Skip to content
Snippets Groups Projects
extent-tree.c 13.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include <stdio.h>
    #include <stdlib.h>
    #include "kerncompat.h"
    #include "radix-tree.h"
    #include "ctree.h"
    #include "disk-io.h"
    #include "print-tree.h"
    
    
    static int find_free_extent(struct btrfs_root *orig_root, u64 num_blocks,
    
    			    u64 search_start, u64 search_end,
    			    struct btrfs_key *ins);
    
    static int finish_current_insert(struct btrfs_root *extent_root);
    static int run_pending(struct btrfs_root *extent_root);
    
    /*
     * pending extents are blocks that we're trying to allocate in the extent
     * map while trying to grow the map because of other allocations.  To avoid
     * recursing, they are tagged in the radix tree and cleaned up after
     * other allocations are done.  The pending tag is also used in the same
     * manner for deletes.
     */
    
    #define CTREE_EXTENT_PENDING_DEL 0
    
    static int inc_block_ref(struct btrfs_root *root, u64 blocknr)
    
    	struct btrfs_path path;
    
    	int ret;
    
    	struct btrfs_key key;
    
    	struct btrfs_leaf *l;
    	struct btrfs_extent_item *item;
    
    	struct btrfs_key ins;
    
    	u32 refs;
    
    
    	find_free_extent(root->extent_root, 0, 0, (u64)-1, &ins);
    
    	btrfs_init_path(&path);
    
    	key.objectid = blocknr;
    	key.flags = 0;
    
    	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
    
    	key.offset = 1;
    
    	ret = btrfs_search_slot(root->extent_root, &key, &path, 0, 1);
    
    	if (ret != 0)
    		BUG();
    
    	BUG_ON(ret != 0);
    	l = &path.nodes[0]->leaf;
    
    	item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
    
    	refs = btrfs_extent_refs(item);
    	btrfs_set_extent_refs(item, refs + 1);
    
    	BUG_ON(list_empty(&path.nodes[0]->dirty));
    
    	btrfs_release_path(root->extent_root, &path);
    
    	finish_current_insert(root->extent_root);
    	run_pending(root->extent_root);
    
    static int lookup_block_ref(struct btrfs_root *root, u64 blocknr, u32 *refs)
    
    	struct btrfs_path path;
    
    	struct btrfs_key key;
    
    	struct btrfs_leaf *l;
    	struct btrfs_extent_item *item;
    	btrfs_init_path(&path);
    
    	key.objectid = blocknr;
    	key.offset = 1;
    
    	key.flags = 0;
    	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
    
    	ret = btrfs_search_slot(root->extent_root, &key, &path, 0, 0);
    
    	if (ret != 0)
    		BUG();
    	l = &path.nodes[0]->leaf;
    
    	item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
    
    	*refs = btrfs_extent_refs(item);
    
    	btrfs_release_path(root->extent_root, &path);
    
    int btrfs_inc_ref(struct btrfs_root *root, struct btrfs_buffer *buf)
    
    {
    	u64 blocknr;
    	int i;
    
    	if (btrfs_is_leaf(&buf->node))
    
    	for (i = 0; i < btrfs_header_nritems(&buf->node.header); i++) {
    
    		blocknr = btrfs_node_blockptr(&buf->node, i);
    
    		inc_block_ref(root, blocknr);
    	}
    	return 0;
    }
    
    
    int btrfs_finish_extent_commit(struct btrfs_root *root)
    
    {
    	unsigned long gang[8];
    
    	u64 first = 0;
    
    	int ret;
    	int i;
    
    	while(1) {
    
    		ret = radix_tree_gang_lookup(&root->pinned_radix,
    
    						 (void **)gang, 0,
    						 ARRAY_SIZE(gang));
    		if (!ret)
    			break;
    
    		if (!first)
    			first = gang[0];
    
    		for (i = 0; i < ret; i++) {
    
    			radix_tree_delete(&root->pinned_radix, gang[i]);
    
    	root->last_insert.objectid = first;
    
    static int finish_current_insert(struct btrfs_root *extent_root)
    
    	struct btrfs_key ins;
    
    	struct btrfs_extent_item extent_item;
    
    	int i;
    	int ret;
    
    
    	btrfs_set_extent_refs(&extent_item, 1);
    	btrfs_set_extent_owner(&extent_item,
    		btrfs_header_parentid(&extent_root->node->node.header));
    
    	ins.offset = 1;
    	ins.flags = 0;
    
    	btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY);
    
    
    	for (i = 0; i < extent_root->current_insert.flags; i++) {
    		ins.objectid = extent_root->current_insert.objectid + i;
    
    		ret = btrfs_insert_item(extent_root, &ins, &extent_item,
    
    				  sizeof(extent_item));
    		BUG_ON(ret);
    	}
    	extent_root->current_insert.offset = 0;
    	return 0;
    }
    
    
     * remove an extent from the root, returns 0 on success
    
    static int __free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks,
    			 int pin)
    
    	struct btrfs_path path;
    
    	struct btrfs_key key;
    
    	struct btrfs_root *extent_root = root->extent_root;
    
    	struct btrfs_extent_item *ei;
    
    	struct btrfs_key ins;
    
    	u32 refs;
    
    	BUG_ON(pin && num_blocks != 1);
    
    	key.objectid = blocknr;
    	key.flags = 0;
    
    	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
    
    	key.offset = num_blocks;
    
    
    	find_free_extent(root, 0, 0, (u64)-1, &ins);
    
    	btrfs_init_path(&path);
    	ret = btrfs_search_slot(extent_root, &key, &path, -1, 1);
    
    	if (ret) {
    		printf("failed to find %Lu\n", key.objectid);
    
    		btrfs_print_tree(extent_root, extent_root->node);
    
    		printf("failed to find %Lu\n", key.objectid);
    		BUG();
    	}
    
    	ei = btrfs_item_ptr(&path.nodes[0]->leaf, path.slots[0],
    			    struct btrfs_extent_item);
    
    	BUG_ON(ei->refs == 0);
    
    	refs = btrfs_extent_refs(ei) - 1;
    	btrfs_set_extent_refs(ei, refs);
    	if (refs == 0) {
    
    			int err;
    			radix_tree_preload(GFP_KERNEL);
    			err = radix_tree_insert(&extent_root->pinned_radix,
    					  blocknr, (void *)blocknr);
    			BUG_ON(err);
    			radix_tree_preload_end();
    		}
    
    		ret = btrfs_del_item(extent_root, &path);
    
    		if (!pin && extent_root->last_insert.objectid > blocknr)
    
    			extent_root->last_insert.objectid = blocknr;
    
    	btrfs_release_path(extent_root, &path);
    
    	finish_current_insert(extent_root);
    
    	return ret;
    }
    
    /*
     * find all the blocks marked as pending in the radix tree and remove
     * them from the extent map
     */
    
    static int del_pending_extents(struct btrfs_root *extent_root)
    
    	struct btrfs_buffer *gang[4];
    
    	int i;
    
    	while(1) {
    		ret = radix_tree_gang_lookup_tag(&extent_root->cache_radix,
    						 (void **)gang, 0,
    						 ARRAY_SIZE(gang),
    						 CTREE_EXTENT_PENDING_DEL);
    		if (!ret)
    			break;
    		for (i = 0; i < ret; i++) {
    
    			ret = __free_extent(extent_root,
    					    gang[i]->blocknr, 1, 1);
    
    			radix_tree_tag_clear(&extent_root->cache_radix,
    						gang[i]->blocknr,
    
    						CTREE_EXTENT_PENDING_DEL);
    
    			btrfs_block_release(extent_root, gang[i]);
    
    static int run_pending(struct btrfs_root *extent_root)
    
    {
    	while(radix_tree_tagged(&extent_root->cache_radix,
    
    			        CTREE_EXTENT_PENDING_DEL))
    
    		del_pending_extents(extent_root);
    	return 0;
    }
    
    
    
    /*
     * remove an extent from the root, returns 0 on success
     */
    
    int btrfs_free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks,
    		      int pin)
    
    	struct btrfs_root *extent_root = root->extent_root;
    	struct btrfs_buffer *t;
    
    	int pending_ret;
    	int ret;
    
    	if (root == extent_root) {
    
    		t = find_tree_block(root, blocknr);
    
    		radix_tree_tag_set(&root->cache_radix, blocknr,
    
    				   CTREE_EXTENT_PENDING_DEL);
    
    	ret = __free_extent(root, blocknr, num_blocks, pin);
    
    	pending_ret = run_pending(root->extent_root);
    
    	return ret ? ret : pending_ret;
    }
    
    /*
     * walks the btree of allocated extents and find a hole of a given size.
     * The key ins is changed to record the hole:
     * ins->objectid == block start
    
     * ins->flags = BTRFS_EXTENT_ITEM_KEY
    
     * ins->offset == number of blocks
     * Any available blocks before search_start are skipped.
     */
    
    static int find_free_extent(struct btrfs_root *orig_root, u64 num_blocks,
    
    			    u64 search_start, u64 search_end,
    			    struct btrfs_key *ins)
    
    	struct btrfs_path path;
    
    	struct btrfs_key key;
    
    	int ret;
    	u64 hole_size = 0;
    	int slot = 0;
    	u64 last_block;
    
    	u64 test_block;
    
    	int start_found;
    
    	struct btrfs_leaf *l;
    	struct btrfs_root * root = orig_root->extent_root;
    
    	int total_needed = num_blocks;
    
    	total_needed += (btrfs_header_level(&root->node->node.header) + 1) * 3;
    
    	if (root->last_insert.objectid > search_start)
    		search_start = root->last_insert.objectid;
    
    
    	ins->flags = 0;
    	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
    
    
    	btrfs_init_path(&path);
    
    	ins->objectid = search_start;
    	ins->offset = 0;
    	start_found = 0;
    
    	ret = btrfs_search_slot(root, ins, &path, 0, 0);
    
    	if (ret < 0)
    		goto error;
    
    	if (path.slots[0] > 0)
    		path.slots[0]--;
    
    
    	while (1) {
    		l = &path.nodes[0]->leaf;
    		slot = path.slots[0];
    
    		if (slot >= btrfs_header_nritems(&l->header)) {
    
    			ret = btrfs_next_leaf(root, &path);
    
    			if (ret == 0)
    				continue;
    
    			if (ret < 0)
    				goto error;
    
    			if (!start_found) {
    				ins->objectid = search_start;
    
    				ins->offset = (u64)-1;
    
    				start_found = 1;
    				goto check_pending;
    			}
    			ins->objectid = last_block > search_start ?
    					last_block : search_start;
    
    			ins->offset = (u64)-1;
    
    			goto check_pending;
    		}
    
    		btrfs_disk_key_to_cpu(&key, &l->items[slot].key);
    		if (key.objectid >= search_start) {
    
    			if (start_found) {
    
    				if (last_block < search_start)
    					last_block = search_start;
    
    				hole_size = key.objectid - last_block;
    
    				if (hole_size > total_needed) {
    
    					ins->objectid = last_block;
    
    					ins->offset = hole_size;
    
    					goto check_pending;
    				}
    
    		start_found = 1;
    
    		last_block = key.objectid + key.offset;
    
    		path.slots[0]++;
    	}
    	// FIXME -ENOSPC
    check_pending:
    	/* we have to make sure we didn't find an extent that has already
    	 * been allocated by the map tree or the original allocation
    	 */
    
    	btrfs_release_path(root, &path);
    
    	BUG_ON(ins->objectid < search_start);
    
    	for (test_block = ins->objectid;
    	     test_block < ins->objectid + total_needed; test_block++) {
    		if (radix_tree_lookup(&root->pinned_radix, test_block)) {
    			search_start = test_block + 1;
    
    			goto check_failed;
    		}
    	}
    
    	BUG_ON(root->current_insert.offset);
    
    	root->current_insert.offset = total_needed - num_blocks;
    
    	root->current_insert.objectid = ins->objectid + num_blocks;
    	root->current_insert.flags = 0;
    
    	root->last_insert.objectid = ins->objectid;
    
    	ins->offset = num_blocks;
    
    	btrfs_release_path(root, &path);
    
    	return ret;
    
    }
    
    /*
     * finds a free extent and does all the dirty work required for allocation
     * returns the key for the extent through ins, and a tree buffer for
     * the first block of the extent through buf.
     *
     * returns 0 if everything worked, non-zero otherwise.
     */
    
    static int alloc_extent(struct btrfs_root *root, u64 num_blocks,
    			u64 search_start, u64 search_end, u64 owner,
    			struct btrfs_key *ins)
    
    {
    	int ret;
    	int pending_ret;
    
    	struct btrfs_root *extent_root = root->extent_root;
    	struct btrfs_extent_item extent_item;
    
    	btrfs_set_extent_refs(&extent_item, 1);
    	btrfs_set_extent_owner(&extent_item, owner);
    
    	if (root == extent_root) {
    		BUG_ON(extent_root->current_insert.offset == 0);
    		BUG_ON(num_blocks != 1);
    		BUG_ON(extent_root->current_insert.flags ==
    		       extent_root->current_insert.offset);
    		ins->offset = 1;
    		ins->objectid = extent_root->current_insert.objectid +
    				extent_root->current_insert.flags++;
    
    	ret = find_free_extent(root, num_blocks, search_start,
    			       search_end, ins);
    	if (ret)
    		return ret;
    
    	ret = btrfs_insert_item(extent_root, ins, &extent_item,
    
    			  sizeof(extent_item));
    
    	finish_current_insert(extent_root);
    	pending_ret = run_pending(extent_root);
    	if (ret)
    		return ret;
    	if (pending_ret)
    		return pending_ret;
    	return 0;
    
    }
    
    /*
     * helper function to allocate a block for a given tree
     * returns the tree buffer or NULL.
     */
    
    struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_root *root)
    
    	struct btrfs_key ins;
    
    	struct btrfs_buffer *buf;
    
    
    	ret = alloc_extent(root, 1, 0, (unsigned long)-1,
    
    			   btrfs_header_parentid(&root->node->node.header),
    
    			   &ins);
    
    	if (ret) {
    		BUG();
    		return NULL;
    	}
    
    	buf = find_tree_block(root, ins.objectid);
    	dirty_tree_block(root, buf);
    
    /*
     * helper function for drop_snapshot, this walks down the tree dropping ref
     * counts as it goes.
     */
    static int walk_down_tree(struct btrfs_root *root,
    			  struct btrfs_path *path, int *level)
    
    	struct btrfs_buffer *next;
    	struct btrfs_buffer *cur;
    
    	u64 blocknr;
    	int ret;
    	u32 refs;
    
    	ret = lookup_block_ref(root, path->nodes[*level]->blocknr, &refs);
    	BUG_ON(ret);
    	if (refs > 1)
    		goto out;
    
    	/*
    	 * walk down to the last node level and free all the leaves
    	 */
    
    	while(*level > 0) {
    		cur = path->nodes[*level];
    
    		if (path->slots[*level] >=
    		    btrfs_header_nritems(&cur->node.header))
    
    		blocknr = btrfs_node_blockptr(&cur->node, path->slots[*level]);
    
    		ret = lookup_block_ref(root, blocknr, &refs);
    		if (refs != 1 || *level == 1) {
    			path->slots[*level]++;
    
    			ret = btrfs_free_extent(root, blocknr, 1, 1);
    
    			BUG_ON(ret);
    			continue;
    		}
    		BUG_ON(ret);
    		next = read_tree_block(root, blocknr);
    
    		if (path->nodes[*level-1])
    
    			btrfs_block_release(root, path->nodes[*level-1]);
    
    		path->nodes[*level-1] = next;
    
    		*level = btrfs_header_level(&next->node.header);
    
    		path->slots[*level] = 0;
    	}
    out:
    
    	ret = btrfs_free_extent(root, path->nodes[*level]->blocknr, 1, 1);
    
    	btrfs_block_release(root, path->nodes[*level]);
    
    	path->nodes[*level] = NULL;
    	*level += 1;
    	BUG_ON(ret);
    	return 0;
    }
    
    
    /*
     * helper for dropping snapshots.  This walks back up the tree in the path
     * to find the first node higher up where we haven't yet gone through
     * all the slots
     */
    static int walk_up_tree(struct btrfs_root *root, struct btrfs_path *path,
    			int *level)
    
    {
    	int i;
    	int slot;
    	int ret;
    
    	for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
    
    		slot = path->slots[i];
    
    		if (slot <
    		    btrfs_header_nritems(&path->nodes[i]->node.header)- 1) {
    
    			path->slots[i]++;
    			*level = i;
    			return 0;
    		} else {
    
    			ret = btrfs_free_extent(root,
    
    					  path->nodes[*level]->blocknr, 1, 1);
    
    			btrfs_block_release(root, path->nodes[*level]);
    
    			path->nodes[*level] = NULL;
    
    			*level = i + 1;
    			BUG_ON(ret);
    		}
    	}
    	return 1;
    }
    
    
    /*
     * drop the reference count on the tree rooted at 'snap'.  This traverses
     * the tree freeing any blocks that have a ref count of zero after being
     * decremented.
     */
    
    int btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_buffer *snap)
    
    	int wret;
    
    	int level;
    
    	struct btrfs_path path;
    
    	int i;
    	int orig_level;
    
    
    	btrfs_init_path(&path);
    
    	level = btrfs_header_level(&snap->node.header);
    
    	orig_level = level;
    	path.nodes[level] = snap;
    	path.slots[level] = 0;
    	while(1) {
    
    		wret = walk_down_tree(root, &path, &level);
    		if (wret > 0)
    
    		if (wret < 0)
    			ret = wret;
    
    		wret = walk_up_tree(root, &path, &level);
    		if (wret > 0)
    
    		if (wret < 0)
    			ret = wret;
    
    	for (i = 0; i <= orig_level; i++) {
    		if (path.nodes[i]) {
    
    			btrfs_block_release(root, path.nodes[i]);
    
    	return ret;