Skip to content
Snippets Groups Projects
builtin-stat.c 12 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * builtin-stat.c
     *
     * Builtin stat command: Give a precise performance counters summary
     * overview about any workload, CPU or specific PID.
     *
     * Sample output:
    
       $ perf stat ~/hackbench 10
       Time: 0.104
    
        Performance counter stats for '/home/mingo/hackbench':
    
           1255.538611  task clock ticks     #      10.143 CPU utilization factor
                 54011  context switches     #       0.043 M/sec
                   385  CPU migrations       #       0.000 M/sec
                 17755  pagefaults           #       0.014 M/sec
            3808323185  CPU cycles           #    3033.219 M/sec
            1575111190  instructions         #    1254.530 M/sec
              17367895  cache references     #      13.833 M/sec
               7674421  cache misses         #       6.112 M/sec
    
        Wall-clock time elapsed:   123.786620 msecs
    
     *
     * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
     *
     * Improvements and fixes by:
     *
     *   Arjan van de Ven <arjan@linux.intel.com>
     *   Yanmin Zhang <yanmin.zhang@intel.com>
     *   Wu Fengguang <fengguang.wu@intel.com>
     *   Mike Galbraith <efault@gmx.de>
     *   Paul Mackerras <paulus@samba.org>
    
     *   Jaswinder Singh Rajput <jaswinder@kernel.org>
    
     *
     * Released under the GPL v2. (and only v2, not any later version)
    
    #include "perf.h"
    
    #include "util/util.h"
    
    #include "util/parse-options.h"
    #include "util/parse-events.h"
    
    #include "util/event.h"
    #include "util/debug.h"
    
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK	},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS	},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS	},
    
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES	},
    
    
    static int			system_wide			=  0;
    
    static unsigned int		nr_cpus				=  0;
    
    static int			run_idx				=  0;
    
    static int			run_count			=  1;
    static int			inherit				=  1;
    
    static int			scale				=  1;
    
    static int			target_pid			= -1;
    
    static int			null_run			=  0;
    
    static int			fd[MAX_NR_CPUS][MAX_COUNTERS];
    
    static u64			event_res[MAX_COUNTERS][3];
    
    static int			event_scaled[MAX_COUNTERS];
    
    struct stats
    {
    	double sum;
    	double sum_sq;
    };
    
    static void update_stats(struct stats *stats, u64 val)
    {
    	double sq = val;
    
    	stats->sum += val;
    	stats->sum_sq += sq * sq;
    }
    
    
    static double avg_stats(struct stats *stats)
    {
    	return stats->sum / run_count;
    }
    
     * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
     *
     *      (\Sum n_i^2) - ((\Sum n_i)^2)/n
     * s^2  -------------------------------
     *                   n - 1
     *
     * http://en.wikipedia.org/wiki/Stddev
     *
     * The std dev of the mean is related to the std dev by:
     *
     *             s
     * s_mean = -------
     *          sqrt(n)
     *
    
     */
    static double stddev_stats(struct stats *stats)
    {
    	double avg = stats->sum / run_count;
    
    	double variance = (stats->sum_sq - stats->sum*avg)/(run_count - 1);
    	double variance_mean = variance / run_count;
    
    	return sqrt(variance_mean);
    
    struct stats			event_res_stats[MAX_COUNTERS][3];
    struct stats			runtime_nsecs_stats;
    struct stats			walltime_nsecs_stats;
    struct stats			runtime_cycles_stats;
    
    #define MATCH_EVENT(t, c, counter)			\
    	(attrs[counter].type == PERF_TYPE_##t &&	\
    	 attrs[counter].config == PERF_COUNT_##c)
    
    
    #define ERR_PERF_OPEN \
    "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
    
    
    static void create_perf_stat_counter(int counter, int pid)
    
    	struct perf_counter_attr *attr = attrs + counter;
    
    		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
    				    PERF_FORMAT_TOTAL_TIME_RUNNING;
    
    		for (cpu = 0; cpu < nr_cpus; cpu++) {
    
    			fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
    
    			if (fd[cpu][counter] < 0 && verbose)
    				fprintf(stderr, ERR_PERF_OPEN, counter,
    					fd[cpu][counter], strerror(errno));
    
    		attr->inherit	     = inherit;
    		attr->disabled	     = 1;
    		attr->enable_on_exec = 1;
    
    		fd[0][counter] = sys_perf_counter_open(attr, pid, -1, -1, 0);
    
    		if (fd[0][counter] < 0 && verbose)
    			fprintf(stderr, ERR_PERF_OPEN, counter,
    				fd[0][counter], strerror(errno));
    
    /*
     * Does the counter have nsecs as a unit?
     */
    static inline int nsec_counter(int counter)
    {
    
    	if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
    	    MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
    
     * Read out the results of a single counter:
    
    static void read_counter(int counter)
    
    	unsigned int cpu;
    	size_t res, nv;
    
    	count = event_res[counter];
    
    	count[0] = count[1] = count[2] = 0;
    
    	for (cpu = 0; cpu < nr_cpus; cpu++) {
    
    		if (fd[cpu][counter] < 0)
    			continue;
    
    
    		res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
    		assert(res == nv * sizeof(u64));
    
    		close(fd[cpu][counter]);
    		fd[cpu][counter] = -1;
    
    
    		count[0] += single_count[0];
    		if (scale) {
    			count[1] += single_count[1];
    			count[2] += single_count[2];
    		}
    	}
    
    	scaled = 0;
    	if (scale) {
    		if (count[2] == 0) {
    
    			event_scaled[counter] = -1;
    
    		if (count[2] < count[1]) {
    
    			event_scaled[counter] = 1;
    
    			count[0] = (unsigned long long)
    				((double)count[0] * count[1] / count[2] + 0.5);
    		}
    	}
    
    
    	for (i = 0; i < 3; i++)
    		update_stats(&event_res_stats[counter][i], count[i]);
    
    	if (verbose) {
    		fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
    				count[0], count[1], count[2]);
    	}
    
    
    	/*
    	 * Save the full runtime - to allow normalization during printout:
    	 */
    
    	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
    
    		update_stats(&runtime_nsecs_stats, count[0]);
    
    	if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
    
    		update_stats(&runtime_cycles_stats, count[0]);
    
    static int run_perf_stat(int argc __used, const char **argv)
    
    {
    	unsigned long long t0, t1;
    	int status = 0;
    	int counter;
    	int pid;
    
    	int child_ready_pipe[2], go_pipe[2];
    	char buf;
    
    	if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
    		perror("failed to create pipes");
    		exit(1);
    	}
    
    	if ((pid = fork()) < 0)
    		perror("failed to fork");
    
    	if (!pid) {
    		close(child_ready_pipe[0]);
    		close(go_pipe[1]);
    		fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
    
    		/*
    		 * Do a dummy execvp to get the PLT entry resolved,
    		 * so we avoid the resolver overhead on the real
    		 * execvp call.
    		 */
    		execvp("", (char **)argv);
    
    		/*
    		 * Tell the parent we're ready to go
    		 */
    		close(child_ready_pipe[1]);
    
    		/*
    		 * Wait until the parent tells us to go.
    		 */
    
    		if (read(go_pipe[0], &buf, 1) == -1)
    			perror("unable to read pipe");
    
    
    		execvp(argv[0], (char **)argv);
    
    		perror(argv[0]);
    		exit(-1);
    	}
    
    	/*
    	 * Wait for the child to be ready to exec.
    	 */
    	close(child_ready_pipe[1]);
    	close(go_pipe[0]);
    
    	if (read(child_ready_pipe[0], &buf, 1) == -1)
    		perror("unable to read pipe");
    
    	for (counter = 0; counter < nr_counters; counter++)
    
    		create_perf_stat_counter(counter, pid);
    
    
    	/*
    	 * Enable counters and exec the command:
    	 */
    	t0 = rdclock();
    
    
    	update_stats(&walltime_nsecs_stats, t1 - t0);
    
    
    	for (counter = 0; counter < nr_counters; counter++)
    		read_counter(counter);
    
    	return WEXITSTATUS(status);
    }
    
    
    static void print_noise(double avg, double stddev)
    
    		fprintf(stderr, "   ( +- %7.3f%% )", 100*stddev / avg);
    
    static void nsec_printout(int counter, double avg, double stddev)
    
    	double msecs = avg / 1e6;
    
    	fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
    
    	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
    
    		fprintf(stderr, " # %10.3f CPUs ",
    				avg / avg_stats(&walltime_nsecs_stats));
    
    	print_noise(avg, stddev);
    
    static void abs_printout(int counter, double avg, double stddev)
    
    	fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
    
    	if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
    
    		fprintf(stderr, " # %10.3f IPC  ",
    
    				avg / avg_stats(&runtime_cycles_stats));
    
    		fprintf(stderr, " # %10.3f M/sec",
    				1000.0 * avg / avg_stats(&runtime_nsecs_stats));
    
    	print_noise(avg, stddev);
    
    /*
     * Print out the results of a single counter:
     */
    static void print_counter(int counter)
    {
    
    	int scaled = event_scaled[counter];
    
    	avg    = avg_stats(&event_res_stats[counter][0]);
    	stddev = stddev_stats(&event_res_stats[counter][0]);
    
    		fprintf(stderr, " %14s  %-24s\n",
    
    			"<not counted>", event_name(counter));
    		return;
    	}
    
    	if (nsec_counter(counter))
    
    		nsec_printout(counter, avg, stddev);
    
    	else
    
    		abs_printout(counter, avg, stddev);
    
    	if (scaled) {
    		double avg_enabled, avg_running;
    
    		avg_enabled = avg_stats(&event_res_stats[counter][1]);
    		avg_running = avg_stats(&event_res_stats[counter][2]);
    
    		fprintf(stderr, "  (scaled from %.2f%%)",
    
    				100 * avg_running / avg_enabled);
    	}
    
    static void print_stat(int argc, const char **argv)
    {
    	int i, counter;
    
    
    	fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
    
    	for (i = 1; i < argc; i++)
    		fprintf(stderr, " %s", argv[i]);
    
    
    	fprintf(stderr, "\'");
    	if (run_count > 1)
    		fprintf(stderr, " (%d runs)", run_count);
    	fprintf(stderr, ":\n\n");
    
    	for (counter = 0; counter < nr_counters; counter++)
    		print_counter(counter);
    
    	fprintf(stderr, " %14.9f  seconds time elapsed",
    
    			avg_stats(&walltime_nsecs_stats)/1e9);
    
    	if (run_count > 1) {
    		fprintf(stderr, "   ( +- %7.3f%% )",
    
    				100*stddev_stats(&walltime_nsecs_stats) /
    				avg_stats(&walltime_nsecs_stats));
    
    	}
    	fprintf(stderr, "\n\n");
    
    static volatile int signr = -1;
    
    
    static void skip_signal(int signo)
    
    	signr = signo;
    }
    
    static void sig_atexit(void)
    {
    	if (signr == -1)
    		return;
    
    	signal(signr, SIG_DFL);
    	kill(getpid(), signr);
    
    }
    
    static const char * const stat_usage[] = {
    	"perf stat [<options>] <command>",
    	NULL
    };
    
    static const struct option options[] = {
    	OPT_CALLBACK('e', "event", NULL, "event",
    
    		     "event selector. use 'perf list' to list available events",
    		     parse_events),
    
    	OPT_BOOLEAN('i', "inherit", &inherit,
    		    "child tasks inherit counters"),
    	OPT_INTEGER('p', "pid", &target_pid,
    		    "stat events on existing pid"),
    	OPT_BOOLEAN('a', "all-cpus", &system_wide,
    
    		    "system-wide collection from all CPUs"),
    
    	OPT_BOOLEAN('c', "scale", &scale,
    
    		    "scale/normalize counters"),
    
    	OPT_BOOLEAN('v', "verbose", &verbose,
    		    "be more verbose (show counter open errors, etc)"),
    
    	OPT_INTEGER('r', "repeat", &run_count,
    		    "repeat command and print average + stddev (max: 100)"),
    
    	OPT_BOOLEAN('n', "null", &null_run,
    		    "null run - dont start any counters"),
    
    int cmd_stat(int argc, const char **argv, const char *prefix __used)
    
    	argc = parse_options(argc, argv, options, stat_usage,
    		PARSE_OPT_STOP_AT_NON_OPTION);
    
    	if (!argc)
    		usage_with_options(stat_usage, options);
    
    	if (run_count <= 0)
    
    		usage_with_options(stat_usage, options);
    
    	/* Set attrs and nr_counters if no event is selected and !null_run */
    	if (!null_run && !nr_counters) {
    		memcpy(attrs, default_attrs, sizeof(default_attrs));
    		nr_counters = ARRAY_SIZE(default_attrs);
    	}
    
    
    	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
    	assert(nr_cpus <= MAX_NR_CPUS);
    
    	assert((int)nr_cpus >= 0);
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	/*
    	 * We dont want to block the signals - that would cause
    	 * child tasks to inherit that and Ctrl-C would not work.
    	 * What we want is for Ctrl-C to work in the exec()-ed
    	 * task, but being ignored by perf stat itself:
    	 */
    
    	atexit(sig_atexit);
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	signal(SIGINT,  skip_signal);
    	signal(SIGALRM, skip_signal);
    	signal(SIGABRT, skip_signal);
    
    
    	status = 0;
    	for (run_idx = 0; run_idx < run_count; run_idx++) {
    		if (run_count != 1 && verbose)
    
    			fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
    
    		status = run_perf_stat(argc, argv);
    	}
    
    	print_stat(argc, argv);
    
    	return status;