Skip to content
Snippets Groups Projects
delayed-inode.c 50 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2011 Fujitsu.  All rights reserved.
     * Written by Miao Xie <miaox@cn.fujitsu.com>
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/slab.h>
    #include "delayed-inode.h"
    #include "disk-io.h"
    #include "transaction.h"
    
    #define BTRFS_DELAYED_WRITEBACK		400
    #define BTRFS_DELAYED_BACKGROUND	100
    
    static struct kmem_cache *delayed_node_cache;
    
    int __init btrfs_delayed_inode_init(void)
    {
    	delayed_node_cache = kmem_cache_create("delayed_node",
    					sizeof(struct btrfs_delayed_node),
    					0,
    					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
    					NULL);
    	if (!delayed_node_cache)
    		return -ENOMEM;
    	return 0;
    }
    
    void btrfs_delayed_inode_exit(void)
    {
    	if (delayed_node_cache)
    		kmem_cache_destroy(delayed_node_cache);
    }
    
    static inline void btrfs_init_delayed_node(
    				struct btrfs_delayed_node *delayed_node,
    				struct btrfs_root *root, u64 inode_id)
    {
    	delayed_node->root = root;
    	delayed_node->inode_id = inode_id;
    	atomic_set(&delayed_node->refs, 0);
    	delayed_node->count = 0;
    	delayed_node->in_list = 0;
    	delayed_node->inode_dirty = 0;
    	delayed_node->ins_root = RB_ROOT;
    	delayed_node->del_root = RB_ROOT;
    	mutex_init(&delayed_node->mutex);
    	delayed_node->index_cnt = 0;
    	INIT_LIST_HEAD(&delayed_node->n_list);
    	INIT_LIST_HEAD(&delayed_node->p_list);
    	delayed_node->bytes_reserved = 0;
    
    	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
    
    }
    
    static inline int btrfs_is_continuous_delayed_item(
    					struct btrfs_delayed_item *item1,
    					struct btrfs_delayed_item *item2)
    {
    	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
    	    item1->key.objectid == item2->key.objectid &&
    	    item1->key.type == item2->key.type &&
    	    item1->key.offset + 1 == item2->key.offset)
    		return 1;
    	return 0;
    }
    
    static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
    							struct btrfs_root *root)
    {
    	return root->fs_info->delayed_root;
    }
    
    
    static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
    
    {
    	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
    	struct btrfs_root *root = btrfs_inode->root;
    
    	struct btrfs_delayed_node *node;
    
    
    	node = ACCESS_ONCE(btrfs_inode->delayed_node);
    	if (node) {
    
    		atomic_inc(&node->refs);
    
    		return node;
    	}
    
    	spin_lock(&root->inode_lock);
    
    	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
    
    	if (node) {
    		if (btrfs_inode->delayed_node) {
    
    			atomic_inc(&node->refs);	/* can be accessed */
    			BUG_ON(btrfs_inode->delayed_node != node);
    
    			spin_unlock(&root->inode_lock);
    
    			return node;
    
    		}
    		btrfs_inode->delayed_node = node;
    		atomic_inc(&node->refs);	/* can be accessed */
    		atomic_inc(&node->refs);	/* cached in the inode */
    		spin_unlock(&root->inode_lock);
    		return node;
    	}
    	spin_unlock(&root->inode_lock);
    
    
    /* Will return either the node or PTR_ERR(-ENOMEM) */
    
    static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
    							struct inode *inode)
    {
    	struct btrfs_delayed_node *node;
    	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
    	struct btrfs_root *root = btrfs_inode->root;
    	u64 ino = btrfs_ino(inode);
    	int ret;
    
    again:
    	node = btrfs_get_delayed_node(inode);
    	if (node)
    		return node;
    
    
    	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
    	if (!node)
    		return ERR_PTR(-ENOMEM);
    
    	btrfs_init_delayed_node(node, root, ino);
    
    
    	atomic_inc(&node->refs);	/* cached in the btrfs inode */
    	atomic_inc(&node->refs);	/* can be accessed */
    
    	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
    	if (ret) {
    		kmem_cache_free(delayed_node_cache, node);
    		return ERR_PTR(ret);
    	}
    
    	spin_lock(&root->inode_lock);
    
    	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
    
    	if (ret == -EEXIST) {
    		kmem_cache_free(delayed_node_cache, node);
    		spin_unlock(&root->inode_lock);
    		radix_tree_preload_end();
    		goto again;
    	}
    	btrfs_inode->delayed_node = node;
    	spin_unlock(&root->inode_lock);
    	radix_tree_preload_end();
    
    	return node;
    }
    
    /*
     * Call it when holding delayed_node->mutex
     *
     * If mod = 1, add this node into the prepared list.
     */
    static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
    				     struct btrfs_delayed_node *node,
    				     int mod)
    {
    	spin_lock(&root->lock);
    	if (node->in_list) {
    		if (!list_empty(&node->p_list))
    			list_move_tail(&node->p_list, &root->prepare_list);
    		else if (mod)
    			list_add_tail(&node->p_list, &root->prepare_list);
    	} else {
    		list_add_tail(&node->n_list, &root->node_list);
    		list_add_tail(&node->p_list, &root->prepare_list);
    		atomic_inc(&node->refs);	/* inserted into list */
    		root->nodes++;
    		node->in_list = 1;
    	}
    	spin_unlock(&root->lock);
    }
    
    /* Call it when holding delayed_node->mutex */
    static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
    				       struct btrfs_delayed_node *node)
    {
    	spin_lock(&root->lock);
    	if (node->in_list) {
    		root->nodes--;
    		atomic_dec(&node->refs);	/* not in the list */
    		list_del_init(&node->n_list);
    		if (!list_empty(&node->p_list))
    			list_del_init(&node->p_list);
    		node->in_list = 0;
    	}
    	spin_unlock(&root->lock);
    }
    
    struct btrfs_delayed_node *btrfs_first_delayed_node(
    			struct btrfs_delayed_root *delayed_root)
    {
    	struct list_head *p;
    	struct btrfs_delayed_node *node = NULL;
    
    	spin_lock(&delayed_root->lock);
    	if (list_empty(&delayed_root->node_list))
    		goto out;
    
    	p = delayed_root->node_list.next;
    	node = list_entry(p, struct btrfs_delayed_node, n_list);
    	atomic_inc(&node->refs);
    out:
    	spin_unlock(&delayed_root->lock);
    
    	return node;
    }
    
    struct btrfs_delayed_node *btrfs_next_delayed_node(
    						struct btrfs_delayed_node *node)
    {
    	struct btrfs_delayed_root *delayed_root;
    	struct list_head *p;
    	struct btrfs_delayed_node *next = NULL;
    
    	delayed_root = node->root->fs_info->delayed_root;
    	spin_lock(&delayed_root->lock);
    	if (!node->in_list) {	/* not in the list */
    		if (list_empty(&delayed_root->node_list))
    			goto out;
    		p = delayed_root->node_list.next;
    	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
    		goto out;
    	else
    		p = node->n_list.next;
    
    	next = list_entry(p, struct btrfs_delayed_node, n_list);
    	atomic_inc(&next->refs);
    out:
    	spin_unlock(&delayed_root->lock);
    
    	return next;
    }
    
    static void __btrfs_release_delayed_node(
    				struct btrfs_delayed_node *delayed_node,
    				int mod)
    {
    	struct btrfs_delayed_root *delayed_root;
    
    	if (!delayed_node)
    		return;
    
    	delayed_root = delayed_node->root->fs_info->delayed_root;
    
    	mutex_lock(&delayed_node->mutex);
    	if (delayed_node->count)
    		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
    	else
    		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
    	mutex_unlock(&delayed_node->mutex);
    
    	if (atomic_dec_and_test(&delayed_node->refs)) {
    		struct btrfs_root *root = delayed_node->root;
    		spin_lock(&root->inode_lock);
    		if (atomic_read(&delayed_node->refs) == 0) {
    			radix_tree_delete(&root->delayed_nodes_tree,
    					  delayed_node->inode_id);
    			kmem_cache_free(delayed_node_cache, delayed_node);
    		}
    		spin_unlock(&root->inode_lock);
    	}
    }
    
    static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
    {
    	__btrfs_release_delayed_node(node, 0);
    }
    
    struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
    					struct btrfs_delayed_root *delayed_root)
    {
    	struct list_head *p;
    	struct btrfs_delayed_node *node = NULL;
    
    	spin_lock(&delayed_root->lock);
    	if (list_empty(&delayed_root->prepare_list))
    		goto out;
    
    	p = delayed_root->prepare_list.next;
    	list_del_init(p);
    	node = list_entry(p, struct btrfs_delayed_node, p_list);
    	atomic_inc(&node->refs);
    out:
    	spin_unlock(&delayed_root->lock);
    
    	return node;
    }
    
    static inline void btrfs_release_prepared_delayed_node(
    					struct btrfs_delayed_node *node)
    {
    	__btrfs_release_delayed_node(node, 1);
    }
    
    struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
    {
    	struct btrfs_delayed_item *item;
    	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
    	if (item) {
    		item->data_len = data_len;
    		item->ins_or_del = 0;
    		item->bytes_reserved = 0;
    		item->delayed_node = NULL;
    		atomic_set(&item->refs, 1);
    	}
    	return item;
    }
    
    /*
     * __btrfs_lookup_delayed_item - look up the delayed item by key
     * @delayed_node: pointer to the delayed node
     * @key:	  the key to look up
     * @prev:	  used to store the prev item if the right item isn't found
     * @next:	  used to store the next item if the right item isn't found
     *
     * Note: if we don't find the right item, we will return the prev item and
     * the next item.
     */
    static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
    				struct rb_root *root,
    				struct btrfs_key *key,
    				struct btrfs_delayed_item **prev,
    				struct btrfs_delayed_item **next)
    {
    	struct rb_node *node, *prev_node = NULL;
    	struct btrfs_delayed_item *delayed_item = NULL;
    	int ret = 0;
    
    	node = root->rb_node;
    
    	while (node) {
    		delayed_item = rb_entry(node, struct btrfs_delayed_item,
    					rb_node);
    		prev_node = node;
    		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
    		if (ret < 0)
    			node = node->rb_right;
    		else if (ret > 0)
    			node = node->rb_left;
    		else
    			return delayed_item;
    	}
    
    	if (prev) {
    		if (!prev_node)
    			*prev = NULL;
    		else if (ret < 0)
    			*prev = delayed_item;
    		else if ((node = rb_prev(prev_node)) != NULL) {
    			*prev = rb_entry(node, struct btrfs_delayed_item,
    					 rb_node);
    		} else
    			*prev = NULL;
    	}
    
    	if (next) {
    		if (!prev_node)
    			*next = NULL;
    		else if (ret > 0)
    			*next = delayed_item;
    		else if ((node = rb_next(prev_node)) != NULL) {
    			*next = rb_entry(node, struct btrfs_delayed_item,
    					 rb_node);
    		} else
    			*next = NULL;
    	}
    	return NULL;
    }
    
    struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
    					struct btrfs_delayed_node *delayed_node,
    					struct btrfs_key *key)
    {
    	struct btrfs_delayed_item *item;
    
    	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
    					   NULL, NULL);
    	return item;
    }
    
    struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
    					struct btrfs_delayed_node *delayed_node,
    					struct btrfs_key *key)
    {
    	struct btrfs_delayed_item *item;
    
    	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
    					   NULL, NULL);
    	return item;
    }
    
    struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
    					struct btrfs_delayed_node *delayed_node,
    					struct btrfs_key *key)
    {
    	struct btrfs_delayed_item *item, *next;
    
    	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
    					   NULL, &next);
    	if (!item)
    		item = next;
    
    	return item;
    }
    
    struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
    					struct btrfs_delayed_node *delayed_node,
    					struct btrfs_key *key)
    {
    	struct btrfs_delayed_item *item, *next;
    
    	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
    					   NULL, &next);
    	if (!item)
    		item = next;
    
    	return item;
    }
    
    static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
    				    struct btrfs_delayed_item *ins,
    				    int action)
    {
    	struct rb_node **p, *node;
    	struct rb_node *parent_node = NULL;
    	struct rb_root *root;
    	struct btrfs_delayed_item *item;
    	int cmp;
    
    	if (action == BTRFS_DELAYED_INSERTION_ITEM)
    		root = &delayed_node->ins_root;
    	else if (action == BTRFS_DELAYED_DELETION_ITEM)
    		root = &delayed_node->del_root;
    	else
    		BUG();
    	p = &root->rb_node;
    	node = &ins->rb_node;
    
    	while (*p) {
    		parent_node = *p;
    		item = rb_entry(parent_node, struct btrfs_delayed_item,
    				 rb_node);
    
    		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
    		if (cmp < 0)
    			p = &(*p)->rb_right;
    		else if (cmp > 0)
    			p = &(*p)->rb_left;
    		else
    			return -EEXIST;
    	}
    
    	rb_link_node(node, parent_node, p);
    	rb_insert_color(node, root);
    	ins->delayed_node = delayed_node;
    	ins->ins_or_del = action;
    
    	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
    	    action == BTRFS_DELAYED_INSERTION_ITEM &&
    	    ins->key.offset >= delayed_node->index_cnt)
    			delayed_node->index_cnt = ins->key.offset + 1;
    
    	delayed_node->count++;
    	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
    	return 0;
    }
    
    static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
    					      struct btrfs_delayed_item *item)
    {
    	return __btrfs_add_delayed_item(node, item,
    					BTRFS_DELAYED_INSERTION_ITEM);
    }
    
    static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
    					     struct btrfs_delayed_item *item)
    {
    	return __btrfs_add_delayed_item(node, item,
    					BTRFS_DELAYED_DELETION_ITEM);
    }
    
    static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
    {
    	struct rb_root *root;
    	struct btrfs_delayed_root *delayed_root;
    
    	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
    
    	BUG_ON(!delayed_root);
    	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
    	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
    
    	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
    		root = &delayed_item->delayed_node->ins_root;
    	else
    		root = &delayed_item->delayed_node->del_root;
    
    	rb_erase(&delayed_item->rb_node, root);
    	delayed_item->delayed_node->count--;
    
    	if (atomic_dec_return(&delayed_root->items) <
    	    BTRFS_DELAYED_BACKGROUND &&
    
    	    waitqueue_active(&delayed_root->wait))
    		wake_up(&delayed_root->wait);
    }
    
    static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
    {
    	if (item) {
    		__btrfs_remove_delayed_item(item);
    		if (atomic_dec_and_test(&item->refs))
    			kfree(item);
    	}
    }
    
    struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
    					struct btrfs_delayed_node *delayed_node)
    {
    	struct rb_node *p;
    	struct btrfs_delayed_item *item = NULL;
    
    	p = rb_first(&delayed_node->ins_root);
    	if (p)
    		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
    
    	return item;
    }
    
    struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
    					struct btrfs_delayed_node *delayed_node)
    {
    	struct rb_node *p;
    	struct btrfs_delayed_item *item = NULL;
    
    	p = rb_first(&delayed_node->del_root);
    	if (p)
    		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
    
    	return item;
    }
    
    struct btrfs_delayed_item *__btrfs_next_delayed_item(
    						struct btrfs_delayed_item *item)
    {
    	struct rb_node *p;
    	struct btrfs_delayed_item *next = NULL;
    
    	p = rb_next(&item->rb_node);
    	if (p)
    		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
    
    	return next;
    }
    
    static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
    						   u64 root_id)
    {
    	struct btrfs_key root_key;
    
    	if (root->objectid == root_id)
    		return root;
    
    	root_key.objectid = root_id;
    	root_key.type = BTRFS_ROOT_ITEM_KEY;
    	root_key.offset = (u64)-1;
    	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
    }
    
    static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
    					       struct btrfs_root *root,
    					       struct btrfs_delayed_item *item)
    {
    	struct btrfs_block_rsv *src_rsv;
    	struct btrfs_block_rsv *dst_rsv;
    	u64 num_bytes;
    	int ret;
    
    	if (!trans->bytes_reserved)
    		return 0;
    
    	src_rsv = trans->block_rsv;
    
    	dst_rsv = &root->fs_info->delayed_block_rsv;
    
    
    	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
    	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
    
    	if (!ret) {
    		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
    					      item->key.objectid,
    					      num_bytes, 1);
    
    		item->bytes_reserved = num_bytes;
    
    
    	return ret;
    }
    
    static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
    						struct btrfs_delayed_item *item)
    {
    
    	if (!item->bytes_reserved)
    		return;
    
    
    	rsv = &root->fs_info->delayed_block_rsv;
    
    	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
    				      item->key.objectid, item->bytes_reserved,
    				      0);
    
    	btrfs_block_rsv_release(root, rsv,
    
    				item->bytes_reserved);
    }
    
    static int btrfs_delayed_inode_reserve_metadata(
    					struct btrfs_trans_handle *trans,
    					struct btrfs_root *root,
    
    					struct btrfs_delayed_node *node)
    {
    	struct btrfs_block_rsv *src_rsv;
    	struct btrfs_block_rsv *dst_rsv;
    	u64 num_bytes;
    	int ret;
    
    	bool release = false;
    
    
    	src_rsv = trans->block_rsv;
    
    	dst_rsv = &root->fs_info->delayed_block_rsv;
    
    
    	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
    
    
    	/*
    	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
    	 * which doesn't reserve space for speed.  This is a problem since we
    	 * still need to reserve space for this update, so try to reserve the
    	 * space.
    	 *
    	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
    	 * we're accounted for.
    	 */
    
    	if (!src_rsv || (!trans->bytes_reserved &&
    	    src_rsv != &root->fs_info->delalloc_block_rsv)) {
    
    		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
    		/*
    		 * Since we're under a transaction reserve_metadata_bytes could
    		 * try to commit the transaction which will make it return
    		 * EAGAIN to make us stop the transaction we have, so return
    		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
    		 */
    		if (ret == -EAGAIN)
    			ret = -ENOSPC;
    
    		if (!ret) {
    
    			node->bytes_reserved = num_bytes;
    
    			trace_btrfs_space_reservation(root->fs_info,
    						      "delayed_inode",
    						      btrfs_ino(inode),
    						      num_bytes, 1);
    		}
    
    	} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
    		spin_lock(&BTRFS_I(inode)->lock);
    
    		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
    				       &BTRFS_I(inode)->runtime_flags)) {
    
    			spin_unlock(&BTRFS_I(inode)->lock);
    			release = true;
    			goto migrate;
    		}
    		spin_unlock(&BTRFS_I(inode)->lock);
    
    		/* Ok we didn't have space pre-reserved.  This shouldn't happen
    		 * too often but it can happen if we do delalloc to an existing
    		 * inode which gets dirtied because of the time update, and then
    		 * isn't touched again until after the transaction commits and
    		 * then we try to write out the data.  First try to be nice and
    		 * reserve something strictly for us.  If not be a pain and try
    		 * to steal from the delalloc block rsv.
    		 */
    		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
    		if (!ret)
    			goto out;
    
    		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
    		if (!ret)
    			goto out;
    
    		/*
    		 * Ok this is a problem, let's just steal from the global rsv
    		 * since this really shouldn't happen that often.
    		 */
    		WARN_ON(1);
    		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
    					      dst_rsv, num_bytes);
    		goto out;
    
    	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
    
    
    out:
    	/*
    	 * Migrate only takes a reservation, it doesn't touch the size of the
    	 * block_rsv.  This is to simplify people who don't normally have things
    	 * migrated from their block rsv.  If they go to release their
    	 * reservation, that will decrease the size as well, so if migrate
    	 * reduced size we'd end up with a negative size.  But for the
    	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
    	 * but we could in fact do this reserve/migrate dance several times
    	 * between the time we did the original reservation and we'd clean it
    	 * up.  So to take care of this, release the space for the meta
    	 * reservation here.  I think it may be time for a documentation page on
    	 * how block rsvs. work.
    	 */
    
    	if (!ret) {
    		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
    					      btrfs_ino(inode), num_bytes, 1);
    
    		node->bytes_reserved = num_bytes;
    
    	if (release) {
    		trace_btrfs_space_reservation(root->fs_info, "delalloc",
    					      btrfs_ino(inode), num_bytes, 0);
    
    		btrfs_block_rsv_release(root, src_rsv, num_bytes);
    
    
    	return ret;
    }
    
    static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
    						struct btrfs_delayed_node *node)
    {
    	struct btrfs_block_rsv *rsv;
    
    	if (!node->bytes_reserved)
    		return;
    
    
    	rsv = &root->fs_info->delayed_block_rsv;
    
    	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
    				      node->inode_id, node->bytes_reserved, 0);
    
    	btrfs_block_rsv_release(root, rsv,
    				node->bytes_reserved);
    	node->bytes_reserved = 0;
    }
    
    /*
     * This helper will insert some continuous items into the same leaf according
     * to the free space of the leaf.
     */
    static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
    				struct btrfs_root *root,
    				struct btrfs_path *path,
    				struct btrfs_delayed_item *item)
    {
    	struct btrfs_delayed_item *curr, *next;
    	int free_space;
    	int total_data_size = 0, total_size = 0;
    	struct extent_buffer *leaf;
    	char *data_ptr;
    	struct btrfs_key *keys;
    	u32 *data_size;
    	struct list_head head;
    	int slot;
    	int nitems;
    	int i;
    	int ret = 0;
    
    	BUG_ON(!path->nodes[0]);
    
    	leaf = path->nodes[0];
    	free_space = btrfs_leaf_free_space(root, leaf);
    	INIT_LIST_HEAD(&head);
    
    	next = item;
    
    
    	/*
    	 * count the number of the continuous items that we can insert in batch
    	 */
    	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
    	       free_space) {
    		total_data_size += next->data_len;
    		total_size += next->data_len + sizeof(struct btrfs_item);
    		list_add_tail(&next->tree_list, &head);
    		nitems++;
    
    		curr = next;
    		next = __btrfs_next_delayed_item(curr);
    		if (!next)
    			break;
    
    		if (!btrfs_is_continuous_delayed_item(curr, next))
    			break;
    	}
    
    	if (!nitems) {
    		ret = 0;
    		goto out;
    	}
    
    	/*
    	 * we need allocate some memory space, but it might cause the task
    	 * to sleep, so we set all locked nodes in the path to blocking locks
    	 * first.
    	 */
    	btrfs_set_path_blocking(path);
    
    	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
    	if (!keys) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
    	if (!data_size) {
    		ret = -ENOMEM;
    		goto error;
    	}
    
    	/* get keys of all the delayed items */
    	i = 0;
    	list_for_each_entry(next, &head, tree_list) {
    		keys[i] = next->key;
    		data_size[i] = next->data_len;
    		i++;
    	}
    
    	/* reset all the locked nodes in the patch to spinning locks. */
    
    	btrfs_clear_path_blocking(path, NULL, 0);
    
    
    	/* insert the keys of the items */
    
    	setup_items_for_insert(trans, root, path, keys, data_size,
    			       total_data_size, total_size, nitems);
    
    
    	/* insert the dir index items */
    	slot = path->slots[0];
    	list_for_each_entry_safe(curr, next, &head, tree_list) {
    		data_ptr = btrfs_item_ptr(leaf, slot, char);
    		write_extent_buffer(leaf, &curr->data,
    				    (unsigned long)data_ptr,
    				    curr->data_len);
    		slot++;
    
    		btrfs_delayed_item_release_metadata(root, curr);
    
    		list_del(&curr->tree_list);
    		btrfs_release_delayed_item(curr);
    	}
    
    error:
    	kfree(data_size);
    	kfree(keys);
    out:
    	return ret;
    }
    
    /*
     * This helper can just do simple insertion that needn't extend item for new
     * data, such as directory name index insertion, inode insertion.
     */
    static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
    				     struct btrfs_root *root,
    				     struct btrfs_path *path,
    				     struct btrfs_delayed_item *delayed_item)
    {
    	struct extent_buffer *leaf;
    	struct btrfs_item *item;
    	char *ptr;
    	int ret;
    
    	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
    				      delayed_item->data_len);
    	if (ret < 0 && ret != -EEXIST)
    		return ret;
    
    	leaf = path->nodes[0];
    
    	item = btrfs_item_nr(leaf, path->slots[0]);
    	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
    
    	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
    			    delayed_item->data_len);
    	btrfs_mark_buffer_dirty(leaf);
    
    	btrfs_delayed_item_release_metadata(root, delayed_item);
    	return 0;
    }
    
    /*
     * we insert an item first, then if there are some continuous items, we try
     * to insert those items into the same leaf.
     */
    static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
    				      struct btrfs_path *path,
    				      struct btrfs_root *root,
    				      struct btrfs_delayed_node *node)
    {
    	struct btrfs_delayed_item *curr, *prev;
    	int ret = 0;
    
    do_again:
    	mutex_lock(&node->mutex);
    	curr = __btrfs_first_delayed_insertion_item(node);
    	if (!curr)
    		goto insert_end;
    
    	ret = btrfs_insert_delayed_item(trans, root, path, curr);
    	if (ret < 0) {
    
    		goto insert_end;
    	}
    
    	prev = curr;
    	curr = __btrfs_next_delayed_item(prev);
    	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
    		/* insert the continuous items into the same leaf */
    		path->slots[0]++;
    		btrfs_batch_insert_items(trans, root, path, curr);
    	}
    	btrfs_release_delayed_item(prev);
    	btrfs_mark_buffer_dirty(path->nodes[0]);
    
    
    	mutex_unlock(&node->mutex);
    	goto do_again;
    
    insert_end:
    	mutex_unlock(&node->mutex);
    	return ret;
    }
    
    static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
    				    struct btrfs_root *root,
    				    struct btrfs_path *path,
    				    struct btrfs_delayed_item *item)
    {
    	struct btrfs_delayed_item *curr, *next;
    	struct extent_buffer *leaf;
    	struct btrfs_key key;
    	struct list_head head;
    	int nitems, i, last_item;
    	int ret = 0;
    
    	BUG_ON(!path->nodes[0]);
    
    	leaf = path->nodes[0];
    
    	i = path->slots[0];
    	last_item = btrfs_header_nritems(leaf) - 1;
    	if (i > last_item)
    		return -ENOENT;	/* FIXME: Is errno suitable? */
    
    	next = item;
    	INIT_LIST_HEAD(&head);
    	btrfs_item_key_to_cpu(leaf, &key, i);
    	nitems = 0;
    	/*
    	 * count the number of the dir index items that we can delete in batch
    	 */
    	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
    		list_add_tail(&next->tree_list, &head);
    		nitems++;
    
    		curr = next;
    		next = __btrfs_next_delayed_item(curr);
    		if (!next)
    			break;
    
    		if (!btrfs_is_continuous_delayed_item(curr, next))
    			break;
    
    		i++;
    		if (i > last_item)
    			break;
    		btrfs_item_key_to_cpu(leaf, &key, i);
    	}
    
    	if (!nitems)
    		return 0;
    
    	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
    	if (ret)
    		goto out;
    
    	list_for_each_entry_safe(curr, next, &head, tree_list) {
    		btrfs_delayed_item_release_metadata(root, curr);
    		list_del(&curr->tree_list);
    		btrfs_release_delayed_item(curr);
    	}
    
    out: