,
    			       list);
    		if ((struct list_head *) e == &con->writequeue)
    			break;
    
    		len = e->len;
    		offset = e->offset;
    		BUG_ON(len == 0 && e->users == 0);
    		spin_unlock(&con->writequeue_lock);
    
    		ret = 0;
    		if (len) {
    			ret = sendpage(con->sock, e->page, offset, len,
    				       msg_flags);
    			if (ret == -EAGAIN || ret == 0)
    				goto out;
    			if (ret <= 0)
    				goto send_error;
    		}
    		else {
    			/* Don't starve people filling buffers */
    
    			cond_resched();
    
    		}
    
    		spin_lock(&con->writequeue_lock);
    		e->offset += ret;
    		e->len -= ret;
    
    		if (e->len == 0 && e->users == 0) {
    			list_del(&e->list);
    
    			kunmap(e->page);
    
    			free_entry(e);
    			continue;
    		}
    	}
    	spin_unlock(&con->writequeue_lock);
    
    	up_read(&con->sock_sem);
    
    	return;
    
    send_error:
    
    	up_read(&con->sock_sem);
    
    	close_connection(con, false);
    
    	lowcomms_connect_sock(con);
    
    	return;
    
    out_connect:
    
    	up_read(&con->sock_sem);
    	lowcomms_connect_sock(con);
    
    	return;
    
    }
    
    static void clean_one_writequeue(struct connection *con)
    {
    	struct list_head *list;
    	struct list_head *temp;
    
    	spin_lock(&con->writequeue_lock);
    	list_for_each_safe(list, temp, &con->writequeue) {
    		struct writequeue_entry *e =
    			list_entry(list, struct writequeue_entry, list);
    		list_del(&e->list);
    		free_entry(e);
    	}
    	spin_unlock(&con->writequeue_lock);
    }
    
    /* Called from recovery when it knows that a node has
       left the cluster */
    int dlm_lowcomms_close(int nodeid)
    {
    	struct connection *con;
    
    	if (!connections)
    		goto out;
    
    	log_print("closing connection to node %d", nodeid);
    	con = nodeid2con(nodeid, 0);
    	if (con) {
    		clean_one_writequeue(con);
    
    		close_connection(con, true);
    
    		atomic_set(&con->waiting_requests, 0);
    	}
    	return 0;
    
    
    	return -1;
    }
    
    /* Look for activity on active sockets */
    static void process_sockets(void)
    {
    	struct list_head *list;
    	struct list_head *temp;
    	int count = 0;
    
    	spin_lock_bh(&read_sockets_lock);
    	list_for_each_safe(list, temp, &read_sockets) {
    
    		struct connection *con =
    
    			list_entry(list, struct connection, read_list);
    
    		list_del(&con->read_list);
    		clear_bit(CF_READ_PENDING, &con->flags);
    
    		spin_unlock_bh(&read_sockets_lock);
    
    		/* This can reach zero if we are processing requests
    		 * as they come in.
    		 */
    		if (atomic_read(&con->waiting_requests) == 0) {
    			spin_lock_bh(&read_sockets_lock);
    			continue;
    		}
    
    		do {
    			con->rx_action(con);
    
    			/* Don't starve out everyone else */
    			if (++count >= MAX_RX_MSG_COUNT) {
    
    				cond_resched();
    
    				count = 0;
    			}
    
    		} while (!atomic_dec_and_test(&con->waiting_requests) &&
    			 !kthread_should_stop());
    
    		spin_lock_bh(&read_sockets_lock);
    	}
    	spin_unlock_bh(&read_sockets_lock);
    }
    
    /* Try to send any messages that are pending
     */
    static void process_output_queue(void)
    {
    	struct list_head *list;
    	struct list_head *temp;
    
    	spin_lock_bh(&write_sockets_lock);
    	list_for_each_safe(list, temp, &write_sockets) {
    		struct connection *con =
    
    			list_entry(list, struct connection, write_list);
    
    		clear_bit(CF_WRITE_PENDING, &con->flags);
    		list_del(&con->write_list);
    
    		spin_unlock_bh(&write_sockets_lock);
    
    		send_to_sock(con);
    
    		spin_lock_bh(&write_sockets_lock);
    	}
    	spin_unlock_bh(&write_sockets_lock);
    }
    
    static void process_state_queue(void)
    {
    	struct list_head *list;
    	struct list_head *temp;
    
    	spin_lock_bh(&state_sockets_lock);
    	list_for_each_safe(list, temp, &state_sockets) {
    		struct connection *con =
    
    			list_entry(list, struct connection, state_list);
    
    		list_del(&con->state_list);
    		clear_bit(CF_CONNECT_PENDING, &con->flags);
    		spin_unlock_bh(&state_sockets_lock);
    
    
    		connect_to_sock(con);
    
    		spin_lock_bh(&state_sockets_lock);
    	}
    	spin_unlock_bh(&state_sockets_lock);
    }
    
    
    /* Discard all entries on the write queues */
    static void clean_writequeues(void)
    {
    	int nodeid;
    
    	for (nodeid = 1; nodeid < conn_array_size; nodeid++) {
    		struct connection *con = nodeid2con(nodeid, 0);
    
    		if (con)
    			clean_one_writequeue(con);
    	}
    }
    
    static int read_list_empty(void)
    {
    	int status;
    
    	spin_lock_bh(&read_sockets_lock);
    	status = list_empty(&read_sockets);
    	spin_unlock_bh(&read_sockets_lock);
    
    	return status;
    }
    
    /* DLM Transport comms receive daemon */
    static int dlm_recvd(void *data)
    {
    	init_waitqueue_entry(&lowcomms_recv_waitq_head, current);
    	add_wait_queue(&lowcomms_recv_waitq, &lowcomms_recv_waitq_head);
    
    	while (!kthread_should_stop()) {
    		set_current_state(TASK_INTERRUPTIBLE);
    		if (read_list_empty())
    
    			cond_resched();
    
    		set_current_state(TASK_RUNNING);