Newer
Older

Changli Gao
committed
bool no_autobind;
struct percpu_counter *orphan_count;
struct request_sock_ops *rsk_prot;
struct timewait_sock_ops *twsk_prot;

Arnaldo Carvalho de Melo
committed
union {
struct inet_hashinfo *hashinfo;
struct udp_table *udp_table;
struct raw_hashinfo *raw_hash;
struct module *owner;
char name[32];
struct list_head node;
#ifdef SOCK_REFCNT_DEBUG
atomic_t socks;
#endif
/*
* cgroup specific init/deinit functions. Called once for all
* protocols that implement it, from cgroups populate function.
* This function has to setup any files the protocol want to
* appear in the kmem cgroup filesystem.
*/
int (*init_cgroup)(struct mem_cgroup *memcg,
void (*destroy_cgroup)(struct mem_cgroup *memcg);
struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
#endif
};
/*
* Bits in struct cg_proto.flags
*/
enum cg_proto_flags {
/* Currently active and new sockets should be assigned to cgroups */
MEMCG_SOCK_ACTIVE,
/* It was ever activated; we must disarm static keys on destruction */
MEMCG_SOCK_ACTIVATED,
};
struct res_counter memory_allocated; /* Current allocated memory. */
struct percpu_counter sockets_allocated; /* Current number of sockets. */
int memory_pressure;
long sysctl_mem[3];
/*
* memcg field is used to find which memcg we belong directly
* Each memcg struct can hold more than one cg_proto, so container_of
* won't really cut.
*
* The elegant solution would be having an inverse function to
* proto_cgroup in struct proto, but that means polluting the structure
* for everybody, instead of just for memcg users.
*/
struct mem_cgroup *memcg;
int proto_register(struct proto *prot, int alloc_slab);
void proto_unregister(struct proto *prot);
static inline bool memcg_proto_active(struct cg_proto *cg_proto)
{
return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
}
static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
{
return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
}
#ifdef SOCK_REFCNT_DEBUG
static inline void sk_refcnt_debug_inc(struct sock *sk)
{
atomic_inc(&sk->sk_prot->socks);
}
static inline void sk_refcnt_debug_dec(struct sock *sk)
{
atomic_dec(&sk->sk_prot->socks);
printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
}
static inline void sk_refcnt_debug_release(const struct sock *sk)
{
if (atomic_read(&sk->sk_refcnt) != 1)
printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
}
#else /* SOCK_REFCNT_DEBUG */
#define sk_refcnt_debug_inc(sk) do { } while (0)
#define sk_refcnt_debug_dec(sk) do { } while (0)
#define sk_refcnt_debug_release(sk) do { } while (0)
#endif /* SOCK_REFCNT_DEBUG */
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
extern struct static_key memcg_socket_limit_enabled;
static inline struct cg_proto *parent_cg_proto(struct proto *proto,
struct cg_proto *cg_proto)
{
return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
}
#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
#else
#define mem_cgroup_sockets_enabled 0
static inline struct cg_proto *parent_cg_proto(struct proto *proto,
struct cg_proto *cg_proto)
{
return NULL;
}
#endif
static inline bool sk_stream_memory_free(const struct sock *sk)
{
if (sk->sk_wmem_queued >= sk->sk_sndbuf)
return false;
return sk->sk_prot->stream_memory_free ?
sk->sk_prot->stream_memory_free(sk) : true;
}
static inline bool sk_stream_is_writeable(const struct sock *sk)
{
return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
sk_stream_memory_free(sk);
static inline bool sk_has_memory_pressure(const struct sock *sk)
{
return sk->sk_prot->memory_pressure != NULL;
}
static inline bool sk_under_memory_pressure(const struct sock *sk)
{
if (!sk->sk_prot->memory_pressure)
return false;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
return !!sk->sk_cgrp->memory_pressure;
return !!*sk->sk_prot->memory_pressure;
}
static inline void sk_leave_memory_pressure(struct sock *sk)
{
int *memory_pressure = sk->sk_prot->memory_pressure;
if (!memory_pressure)
return;
if (*memory_pressure)
*memory_pressure = 0;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
struct proto *prot = sk->sk_prot;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
cg_proto->memory_pressure = 0;
}
static inline void sk_enter_memory_pressure(struct sock *sk)
{
if (!sk->sk_prot->enter_memory_pressure)
return;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
struct proto *prot = sk->sk_prot;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
cg_proto->memory_pressure = 1;
}
sk->sk_prot->enter_memory_pressure(sk);
}
static inline long sk_prot_mem_limits(const struct sock *sk, int index)
{
long *prot = sk->sk_prot->sysctl_mem;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
prot = sk->sk_cgrp->sysctl_mem;
return prot[index];
}
static inline void memcg_memory_allocated_add(struct cg_proto *prot,
unsigned long amt,
int *parent_status)
{
struct res_counter *fail;
int ret;
ret = res_counter_charge_nofail(&prot->memory_allocated,
amt << PAGE_SHIFT, &fail);
if (ret < 0)
*parent_status = OVER_LIMIT;
}
static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
unsigned long amt)
{
res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
}
static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
{
u64 ret;
ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
static inline long
sk_memory_allocated(const struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
return memcg_memory_allocated_read(sk->sk_cgrp);
return atomic_long_read(prot->memory_allocated);
}
static inline long
sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
/* update the root cgroup regardless */
atomic_long_add_return(amt, prot->memory_allocated);
return memcg_memory_allocated_read(sk->sk_cgrp);
}
return atomic_long_add_return(amt, prot->memory_allocated);
}
static inline void
sk_memory_allocated_sub(struct sock *sk, int amt)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
memcg_memory_allocated_sub(sk->sk_cgrp, amt);
atomic_long_sub(amt, prot->memory_allocated);
}
static inline void sk_sockets_allocated_dec(struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
percpu_counter_dec(&cg_proto->sockets_allocated);
percpu_counter_dec(prot->sockets_allocated);
}
static inline void sk_sockets_allocated_inc(struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
percpu_counter_inc(&cg_proto->sockets_allocated);
percpu_counter_inc(prot->sockets_allocated);
}
static inline int
sk_sockets_allocated_read_positive(struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
return percpu_counter_read_positive(prot->sockets_allocated);
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
}
static inline int
proto_sockets_allocated_sum_positive(struct proto *prot)
{
return percpu_counter_sum_positive(prot->sockets_allocated);
}
static inline long
proto_memory_allocated(struct proto *prot)
{
return atomic_long_read(prot->memory_allocated);
}
static inline bool
proto_memory_pressure(struct proto *prot)
{
if (!prot->memory_pressure)
return false;
return !!*prot->memory_pressure;
}
void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
int sock_prot_inuse_get(struct net *net, struct proto *proto);
static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
int inc)
/* With per-bucket locks this operation is not-atomic, so that
* this version is not worse.
*/
static inline void __sk_prot_rehash(struct sock *sk)
{
sk->sk_prot->unhash(sk);
sk->sk_prot->hash(sk);
}
void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
/* About 10 seconds */
#define SOCK_DESTROY_TIME (10*HZ)
/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK 1024
#define SHUTDOWN_MASK 3
#define RCV_SHUTDOWN 1
#define SEND_SHUTDOWN 2
#define SOCK_SNDBUF_LOCK 1
#define SOCK_RCVBUF_LOCK 2
#define SOCK_BINDADDR_LOCK 4
#define SOCK_BINDPORT_LOCK 8
/* sock_iocb: used to kick off async processing of socket ios */
struct sock_iocb {
struct list_head list;
int flags;
int size;
struct socket *sock;
struct sock *sk;
struct scm_cookie *scm;
struct msghdr *msg, async_msg;
struct kiocb *kiocb;
};
static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
{
return (struct sock_iocb *)iocb->private;
}
static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
{
return si->kiocb;
}
struct socket_alloc {
struct socket socket;
struct inode vfs_inode;
};
static inline struct socket *SOCKET_I(struct inode *inode)
{
return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
}
static inline struct inode *SOCK_INODE(struct socket *socket)
{
return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
}
/*
* Functions for memory accounting
*/
int __sk_mem_schedule(struct sock *sk, int size, int kind);
void __sk_mem_reclaim(struct sock *sk);
#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
#define SK_MEM_SEND 0
#define SK_MEM_RECV 1
static inline int sk_mem_pages(int amt)
return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
static inline bool sk_has_account(struct sock *sk)
/* return true if protocol supports memory accounting */
return !!sk->sk_prot->memory_allocated;
static inline bool sk_wmem_schedule(struct sock *sk, int size)
if (!sk_has_account(sk))
return size <= sk->sk_forward_alloc ||
__sk_mem_schedule(sk, size, SK_MEM_SEND);
sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
if (!sk_has_account(sk))
return size<= sk->sk_forward_alloc ||
__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
skb_pfmemalloc(skb);
}
static inline void sk_mem_reclaim(struct sock *sk)
{
if (!sk_has_account(sk))
return;
if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
__sk_mem_reclaim(sk);
}
static inline void sk_mem_reclaim_partial(struct sock *sk)
{
if (!sk_has_account(sk))
return;
if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
__sk_mem_reclaim(sk);
}
static inline void sk_mem_charge(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return;
sk->sk_forward_alloc -= size;
}
static inline void sk_mem_uncharge(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return;
sk->sk_forward_alloc += size;
}
static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
{
sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
sk->sk_wmem_queued -= skb->truesize;
sk_mem_uncharge(sk, skb->truesize);
__kfree_skb(skb);
/* Used by processes to "lock" a socket state, so that
* interrupts and bottom half handlers won't change it
* from under us. It essentially blocks any incoming
* packets, so that we won't get any new data or any
* packets that change the state of the socket.
*
* While locked, BH processing will add new packets to
* the backlog queue. This queue is processed by the
* owner of the socket lock right before it is released.
*
* Since ~2.3.5 it is also exclusive sleep lock serializing
* accesses from user process context.
*/
#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
static inline void sock_release_ownership(struct sock *sk)
{
sk->sk_lock.owned = 0;
}
/*
* Macro so as to not evaluate some arguments when
* lockdep is not enabled.
*
* Mark both the sk_lock and the sk_lock.slock as a
* per-address-family lock class.
*/
#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \

Ingo Molnar
committed
sk->sk_lock.owned = 0; \
init_waitqueue_head(&sk->sk_lock.wq); \
spin_lock_init(&(sk)->sk_lock.slock); \
debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
sizeof((sk)->sk_lock)); \
lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
} while (0)
void lock_sock_nested(struct sock *sk, int subclass);
static inline void lock_sock(struct sock *sk)
{
lock_sock_nested(sk, 0);
}
void release_sock(struct sock *sk);
/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
#define bh_lock_sock_nested(__sk) \
spin_lock_nested(&((__sk)->sk_lock.slock), \
SINGLE_DEPTH_NESTING)
#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
bool lock_sock_fast(struct sock *sk);
/**
* unlock_sock_fast - complement of lock_sock_fast
* @sk: socket
* @slow: slow mode
*
* fast unlock socket for user context.
* If slow mode is on, we call regular release_sock()
*/
static inline void unlock_sock_fast(struct sock *sk, bool slow)
if (slow)
release_sock(sk);
else
spin_unlock_bh(&sk->sk_lock.slock);
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
struct proto *prot);
void sk_free(struct sock *sk);
void sk_release_kernel(struct sock *sk);
struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
gfp_t priority);
void sock_wfree(struct sk_buff *skb);
void skb_orphan_partial(struct sk_buff *skb);
void sock_rfree(struct sk_buff *skb);
void sock_edemux(struct sk_buff *skb);
int sock_setsockopt(struct socket *sock, int level, int op,
char __user *optval, unsigned int optlen);
int sock_getsockopt(struct socket *sock, int level, int op,
char __user *optval, int __user *optlen);
struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
int noblock, int *errcode);
struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
unsigned long data_len, int noblock,
int *errcode, int max_page_order);
void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
void sock_kfree_s(struct sock *sk, void *mem, int size);
void sk_send_sigurg(struct sock *sk);
/*
* Functions to fill in entries in struct proto_ops when a protocol
* does not implement a particular function.
*/
int sock_no_bind(struct socket *, struct sockaddr *, int);
int sock_no_connect(struct socket *, struct sockaddr *, int, int);
int sock_no_socketpair(struct socket *, struct socket *);
int sock_no_accept(struct socket *, struct socket *, int);
int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
unsigned int sock_no_poll(struct file *, struct socket *,
struct poll_table_struct *);
int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
int sock_no_listen(struct socket *, int);
int sock_no_shutdown(struct socket *, int);
int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
int);
int sock_no_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma);
ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
size_t size, int flags);
/*
* Functions to fill in entries in struct proto_ops when a protocol
* uses the inet style.
*/
int sock_common_getsockopt(struct socket *sock, int level, int optname,
int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
int sock_common_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen);
int compat_sock_common_getsockopt(struct socket *sock, int level,
int optname, char __user *optval, int __user *optlen);
int compat_sock_common_setsockopt(struct socket *sock, int level,
int optname, char __user *optval, unsigned int optlen);
void sk_common_release(struct sock *sk);
/*
* Default socket callbacks and setup code
*/
void sock_init_data(struct socket *sock, struct sock *sk);
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
/*
* Socket reference counting postulates.
*
* * Each user of socket SHOULD hold a reference count.
* * Each access point to socket (an hash table bucket, reference from a list,
* running timer, skb in flight MUST hold a reference count.
* * When reference count hits 0, it means it will never increase back.
* * When reference count hits 0, it means that no references from
* outside exist to this socket and current process on current CPU
* is last user and may/should destroy this socket.
* * sk_free is called from any context: process, BH, IRQ. When
* it is called, socket has no references from outside -> sk_free
* may release descendant resources allocated by the socket, but
* to the time when it is called, socket is NOT referenced by any
* hash tables, lists etc.
* * Packets, delivered from outside (from network or from another process)
* and enqueued on receive/error queues SHOULD NOT grab reference count,
* when they sit in queue. Otherwise, packets will leak to hole, when
* socket is looked up by one cpu and unhasing is made by another CPU.
* It is true for udp/raw, netlink (leak to receive and error queues), tcp
* (leak to backlog). Packet socket does all the processing inside
* BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
* use separate SMP lock, so that they are prone too.
*/
/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{
if (atomic_dec_and_test(&sk->sk_refcnt))
sk_free(sk);
}
/* Generic version of sock_put(), dealing with all sockets
* (TCP_TIMEWAIT, ESTABLISHED...)
*/
void sock_gen_put(struct sock *sk);
int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
{
sk->sk_tx_queue_mapping = tx_queue;
}
static inline void sk_tx_queue_clear(struct sock *sk)
{
sk->sk_tx_queue_mapping = -1;
}
static inline int sk_tx_queue_get(const struct sock *sk)
{
return sk ? sk->sk_tx_queue_mapping : -1;
static inline void sk_set_socket(struct sock *sk, struct socket *sock)
{
static inline wait_queue_head_t *sk_sleep(struct sock *sk)
{
BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
return &rcu_dereference_raw(sk->sk_wq)->wait;
/* Detach socket from process context.
* Announce socket dead, detach it from wait queue and inode.
* Note that parent inode held reference count on this struct sock,
* we do not release it in this function, because protocol
* probably wants some additional cleanups or even continuing
* to work with this socket (TCP).
*/
static inline void sock_orphan(struct sock *sk)
{
write_lock_bh(&sk->sk_callback_lock);
sock_set_flag(sk, SOCK_DEAD);
write_unlock_bh(&sk->sk_callback_lock);
}
static inline void sock_graft(struct sock *sk, struct socket *parent)
{
write_lock_bh(&sk->sk_callback_lock);
security_sock_graft(sk, parent);
kuid_t sock_i_uid(struct sock *sk);
unsigned long sock_i_ino(struct sock *sk);
static inline struct dst_entry *
__sk_dst_get(struct sock *sk)
{

Michal Hocko
committed
return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
}
static inline struct dst_entry *
sk_dst_get(struct sock *sk)
{
struct dst_entry *dst;
rcu_read_lock();
dst = rcu_dereference(sk->sk_dst_cache);
static inline void dst_negative_advice(struct sock *sk)
{
struct dst_entry *ndst, *dst = __sk_dst_get(sk);
if (dst && dst->ops->negative_advice) {
ndst = dst->ops->negative_advice(dst);
if (ndst != dst) {
rcu_assign_pointer(sk->sk_dst_cache, ndst);
static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
struct dst_entry *old_dst;
/*
* This can be called while sk is owned by the caller only,
* with no state that can be checked in a rcu_dereference_check() cond
*/
old_dst = rcu_dereference_raw(sk->sk_dst_cache);
rcu_assign_pointer(sk->sk_dst_cache, dst);
dst_release(old_dst);
}
static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
}
static inline void
__sk_dst_reset(struct sock *sk)
{
}
static inline void
sk_dst_reset(struct sock *sk)
{
struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
static inline bool sk_can_gso(const struct sock *sk)
{
return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
}
void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
{
sk->sk_route_nocaps |= flags;
sk->sk_route_caps &= ~flags;
}
static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
char __user *from, char *to,
int copy, int offset)
{
if (skb->ip_summed == CHECKSUM_NONE) {
int err = 0;
__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
if (err)
return err;
skb->csum = csum_block_add(skb->csum, csum, offset);
} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
if (!access_ok(VERIFY_READ, from, copy) ||
__copy_from_user_nocache(to, from, copy))
return -EFAULT;
} else if (copy_from_user(to, from, copy))
return -EFAULT;
return 0;
}
static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
char __user *from, int copy)
{
int err, offset = skb->len;
err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
copy, offset);
__skb_trim(skb, offset);
return err;
}
static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
struct sk_buff *skb,
struct page *page,
int off, int copy)
{
int err;
err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
copy, skb->len);
if (err)
return err;
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk->sk_wmem_queued += copy;
sk_mem_charge(sk, copy);
return 0;
}
static inline int skb_copy_to_page(struct sock *sk, char __user *from,
struct sk_buff *skb, struct page *page,
int off, int copy)
{
if (skb->ip_summed == CHECKSUM_NONE) {
int err = 0;

Al Viro
committed
__wsum csum = csum_and_copy_from_user(from,
page_address(page) + off,
copy, 0, &err);
if (err)
return err;
skb->csum = csum_block_add(skb->csum, csum, skb->len);
} else if (copy_from_user(page_address(page) + off, from, copy))
return -EFAULT;
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk->sk_wmem_queued += copy;
sk_mem_charge(sk, copy);
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
/**
* sk_wmem_alloc_get - returns write allocations
* @sk: socket
*
* Returns sk_wmem_alloc minus initial offset of one
*/
static inline int sk_wmem_alloc_get(const struct sock *sk)
{
return atomic_read(&sk->sk_wmem_alloc) - 1;
}
/**
* sk_rmem_alloc_get - returns read allocations
* @sk: socket
*
* Returns sk_rmem_alloc
*/
static inline int sk_rmem_alloc_get(const struct sock *sk)
{
return atomic_read(&sk->sk_rmem_alloc);
}
/**
* sk_has_allocations - check if allocations are outstanding
* @sk: socket
*
* Returns true if socket has write or read allocations
*/
static inline bool sk_has_allocations(const struct sock *sk)
{
return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
}
* wq_has_sleeper - check if there are any waiting processes
* Returns true if socket_wq has waiting processes
* The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
* barrier call. They were added due to the race found within the tcp code.
*
* Consider following tcp code paths:
*
* CPU1 CPU2
*
* sys_select receive packet
* ... ...
* __add_wait_queue update tp->rcv_nxt
* ... ...
* tp->rcv_nxt check sock_def_readable
* ... {
* schedule rcu_read_lock();
* wq = rcu_dereference(sk->sk_wq);
* if (wq && waitqueue_active(&wq->wait))
* wake_up_interruptible(&wq->wait)
* ...
* }
*
* The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
* in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
* could then endup calling schedule and sleep forever if there are no more
* data on the socket.
static inline bool wq_has_sleeper(struct socket_wq *wq)
/* We need to be sure we are in sync with the
* add_wait_queue modifications to the wait queue.
*
* This memory barrier is paired in the sock_poll_wait.
*/
smp_mb();
return wq && waitqueue_active(&wq->wait);
}
/**
* sock_poll_wait - place memory barrier behind the poll_wait call.
* @filp: file
* @wait_address: socket wait queue
* @p: poll_table
*
* See the comments in the wq_has_sleeper function.
*/
static inline void sock_poll_wait(struct file *filp,
wait_queue_head_t *wait_address, poll_table *p)
{
if (!poll_does_not_wait(p) && wait_address) {
poll_wait(filp, wait_address, p);
/* We need to be sure we are in sync with the
* socket flags modification.
*
* This memory barrier is paired in the wq_has_sleeper.
smp_mb();
}
}
* Queue a received datagram if it will fit. Stream and sequenced
* protocols can't normally use this as they need to fit buffers in
* and play with them.
*
* Inlined as it's very short and called for pretty much every
* packet ever received.
*/
static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
{
/*
* We used to take a refcount on sk, but following operation
* is enough to guarantee sk_free() wont free this sock until
* all in-flight packets are completed
*/
atomic_add(skb->truesize, &sk->sk_wmem_alloc);
}