Skip to content
Snippets Groups Projects
fault.c 14.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     *  PowerPC version
     *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
     *
     *  Derived from "arch/i386/mm/fault.c"
     *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  Modified by Cort Dougan and Paul Mackerras.
     *
     *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
     *
     *  This program is free software; you can redistribute it and/or
     *  modify it under the terms of the GNU General Public License
     *  as published by the Free Software Foundation; either version
     *  2 of the License, or (at your option) any later version.
     */
    
    #include <linux/signal.h>
    #include <linux/sched.h>
    #include <linux/kernel.h>
    #include <linux/errno.h>
    #include <linux/string.h>
    #include <linux/types.h>
    #include <linux/ptrace.h>
    #include <linux/mman.h>
    #include <linux/mm.h>
    #include <linux/interrupt.h>
    #include <linux/highmem.h>
    #include <linux/module.h>
    #include <linux/kprobes.h>
    
    #include <linux/kdebug.h>
    
    #include <linux/perf_event.h>
    
    #include <linux/magic.h>
    
    #include <linux/context_tracking.h>
    
    #include <asm/firmware.h>
    
    #include <asm/page.h>
    #include <asm/pgtable.h>
    #include <asm/mmu.h>
    #include <asm/mmu_context.h>
    #include <asm/uaccess.h>
    #include <asm/tlbflush.h>
    #include <asm/siginfo.h>
    
    #include <asm/debug.h>
    
    #include <mm/mmu_decl.h>
    
    #include "icswx.h"
    
    
    #ifdef CONFIG_KPROBES
    static inline int notify_page_fault(struct pt_regs *regs)
    
    	int ret = 0;
    
    	/* kprobe_running() needs smp_processor_id() */
    	if (!user_mode(regs)) {
    		preempt_disable();
    		if (kprobe_running() && kprobe_fault_handler(regs, 11))
    			ret = 1;
    		preempt_enable();
    	}
    
    static inline int notify_page_fault(struct pt_regs *regs)
    
    /*
     * Check whether the instruction at regs->nip is a store using
     * an update addressing form which will update r1.
     */
    static int store_updates_sp(struct pt_regs *regs)
    {
    	unsigned int inst;
    
    	if (get_user(inst, (unsigned int __user *)regs->nip))
    		return 0;
    	/* check for 1 in the rA field */
    	if (((inst >> 16) & 0x1f) != 1)
    		return 0;
    	/* check major opcode */
    	switch (inst >> 26) {
    	case 37:	/* stwu */
    	case 39:	/* stbu */
    	case 45:	/* sthu */
    	case 53:	/* stfsu */
    	case 55:	/* stfdu */
    		return 1;
    	case 62:	/* std or stdu */
    		return (inst & 3) == 1;
    	case 31:
    		/* check minor opcode */
    		switch ((inst >> 1) & 0x3ff) {
    		case 181:	/* stdux */
    		case 183:	/* stwux */
    		case 247:	/* stbux */
    		case 439:	/* sthux */
    		case 695:	/* stfsux */
    		case 759:	/* stfdux */
    			return 1;
    		}
    	}
    	return 0;
    }
    
    /*
     * do_page_fault error handling helpers
     */
    
    #define MM_FAULT_RETURN		0
    #define MM_FAULT_CONTINUE	-1
    #define MM_FAULT_ERR(sig)	(sig)
    
    static int do_sigbus(struct pt_regs *regs, unsigned long address)
    {
    	siginfo_t info;
    
    	up_read(&current->mm->mmap_sem);
    
    	if (user_mode(regs)) {
    
    		current->thread.trap_nr = BUS_ADRERR;
    
    		info.si_signo = SIGBUS;
    		info.si_errno = 0;
    		info.si_code = BUS_ADRERR;
    		info.si_addr = (void __user *)address;
    		force_sig_info(SIGBUS, &info, current);
    		return MM_FAULT_RETURN;
    	}
    	return MM_FAULT_ERR(SIGBUS);
    }
    
    static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
    {
    	/*
    	 * Pagefault was interrupted by SIGKILL. We have no reason to
    	 * continue the pagefault.
    	 */
    	if (fatal_signal_pending(current)) {
    		/*
    		 * If we have retry set, the mmap semaphore will have
    		 * alrady been released in __lock_page_or_retry(). Else
    		 * we release it now.
    		 */
    		if (!(fault & VM_FAULT_RETRY))
    			up_read(&current->mm->mmap_sem);
    		/* Coming from kernel, we need to deal with uaccess fixups */
    		if (user_mode(regs))
    			return MM_FAULT_RETURN;
    		return MM_FAULT_ERR(SIGKILL);
    	}
    
    	/* No fault: be happy */
    	if (!(fault & VM_FAULT_ERROR))
    		return MM_FAULT_CONTINUE;
    
    	/* Out of memory */
    
    	if (fault & VM_FAULT_OOM) {
    		up_read(&current->mm->mmap_sem);
    
    		/*
    		 * We ran out of memory, or some other thing happened to us that
    		 * made us unable to handle the page fault gracefully.
    		 */
    		if (!user_mode(regs))
    			return MM_FAULT_ERR(SIGKILL);
    		pagefault_out_of_memory();
    		return MM_FAULT_RETURN;
    	}
    
    
    	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
    	 * we support the feature in HW
    	 */
    	if (fault & VM_FAULT_SIGBUS)
    		return do_sigbus(regs, addr);
    
    	/* We don't understand the fault code, this is fatal */
    	BUG();
    	return MM_FAULT_CONTINUE;
    }
    
    
    /*
     * For 600- and 800-family processors, the error_code parameter is DSISR
     * for a data fault, SRR1 for an instruction fault. For 400-family processors
     * the error_code parameter is ESR for a data fault, 0 for an instruction
     * fault.
     * For 64-bit processors, the error_code parameter is
     *  - DSISR for a non-SLB data access fault,
     *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
     *  - 0 any SLB fault.
     *
     * The return value is 0 if the fault was handled, or the signal
     * number if this is a kernel fault that can't be handled here.
     */
    int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
    			    unsigned long error_code)
    {
    
    	enum ctx_state prev_state = exception_enter();
    
    	struct vm_area_struct * vma;
    	struct mm_struct *mm = current->mm;
    
    	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
    
    	int trap = TRAP(regs);
     	int is_exec = trap == 0x400;
    
    	int rc = 0, store_update_sp = 0;
    
    
    #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
    	/*
    	 * Fortunately the bit assignments in SRR1 for an instruction
    	 * fault and DSISR for a data fault are mostly the same for the
    	 * bits we are interested in.  But there are some bits which
    	 * indicate errors in DSISR but can validly be set in SRR1.
    	 */
    	if (trap == 0x400)
    		error_code &= 0x48200000;
    	else
    		is_write = error_code & DSISR_ISSTORE;
    #else
    	is_write = error_code & ESR_DST;
    #endif /* CONFIG_4xx || CONFIG_BOOKE */
    
    
    #ifdef CONFIG_PPC_ICSWX
    	/*
    	 * we need to do this early because this "data storage
    	 * interrupt" does not update the DAR/DEAR so we don't want to
    	 * look at it
    	 */
    	if (error_code & ICSWX_DSI_UCT) {
    
    		rc = acop_handle_fault(regs, address, error_code);
    
    	if (notify_page_fault(regs))
    
    	if (unlikely(debugger_fault_handler(regs)))
    
    
    	/* On a kernel SLB miss we can only check for a valid exception entry */
    
    	if (!user_mode(regs) && (address >= TASK_SIZE)) {
    		rc = SIGSEGV;
    		goto bail;
    	}
    
    #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
    			     defined(CONFIG_PPC_BOOK3S_64))
    
      	if (error_code & DSISR_DABRMATCH) {
    
    		/* breakpoint match */
    		do_break(regs, address, error_code);
    
    	/* We restore the interrupt state now */
    	if (!arch_irq_disabled_regs(regs))
    		local_irq_enable();
    
    
    	if (in_atomic() || mm == NULL) {
    
    		if (!user_mode(regs)) {
    			rc = SIGSEGV;
    			goto bail;
    		}
    
    		/* in_atomic() in user mode is really bad,
    		   as is current->mm == NULL. */
    
    		printk(KERN_EMERG "Page fault in user mode with "
    
    		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
    		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
    		       regs->nip, regs->msr);
    		die("Weird page fault", regs, SIGSEGV);
    	}
    
    
    	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
    
    	/*
    	 * We want to do this outside mmap_sem, because reading code around nip
    	 * can result in fault, which will cause a deadlock when called with
    	 * mmap_sem held
    	 */
    	if (user_mode(regs))
    		store_update_sp = store_updates_sp(regs);
    
    
    	/* When running in the kernel we expect faults to occur only to
    	 * addresses in user space.  All other faults represent errors in the
    
    	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
    	 * erroneous fault occurring in a code path which already holds mmap_sem
    
    	 * we will deadlock attempting to validate the fault against the
    	 * address space.  Luckily the kernel only validly references user
    	 * space from well defined areas of code, which are listed in the
    	 * exceptions table.
    	 *
    	 * As the vast majority of faults will be valid we will only perform
    
    	 * the source reference check when there is a possibility of a deadlock.
    
    	 * Attempt to lock the address space, if we cannot we then validate the
    	 * source.  If this is invalid we can skip the address space check,
    	 * thus avoiding the deadlock.
    	 */
    	if (!down_read_trylock(&mm->mmap_sem)) {
    		if (!user_mode(regs) && !search_exception_tables(regs->nip))
    			goto bad_area_nosemaphore;
    
    
    		down_read(&mm->mmap_sem);
    
    	} else {
    		/*
    		 * The above down_read_trylock() might have succeeded in
    		 * which case we'll have missed the might_sleep() from
    		 * down_read():
    		 */
    		might_sleep();
    
    	}
    
    	vma = find_vma(mm, address);
    	if (!vma)
    		goto bad_area;
    	if (vma->vm_start <= address)
    		goto good_area;
    	if (!(vma->vm_flags & VM_GROWSDOWN))
    		goto bad_area;
    
    	/*
    	 * N.B. The POWER/Open ABI allows programs to access up to
    	 * 288 bytes below the stack pointer.
    	 * The kernel signal delivery code writes up to about 1.5kB
    	 * below the stack pointer (r1) before decrementing it.
    	 * The exec code can write slightly over 640kB to the stack
    	 * before setting the user r1.  Thus we allow the stack to
    	 * expand to 1MB without further checks.
    	 */
    	if (address + 0x100000 < vma->vm_end) {
    		/* get user regs even if this fault is in kernel mode */
    		struct pt_regs *uregs = current->thread.regs;
    		if (uregs == NULL)
    			goto bad_area;
    
    		/*
    		 * A user-mode access to an address a long way below
    		 * the stack pointer is only valid if the instruction
    		 * is one which would update the stack pointer to the
    		 * address accessed if the instruction completed,
    		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
    		 * (or the byte, halfword, float or double forms).
    		 *
    		 * If we don't check this then any write to the area
    		 * between the last mapped region and the stack will
    		 * expand the stack rather than segfaulting.
    		 */
    
    		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
    
    			goto bad_area;
    	}
    	if (expand_stack(vma, address))
    		goto bad_area;
    
    good_area:
    	code = SEGV_ACCERR;
    #if defined(CONFIG_6xx)
    	if (error_code & 0x95700000)
    		/* an error such as lwarx to I/O controller space,
    		   address matching DABR, eciwx, etc. */
    		goto bad_area;
    #endif /* CONFIG_6xx */
    #if defined(CONFIG_8xx)
    
    	/* 8xx sometimes need to load a invalid/non-present TLBs.
    	 * These must be invalidated separately as linux mm don't.
    	 */
    	if (error_code & 0x40000000) /* no translation? */
    		_tlbil_va(address, 0, 0, 0);
    
    
            /* The MPC8xx seems to always set 0x80000000, which is
             * "undefined".  Of those that can be set, this is the only
             * one which seems bad.
             */
    	if (error_code & 0x10000000)
                    /* Guarded storage error. */
    		goto bad_area;
    #endif /* CONFIG_8xx */
    
    	if (is_exec) {
    
    #ifdef CONFIG_PPC_STD_MMU
    		/* Protection fault on exec go straight to failure on
    		 * Hash based MMUs as they either don't support per-page
    		 * execute permission, or if they do, it's handled already
    		 * at the hash level. This test would probably have to
    		 * be removed if we change the way this works to make hash
    		 * processors use the same I/D cache coherency mechanism
    		 * as embedded.
    		 */
    
    		if (error_code & DSISR_PROTFAULT)
    			goto bad_area;
    
    #endif /* CONFIG_PPC_STD_MMU */
    
    
    		/*
    		 * Allow execution from readable areas if the MMU does not
    		 * provide separate controls over reading and executing.
    
    		 *
    		 * Note: That code used to not be enabled for 4xx/BookE.
    		 * It is now as I/D cache coherency for these is done at
    		 * set_pte_at() time and I see no reason why the test
    		 * below wouldn't be valid on those processors. This -may-
    		 * break programs compiled with a really old ABI though.
    
    		 */
    		if (!(vma->vm_flags & VM_EXEC) &&
    		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
    		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
    
    			goto bad_area;
    	/* a write */
    	} else if (is_write) {
    		if (!(vma->vm_flags & VM_WRITE))
    			goto bad_area;
    	/* a read */
    	} else {
    		/* protection fault */
    		if (error_code & 0x08000000)
    			goto bad_area;
    
    		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
    
    			goto bad_area;
    	}
    
    	/*
    	 * If for any reason at all we couldn't handle the fault,
    	 * make sure we exit gracefully rather than endlessly redo
    	 * the fault.
    	 */
    
    	fault = handle_mm_fault(mm, vma, address, flags);
    	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
    
    		rc = mm_fault_error(regs, address, fault);
    
    
    	/*
    	 * Major/minor page fault accounting is only done on the
    	 * initial attempt. If we go through a retry, it is extremely
    	 * likely that the page will be found in page cache at that point.
    	 */
    	if (flags & FAULT_FLAG_ALLOW_RETRY) {
    		if (fault & VM_FAULT_MAJOR) {
    			current->maj_flt++;
    			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
    				      regs, address);
    
    #ifdef CONFIG_PPC_SMLPAR
    
    			if (firmware_has_feature(FW_FEATURE_CMO)) {
    
    				page_ins = be32_to_cpu(get_lppaca()->page_ins);
    				page_ins += 1 << PAGE_FACTOR;
    				get_lppaca()->page_ins = cpu_to_be32(page_ins);
    
    				preempt_enable();
    			}
    #endif /* CONFIG_PPC_SMLPAR */
    		} else {
    			current->min_flt++;
    			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
    				      regs, address);
    		}
    		if (fault & VM_FAULT_RETRY) {
    			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
    			 * of starvation. */
    			flags &= ~FAULT_FLAG_ALLOW_RETRY;
    
    			flags |= FAULT_FLAG_TRIED;
    
    
    bad_area:
    	up_read(&mm->mmap_sem);
    
    bad_area_nosemaphore:
    	/* User mode accesses cause a SIGSEGV */
    	if (user_mode(regs)) {
    		_exception(SIGSEGV, regs, code, address);
    
    	if (is_exec && (error_code & DSISR_PROTFAULT))
    		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
    				   " page (%lx) - exploit attempt? (uid: %d)\n",
    
    				   address, from_kuid(&init_user_ns, current_uid()));
    
    	rc = SIGSEGV;
    
    bail:
    	exception_exit(prev_state);
    	return rc;
    
    
    }
    
    /*
     * bad_page_fault is called when we have a bad access from the kernel.
     * It is called from the DSI and ISI handlers in head.S and from some
     * of the procedures in traps.c.
     */
    void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
    {
    	const struct exception_table_entry *entry;
    
    	unsigned long *stackend;
    
    
    	/* Are we prepared to handle this fault?  */
    	if ((entry = search_exception_tables(regs->nip)) != NULL) {
    		regs->nip = entry->fixup;
    		return;
    	}
    
    	/* kernel has accessed a bad area */
    
    	case 0x300:
    	case 0x380:
    		printk(KERN_ALERT "Unable to handle kernel paging request for "
    			"data at address 0x%08lx\n", regs->dar);
    		break;
    	case 0x400:
    	case 0x480:
    		printk(KERN_ALERT "Unable to handle kernel paging request for "
    			"instruction fetch\n");
    		break;
    	default:
    		printk(KERN_ALERT "Unable to handle kernel paging request for "
    			"unknown fault\n");
    		break;
    
    	}
    	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
    		regs->nip);
    
    
    	stackend = end_of_stack(current);
    	if (current != &init_task && *stackend != STACK_END_MAGIC)
    		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
    
    
    	die("Kernel access of bad area", regs, sig);
    }