Skip to content
Snippets Groups Projects
request.c 33.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Main bcache entry point - handle a read or a write request and decide what to
     * do with it; the make_request functions are called by the block layer.
     *
     * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
     * Copyright 2012 Google, Inc.
     */
    
    #include "bcache.h"
    #include "btree.h"
    #include "debug.h"
    #include "request.h"
    
    #include <linux/cgroup.h>
    #include <linux/module.h>
    #include <linux/hash.h>
    #include <linux/random.h>
    #include "blk-cgroup.h"
    
    #include <trace/events/bcache.h>
    
    #define CUTOFF_CACHE_ADD	95
    #define CUTOFF_CACHE_READA	90
    #define CUTOFF_WRITEBACK	50
    #define CUTOFF_WRITEBACK_SYNC	75
    
    struct kmem_cache *bch_search_cache;
    
    static void check_should_skip(struct cached_dev *, struct search *);
    
    /* Cgroup interface */
    
    #ifdef CONFIG_CGROUP_BCACHE
    static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
    
    static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
    {
    	struct cgroup_subsys_state *css;
    	return cgroup &&
    		(css = cgroup_subsys_state(cgroup, bcache_subsys_id))
    		? container_of(css, struct bch_cgroup, css)
    		: &bcache_default_cgroup;
    }
    
    struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
    {
    	struct cgroup_subsys_state *css = bio->bi_css
    		? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
    		: task_subsys_state(current, bcache_subsys_id);
    
    	return css
    		? container_of(css, struct bch_cgroup, css)
    		: &bcache_default_cgroup;
    }
    
    static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
    			struct file *file,
    			char __user *buf, size_t nbytes, loff_t *ppos)
    {
    	char tmp[1024];
    
    	int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
    					  cgroup_to_bcache(cgrp)->cache_mode + 1);
    
    
    	if (len < 0)
    		return len;
    
    	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
    }
    
    static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
    			    const char *buf)
    {
    
    	int v = bch_read_string_list(buf, bch_cache_modes);
    
    	if (v < 0)
    		return v;
    
    	cgroup_to_bcache(cgrp)->cache_mode = v - 1;
    	return 0;
    }
    
    static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
    {
    	return cgroup_to_bcache(cgrp)->verify;
    }
    
    static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
    {
    	cgroup_to_bcache(cgrp)->verify = val;
    	return 0;
    }
    
    static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
    {
    	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
    	return atomic_read(&bcachecg->stats.cache_hits);
    }
    
    static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
    {
    	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
    	return atomic_read(&bcachecg->stats.cache_misses);
    }
    
    static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
    					 struct cftype *cft)
    {
    	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
    	return atomic_read(&bcachecg->stats.cache_bypass_hits);
    }
    
    static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
    					   struct cftype *cft)
    {
    	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
    	return atomic_read(&bcachecg->stats.cache_bypass_misses);
    }
    
    static struct cftype bch_files[] = {
    	{
    		.name		= "cache_mode",
    		.read		= cache_mode_read,
    		.write_string	= cache_mode_write,
    	},
    	{
    		.name		= "verify",
    		.read_u64	= bch_verify_read,
    		.write_u64	= bch_verify_write,
    	},
    	{
    		.name		= "cache_hits",
    		.read_u64	= bch_cache_hits_read,
    	},
    	{
    		.name		= "cache_misses",
    		.read_u64	= bch_cache_misses_read,
    	},
    	{
    		.name		= "cache_bypass_hits",
    		.read_u64	= bch_cache_bypass_hits_read,
    	},
    	{
    		.name		= "cache_bypass_misses",
    		.read_u64	= bch_cache_bypass_misses_read,
    	},
    	{ }	/* terminate */
    };
    
    static void init_bch_cgroup(struct bch_cgroup *cg)
    {
    	cg->cache_mode = -1;
    }
    
    static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
    {
    	struct bch_cgroup *cg;
    
    	cg = kzalloc(sizeof(*cg), GFP_KERNEL);
    	if (!cg)
    		return ERR_PTR(-ENOMEM);
    	init_bch_cgroup(cg);
    	return &cg->css;
    }
    
    static void bcachecg_destroy(struct cgroup *cgroup)
    {
    	struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
    	free_css_id(&bcache_subsys, &cg->css);
    	kfree(cg);
    }
    
    struct cgroup_subsys bcache_subsys = {
    	.create		= bcachecg_create,
    	.destroy	= bcachecg_destroy,
    	.subsys_id	= bcache_subsys_id,
    	.name		= "bcache",
    	.module		= THIS_MODULE,
    };
    EXPORT_SYMBOL_GPL(bcache_subsys);
    #endif
    
    static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
    {
    #ifdef CONFIG_CGROUP_BCACHE
    	int r = bch_bio_to_cgroup(bio)->cache_mode;
    	if (r >= 0)
    		return r;
    #endif
    	return BDEV_CACHE_MODE(&dc->sb);
    }
    
    static bool verify(struct cached_dev *dc, struct bio *bio)
    {
    #ifdef CONFIG_CGROUP_BCACHE
    	if (bch_bio_to_cgroup(bio)->verify)
    		return true;
    #endif
    	return dc->verify;
    }
    
    static void bio_csum(struct bio *bio, struct bkey *k)
    {
    	struct bio_vec *bv;
    	uint64_t csum = 0;
    	int i;
    
    	bio_for_each_segment(bv, bio, i) {
    		void *d = kmap(bv->bv_page) + bv->bv_offset;
    
    		csum = bch_crc64_update(csum, d, bv->bv_len);
    
    209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
    		kunmap(bv->bv_page);
    	}
    
    	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
    }
    
    /* Insert data into cache */
    
    static void bio_invalidate(struct closure *cl)
    {
    	struct btree_op *op = container_of(cl, struct btree_op, cl);
    	struct bio *bio = op->cache_bio;
    
    	pr_debug("invalidating %i sectors from %llu",
    		 bio_sectors(bio), (uint64_t) bio->bi_sector);
    
    	while (bio_sectors(bio)) {
    		unsigned len = min(bio_sectors(bio), 1U << 14);
    
    		if (bch_keylist_realloc(&op->keys, 0, op->c))
    			goto out;
    
    		bio->bi_sector	+= len;
    		bio->bi_size	-= len << 9;
    
    		bch_keylist_add(&op->keys,
    				&KEY(op->inode, bio->bi_sector, len));
    	}
    
    	op->insert_data_done = true;
    	bio_put(bio);
    out:
    	continue_at(cl, bch_journal, bcache_wq);
    }
    
    struct open_bucket {
    	struct list_head	list;
    	struct task_struct	*last;
    	unsigned		sectors_free;
    	BKEY_PADDED(key);
    };
    
    void bch_open_buckets_free(struct cache_set *c)
    {
    	struct open_bucket *b;
    
    	while (!list_empty(&c->data_buckets)) {
    		b = list_first_entry(&c->data_buckets,
    				     struct open_bucket, list);
    		list_del(&b->list);
    		kfree(b);
    	}
    }
    
    int bch_open_buckets_alloc(struct cache_set *c)
    {
    	int i;
    
    	spin_lock_init(&c->data_bucket_lock);
    
    	for (i = 0; i < 6; i++) {
    		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
    		if (!b)
    			return -ENOMEM;
    
    		list_add(&b->list, &c->data_buckets);
    	}
    
    	return 0;
    }
    
    /*
     * We keep multiple buckets open for writes, and try to segregate different
     * write streams for better cache utilization: first we look for a bucket where
     * the last write to it was sequential with the current write, and failing that
     * we look for a bucket that was last used by the same task.
     *
     * The ideas is if you've got multiple tasks pulling data into the cache at the
     * same time, you'll get better cache utilization if you try to segregate their
     * data and preserve locality.
     *
     * For example, say you've starting Firefox at the same time you're copying a
     * bunch of files. Firefox will likely end up being fairly hot and stay in the
     * cache awhile, but the data you copied might not be; if you wrote all that
     * data to the same buckets it'd get invalidated at the same time.
     *
     * Both of those tasks will be doing fairly random IO so we can't rely on
     * detecting sequential IO to segregate their data, but going off of the task
     * should be a sane heuristic.
     */
    static struct open_bucket *pick_data_bucket(struct cache_set *c,
    					    const struct bkey *search,
    					    struct task_struct *task,
    					    struct bkey *alloc)
    {
    	struct open_bucket *ret, *ret_task = NULL;
    
    	list_for_each_entry_reverse(ret, &c->data_buckets, list)
    		if (!bkey_cmp(&ret->key, search))
    			goto found;
    		else if (ret->last == task)
    			ret_task = ret;
    
    	ret = ret_task ?: list_first_entry(&c->data_buckets,
    					   struct open_bucket, list);
    found:
    	if (!ret->sectors_free && KEY_PTRS(alloc)) {
    		ret->sectors_free = c->sb.bucket_size;
    		bkey_copy(&ret->key, alloc);
    		bkey_init(alloc);
    	}
    
    	if (!ret->sectors_free)
    		ret = NULL;
    
    	return ret;
    }
    
    /*
     * Allocates some space in the cache to write to, and k to point to the newly
     * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
     * end of the newly allocated space).
     *
     * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
     * sectors were actually allocated.
     *
     * If s->writeback is true, will not fail.
     */
    static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
    			      struct search *s)
    {
    	struct cache_set *c = s->op.c;
    	struct open_bucket *b;
    	BKEY_PADDED(key) alloc;
    	struct closure cl, *w = NULL;
    	unsigned i;
    
    	if (s->writeback) {
    		closure_init_stack(&cl);
    		w = &cl;
    	}
    
    	/*
    	 * We might have to allocate a new bucket, which we can't do with a
    	 * spinlock held. So if we have to allocate, we drop the lock, allocate
    	 * and then retry. KEY_PTRS() indicates whether alloc points to
    	 * allocated bucket(s).
    	 */
    
    	bkey_init(&alloc.key);
    	spin_lock(&c->data_bucket_lock);
    
    	while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
    		unsigned watermark = s->op.write_prio
    			? WATERMARK_MOVINGGC
    			: WATERMARK_NONE;
    
    		spin_unlock(&c->data_bucket_lock);
    
    		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
    			return false;
    
    		spin_lock(&c->data_bucket_lock);
    	}
    
    	/*
    	 * If we had to allocate, we might race and not need to allocate the
    	 * second time we call find_data_bucket(). If we allocated a bucket but
    	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
    	 */
    	if (KEY_PTRS(&alloc.key))
    		__bkey_put(c, &alloc.key);
    
    	for (i = 0; i < KEY_PTRS(&b->key); i++)
    		EBUG_ON(ptr_stale(c, &b->key, i));
    
    	/* Set up the pointer to the space we're allocating: */
    
    	for (i = 0; i < KEY_PTRS(&b->key); i++)
    		k->ptr[i] = b->key.ptr[i];
    
    	sectors = min(sectors, b->sectors_free);
    
    	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
    	SET_KEY_SIZE(k, sectors);
    	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
    
    	/*
    	 * Move b to the end of the lru, and keep track of what this bucket was
    	 * last used for:
    	 */
    	list_move_tail(&b->list, &c->data_buckets);
    	bkey_copy_key(&b->key, k);
    	b->last = s->task;
    
    	b->sectors_free	-= sectors;
    
    	for (i = 0; i < KEY_PTRS(&b->key); i++) {
    		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
    
    		atomic_long_add(sectors,
    				&PTR_CACHE(c, &b->key, i)->sectors_written);
    	}
    
    	if (b->sectors_free < c->sb.block_size)
    		b->sectors_free = 0;
    
    	/*
    	 * k takes refcounts on the buckets it points to until it's inserted
    	 * into the btree, but if we're done with this bucket we just transfer
    	 * get_data_bucket()'s refcount.
    	 */
    	if (b->sectors_free)
    		for (i = 0; i < KEY_PTRS(&b->key); i++)
    			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
    
    	spin_unlock(&c->data_bucket_lock);
    	return true;
    }
    
    static void bch_insert_data_error(struct closure *cl)
    {
    	struct btree_op *op = container_of(cl, struct btree_op, cl);
    
    	/*
    	 * Our data write just errored, which means we've got a bunch of keys to
    	 * insert that point to data that wasn't succesfully written.
    	 *
    	 * We don't have to insert those keys but we still have to invalidate
    	 * that region of the cache - so, if we just strip off all the pointers
    	 * from the keys we'll accomplish just that.
    	 */
    
    	struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
    
    	while (src != op->keys.top) {
    		struct bkey *n = bkey_next(src);
    
    		SET_KEY_PTRS(src, 0);
    		bkey_copy(dst, src);
    
    		dst = bkey_next(dst);
    		src = n;
    	}
    
    	op->keys.top = dst;
    
    	bch_journal(cl);
    }
    
    static void bch_insert_data_endio(struct bio *bio, int error)
    {
    	struct closure *cl = bio->bi_private;
    	struct btree_op *op = container_of(cl, struct btree_op, cl);
    	struct search *s = container_of(op, struct search, op);
    
    	if (error) {
    		/* TODO: We could try to recover from this. */
    		if (s->writeback)
    			s->error = error;
    		else if (s->write)
    			set_closure_fn(cl, bch_insert_data_error, bcache_wq);
    		else
    			set_closure_fn(cl, NULL, NULL);
    	}
    
    	bch_bbio_endio(op->c, bio, error, "writing data to cache");
    }
    
    static void bch_insert_data_loop(struct closure *cl)
    {
    	struct btree_op *op = container_of(cl, struct btree_op, cl);
    	struct search *s = container_of(op, struct search, op);
    	struct bio *bio = op->cache_bio, *n;
    
    	if (op->skip)
    		return bio_invalidate(cl);
    
    	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
    		set_gc_sectors(op->c);
    		bch_queue_gc(op->c);
    	}
    
    	do {
    		unsigned i;
    		struct bkey *k;
    		struct bio_set *split = s->d
    			? s->d->bio_split : op->c->bio_split;
    
    		/* 1 for the device pointer and 1 for the chksum */
    		if (bch_keylist_realloc(&op->keys,
    					1 + (op->csum ? 1 : 0),
    					op->c))
    			continue_at(cl, bch_journal, bcache_wq);
    
    		k = op->keys.top;
    		bkey_init(k);
    		SET_KEY_INODE(k, op->inode);
    		SET_KEY_OFFSET(k, bio->bi_sector);
    
    		if (!bch_alloc_sectors(k, bio_sectors(bio), s))
    			goto err;
    
    		n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
    		if (!n) {
    			__bkey_put(op->c, k);
    			continue_at(cl, bch_insert_data_loop, bcache_wq);
    		}
    
    		n->bi_end_io	= bch_insert_data_endio;
    		n->bi_private	= cl;
    
    		if (s->writeback) {
    			SET_KEY_DIRTY(k, true);
    
    			for (i = 0; i < KEY_PTRS(k); i++)
    				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
    					    GC_MARK_DIRTY);
    		}
    
    		SET_KEY_CSUM(k, op->csum);
    		if (KEY_CSUM(k))
    			bio_csum(n, k);
    
    		pr_debug("%s", pkey(k));
    		bch_keylist_push(&op->keys);
    
    		trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev);
    		n->bi_rw |= REQ_WRITE;
    		bch_submit_bbio(n, op->c, k, 0);
    	} while (n != bio);
    
    	op->insert_data_done = true;
    	continue_at(cl, bch_journal, bcache_wq);
    err:
    	/* bch_alloc_sectors() blocks if s->writeback = true */
    	BUG_ON(s->writeback);
    
    	/*
    	 * But if it's not a writeback write we'd rather just bail out if
    	 * there aren't any buckets ready to write to - it might take awhile and
    	 * we might be starving btree writes for gc or something.
    	 */
    
    	if (s->write) {
    		/*
    		 * Writethrough write: We can't complete the write until we've
    		 * updated the index. But we don't want to delay the write while
    		 * we wait for buckets to be freed up, so just invalidate the
    		 * rest of the write.
    		 */
    		op->skip = true;
    		return bio_invalidate(cl);
    	} else {
    		/*
    		 * From a cache miss, we can just insert the keys for the data
    		 * we have written or bail out if we didn't do anything.
    		 */
    		op->insert_data_done = true;
    		bio_put(bio);
    
    		if (!bch_keylist_empty(&op->keys))
    			continue_at(cl, bch_journal, bcache_wq);
    		else
    			closure_return(cl);
    	}
    }
    
    /**
     * bch_insert_data - stick some data in the cache
     *
     * This is the starting point for any data to end up in a cache device; it could
     * be from a normal write, or a writeback write, or a write to a flash only
     * volume - it's also used by the moving garbage collector to compact data in
     * mostly empty buckets.
     *
     * It first writes the data to the cache, creating a list of keys to be inserted
     * (if the data had to be fragmented there will be multiple keys); after the
     * data is written it calls bch_journal, and after the keys have been added to
     * the next journal write they're inserted into the btree.
     *
     * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
     * and op->inode is used for the key inode.
     *
     * If op->skip is true, instead of inserting the data it invalidates the region
     * of the cache represented by op->cache_bio and op->inode.
     */
    void bch_insert_data(struct closure *cl)
    {
    	struct btree_op *op = container_of(cl, struct btree_op, cl);
    
    	bch_keylist_init(&op->keys);
    	bio_get(op->cache_bio);
    	bch_insert_data_loop(cl);
    }
    
    void bch_btree_insert_async(struct closure *cl)
    {
    	struct btree_op *op = container_of(cl, struct btree_op, cl);
    	struct search *s = container_of(op, struct search, op);
    
    	if (bch_btree_insert(op, op->c)) {
    		s->error		= -ENOMEM;
    		op->insert_data_done	= true;
    	}
    
    	if (op->insert_data_done) {
    		bch_keylist_free(&op->keys);
    		closure_return(cl);
    	} else
    		continue_at(cl, bch_insert_data_loop, bcache_wq);
    }
    
    /* Common code for the make_request functions */
    
    static void request_endio(struct bio *bio, int error)
    {
    	struct closure *cl = bio->bi_private;
    
    	if (error) {
    		struct search *s = container_of(cl, struct search, cl);
    		s->error = error;
    		/* Only cache read errors are recoverable */
    		s->recoverable = false;
    	}
    
    	bio_put(bio);
    	closure_put(cl);
    }
    
    void bch_cache_read_endio(struct bio *bio, int error)
    {
    	struct bbio *b = container_of(bio, struct bbio, bio);
    	struct closure *cl = bio->bi_private;
    	struct search *s = container_of(cl, struct search, cl);
    
    	/*
    	 * If the bucket was reused while our bio was in flight, we might have
    	 * read the wrong data. Set s->error but not error so it doesn't get
    	 * counted against the cache device, but we'll still reread the data
    	 * from the backing device.
    	 */
    
    	if (error)
    		s->error = error;
    	else if (ptr_stale(s->op.c, &b->key, 0)) {
    		atomic_long_inc(&s->op.c->cache_read_races);
    		s->error = -EINTR;
    	}
    
    	bch_bbio_endio(s->op.c, bio, error, "reading from cache");
    }
    
    static void bio_complete(struct search *s)
    {
    	if (s->orig_bio) {
    		int cpu, rw = bio_data_dir(s->orig_bio);
    		unsigned long duration = jiffies - s->start_time;
    
    		cpu = part_stat_lock();
    		part_round_stats(cpu, &s->d->disk->part0);
    		part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
    		part_stat_unlock();
    
    		trace_bcache_request_end(s, s->orig_bio);
    		bio_endio(s->orig_bio, s->error);
    		s->orig_bio = NULL;
    	}
    }
    
    static void do_bio_hook(struct search *s)
    {
    	struct bio *bio = &s->bio.bio;
    	memcpy(bio, s->orig_bio, sizeof(struct bio));
    
    	bio->bi_end_io		= request_endio;
    	bio->bi_private		= &s->cl;
    	atomic_set(&bio->bi_cnt, 3);
    }
    
    static void search_free(struct closure *cl)
    {
    	struct search *s = container_of(cl, struct search, cl);
    	bio_complete(s);
    
    	if (s->op.cache_bio)
    		bio_put(s->op.cache_bio);
    
    	if (s->unaligned_bvec)
    		mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
    
    	closure_debug_destroy(cl);
    	mempool_free(s, s->d->c->search);
    }
    
    static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
    {
    	struct bio_vec *bv;
    	struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
    	memset(s, 0, offsetof(struct search, op.keys));
    
    	__closure_init(&s->cl, NULL);
    
    	s->op.inode		= d->id;
    	s->op.c			= d->c;
    	s->d			= d;
    	s->op.lock		= -1;
    	s->task			= current;
    	s->orig_bio		= bio;
    	s->write		= (bio->bi_rw & REQ_WRITE) != 0;
    	s->op.flush_journal	= (bio->bi_rw & REQ_FLUSH) != 0;
    	s->op.skip		= (bio->bi_rw & REQ_DISCARD) != 0;
    	s->recoverable		= 1;
    	s->start_time		= jiffies;
    	do_bio_hook(s);
    
    	if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
    		bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
    		memcpy(bv, bio_iovec(bio),
    		       sizeof(struct bio_vec) * bio_segments(bio));
    
    		s->bio.bio.bi_io_vec	= bv;
    		s->unaligned_bvec	= 1;
    	}
    
    	return s;
    }
    
    static void btree_read_async(struct closure *cl)
    {
    	struct btree_op *op = container_of(cl, struct btree_op, cl);
    
    	int ret = btree_root(search_recurse, op->c, op);
    
    	if (ret == -EAGAIN)
    		continue_at(cl, btree_read_async, bcache_wq);
    
    	closure_return(cl);
    }
    
    /* Cached devices */
    
    static void cached_dev_bio_complete(struct closure *cl)
    {
    	struct search *s = container_of(cl, struct search, cl);
    	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    
    	search_free(cl);
    	cached_dev_put(dc);
    }
    
    /* Process reads */
    
    static void cached_dev_read_complete(struct closure *cl)
    {
    	struct search *s = container_of(cl, struct search, cl);
    
    	if (s->op.insert_collision)
    		bch_mark_cache_miss_collision(s);
    
    	if (s->op.cache_bio) {
    		int i;
    		struct bio_vec *bv;
    
    		__bio_for_each_segment(bv, s->op.cache_bio, i, 0)
    			__free_page(bv->bv_page);
    	}
    
    	cached_dev_bio_complete(cl);
    }
    
    static void request_read_error(struct closure *cl)
    {
    	struct search *s = container_of(cl, struct search, cl);
    	struct bio_vec *bv;
    	int i;
    
    	if (s->recoverable) {
    		/* The cache read failed, but we can retry from the backing
    		 * device.
    		 */
    		pr_debug("recovering at sector %llu",
    			 (uint64_t) s->orig_bio->bi_sector);
    
    		s->error = 0;
    		bv = s->bio.bio.bi_io_vec;
    		do_bio_hook(s);
    		s->bio.bio.bi_io_vec = bv;
    
    		if (!s->unaligned_bvec)
    			bio_for_each_segment(bv, s->orig_bio, i)
    				bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
    		else
    			memcpy(s->bio.bio.bi_io_vec,
    			       bio_iovec(s->orig_bio),
    			       sizeof(struct bio_vec) *
    			       bio_segments(s->orig_bio));
    
    		/* XXX: invalidate cache */
    
    		trace_bcache_read_retry(&s->bio.bio);
    		closure_bio_submit(&s->bio.bio, &s->cl, s->d);
    	}
    
    	continue_at(cl, cached_dev_read_complete, NULL);
    }
    
    static void request_read_done(struct closure *cl)
    {
    	struct search *s = container_of(cl, struct search, cl);
    	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    
    	/*
    	 * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
    	 * contains data ready to be inserted into the cache.
    	 *
    	 * First, we copy the data we just read from cache_bio's bounce buffers
    	 * to the buffers the original bio pointed to:
    	 */
    
    	if (s->op.cache_bio) {
    		struct bio_vec *src, *dst;
    		unsigned src_offset, dst_offset, bytes;
    		void *dst_ptr;
    
    		bio_reset(s->op.cache_bio);
    		s->op.cache_bio->bi_sector	= s->cache_miss->bi_sector;
    		s->op.cache_bio->bi_bdev	= s->cache_miss->bi_bdev;
    		s->op.cache_bio->bi_size	= s->cache_bio_sectors << 9;
    
    		bch_bio_map(s->op.cache_bio, NULL);
    
    
    		src = bio_iovec(s->op.cache_bio);
    		dst = bio_iovec(s->cache_miss);
    		src_offset = src->bv_offset;
    		dst_offset = dst->bv_offset;
    		dst_ptr = kmap(dst->bv_page);
    
    		while (1) {
    			if (dst_offset == dst->bv_offset + dst->bv_len) {
    				kunmap(dst->bv_page);
    				dst++;
    				if (dst == bio_iovec_idx(s->cache_miss,
    						s->cache_miss->bi_vcnt))
    					break;
    
    				dst_offset = dst->bv_offset;
    				dst_ptr = kmap(dst->bv_page);
    			}
    
    			if (src_offset == src->bv_offset + src->bv_len) {
    				src++;
    				if (src == bio_iovec_idx(s->op.cache_bio,
    						 s->op.cache_bio->bi_vcnt))
    					BUG();
    
    				src_offset = src->bv_offset;
    			}
    
    			bytes = min(dst->bv_offset + dst->bv_len - dst_offset,
    				    src->bv_offset + src->bv_len - src_offset);
    
    			memcpy(dst_ptr + dst_offset,
    			       page_address(src->bv_page) + src_offset,
    			       bytes);
    
    			src_offset	+= bytes;
    			dst_offset	+= bytes;
    		}
    
    		bio_put(s->cache_miss);
    		s->cache_miss = NULL;
    	}
    
    	if (verify(dc, &s->bio.bio) && s->recoverable)
    		bch_data_verify(s);
    
    	bio_complete(s);
    
    	if (s->op.cache_bio &&
    	    !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
    		s->op.type = BTREE_REPLACE;
    		closure_call(&s->op.cl, bch_insert_data, NULL, cl);
    	}
    
    	continue_at(cl, cached_dev_read_complete, NULL);
    }
    
    static void request_read_done_bh(struct closure *cl)
    {
    	struct search *s = container_of(cl, struct search, cl);
    	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    
    	bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
    
    	if (s->error)
    		continue_at_nobarrier(cl, request_read_error, bcache_wq);
    	else if (s->op.cache_bio || verify(dc, &s->bio.bio))
    		continue_at_nobarrier(cl, request_read_done, bcache_wq);
    	else
    		continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
    }
    
    static int cached_dev_cache_miss(struct btree *b, struct search *s,
    				 struct bio *bio, unsigned sectors)
    {
    	int ret = 0;
    	unsigned reada;
    	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
    	struct bio *miss;
    
    	miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
    	if (!miss)
    		return -EAGAIN;
    
    	if (miss == bio)
    		s->op.lookup_done = true;
    
    	miss->bi_end_io		= request_endio;
    	miss->bi_private	= &s->cl;
    
    	if (s->cache_miss || s->op.skip)
    		goto out_submit;
    
    	if (miss != bio ||
    	    (bio->bi_rw & REQ_RAHEAD) ||
    	    (bio->bi_rw & REQ_META) ||
    	    s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
    		reada = 0;
    	else {
    		reada = min(dc->readahead >> 9,
    			    sectors - bio_sectors(miss));
    
    		if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev))
    			reada = bdev_sectors(miss->bi_bdev) - bio_end(miss);
    	}
    
    	s->cache_bio_sectors = bio_sectors(miss) + reada;
    	s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
    			DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
    			dc->disk.bio_split);
    
    	if (!s->op.cache_bio)
    		goto out_submit;
    
    	s->op.cache_bio->bi_sector	= miss->bi_sector;
    	s->op.cache_bio->bi_bdev	= miss->bi_bdev;
    	s->op.cache_bio->bi_size	= s->cache_bio_sectors << 9;
    
    	s->op.cache_bio->bi_end_io	= request_endio;
    	s->op.cache_bio->bi_private	= &s->cl;
    
    	/* btree_search_recurse()'s btree iterator is no good anymore */
    	ret = -EINTR;
    	if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
    		goto out_put;
    
    
    	bch_bio_map(s->op.cache_bio, NULL);
    	if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
    
    		goto out_put;
    
    	s->cache_miss = miss;
    	bio_get(s->op.cache_bio);
    
    	trace_bcache_cache_miss(s->orig_bio);
    	closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
    
    	return ret;
    out_put:
    	bio_put(s->op.cache_bio);
    	s->op.cache_bio = NULL;
    out_submit:
    	closure_bio_submit(miss, &s->cl, s->d);
    	return ret;
    }
    
    static void request_read(struct cached_dev *dc, struct search *s)
    {
    	struct closure *cl = &s->cl;
    
    	check_should_skip(dc, s);
    	closure_call(&s->op.cl, btree_read_async, NULL, cl);
    
    	continue_at(cl, request_read_done_bh, NULL);
    }
    
    /* Process writes */
    
    static void cached_dev_write_complete(struct closure *cl)
    {
    	struct search *s = container_of(cl, struct search, cl);
    	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);