Skip to content
Snippets Groups Projects
xpc_main.c 36.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * This file is subject to the terms and conditions of the GNU General Public
     * License.  See the file "COPYING" in the main directory of this archive
     * for more details.
     *
    
     * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
    
     */
    
    /*
     * Cross Partition Communication (XPC) support - standard version.
     *
     *	XPC provides a message passing capability that crosses partition
     *	boundaries. This module is made up of two parts:
     *
     *	    partition	This part detects the presence/absence of other
     *			partitions. It provides a heartbeat and monitors
     *			the heartbeats of other partitions.
     *
     *	    channel	This part manages the channels and sends/receives
     *			messages across them to/from other partitions.
     *
     *	There are a couple of additional functions residing in XP, which
     *	provide an interface to XPC for its users.
     *
     *
     *	Caveats:
     *
    
     *	  . Currently on sn2, we have no way to determine which nasid an IRQ
    
     *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
     *	    followed by an IPI. The amo indicates where data is to be pulled
     *	    from, so after the IPI arrives, the remote partition checks the amo
     *	    word. The IPI can actually arrive before the amo however, so other
     *	    code must periodically check for this case. Also, remote amo
    
     *	    operations do not reliably time out. Thus we do a remote PIO read
     *	    solely to know whether the remote partition is down and whether we
     *	    should stop sending IPIs to it. This remote PIO read operation is
     *	    set up in a special nofault region so SAL knows to ignore (and
    
     *	    cleanup) any errors due to the remote amo write, PIO read, and/or
    
     *	    PIO write operations.
    
     *
     *	    If/when new hardware solves this IPI problem, we should abandon
     *	    the current approach.
     *
     */
    
    #include <linux/module.h>
    
    #include <linux/sysctl.h>
    #include <linux/device.h>
    
    #include <linux/kdebug.h>
    
    #include <linux/kthread.h>
    
    #include "xpc.h"
    
    #ifdef CONFIG_X86_64
    #include <asm/traps.h>
    #endif
    
    
    /* define two XPC debug device structures to be used with dev_dbg() et al */
    
    struct device_driver xpc_dbg_name = {
    	.name = "xpc"
    };
    
    struct device xpc_part_dbg_subname = {
    
    	.init_name = "",	/* set to "part" at xpc_init() time */
    
    	.driver = &xpc_dbg_name
    };
    
    struct device xpc_chan_dbg_subname = {
    
    	.init_name = "",	/* set to "chan" at xpc_init() time */
    
    	.driver = &xpc_dbg_name
    };
    
    struct device *xpc_part = &xpc_part_dbg_subname;
    struct device *xpc_chan = &xpc_chan_dbg_subname;
    
    
    static int xpc_kdebug_ignore;
    
    
    /* systune related variables for /proc/sys directories */
    
    
    static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
    static int xpc_hb_min_interval = 1;
    static int xpc_hb_max_interval = 10;
    
    static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
    static int xpc_hb_check_min_interval = 10;
    static int xpc_hb_check_max_interval = 120;
    
    int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
    static int xpc_disengage_min_timelimit;	/* = 0 */
    static int xpc_disengage_max_timelimit = 120;
    
    
    static ctl_table xpc_sys_xpc_hb_dir[] = {
    	{
    
    	 .procname = "hb_interval",
    	 .data = &xpc_hb_interval,
    	 .maxlen = sizeof(int),
    	 .mode = 0644,
    
    	 .proc_handler = proc_dointvec_minmax,
    
    	 .extra1 = &xpc_hb_min_interval,
    	 .extra2 = &xpc_hb_max_interval},
    
    	 .procname = "hb_check_interval",
    	 .data = &xpc_hb_check_interval,
    	 .maxlen = sizeof(int),
    	 .mode = 0644,
    
    	 .proc_handler = proc_dointvec_minmax,
    
    	 .extra1 = &xpc_hb_check_min_interval,
    	 .extra2 = &xpc_hb_check_max_interval},
    
    };
    static ctl_table xpc_sys_xpc_dir[] = {
    	{
    
    	 .procname = "hb",
    	 .mode = 0555,
    	 .child = xpc_sys_xpc_hb_dir},
    
    	 .procname = "disengage_timelimit",
    	 .data = &xpc_disengage_timelimit,
    
    	 .maxlen = sizeof(int),
    	 .mode = 0644,
    
    	 .proc_handler = proc_dointvec_minmax,
    
    	 .extra1 = &xpc_disengage_min_timelimit,
    	 .extra2 = &xpc_disengage_max_timelimit},
    
    };
    static ctl_table xpc_sys_dir[] = {
    	{
    
    	 .procname = "xpc",
    	 .mode = 0555,
    	 .child = xpc_sys_xpc_dir},
    
    };
    static struct ctl_table_header *xpc_sysctl;
    
    
    /* non-zero if any remote partition disengage was timed out */
    int xpc_disengage_timedout;
    
    /* #of activate IRQs received and not yet processed */
    int xpc_activate_IRQ_rcvd;
    DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
    
    
    /* IRQ handler notifies this wait queue on receipt of an IRQ */
    
    DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
    
    
    static unsigned long xpc_hb_check_timeout;
    
    static struct timer_list xpc_hb_timer;
    
    /* notification that the xpc_hb_checker thread has exited */
    
    static DECLARE_COMPLETION(xpc_hb_checker_exited);
    
    /* notification that the xpc_discovery thread has exited */
    
    static DECLARE_COMPLETION(xpc_discovery_exited);
    
    
    static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
    
    
    static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
    static struct notifier_block xpc_reboot_notifier = {
    	.notifier_call = xpc_system_reboot,
    };
    
    
    static int xpc_system_die(struct notifier_block *, unsigned long, void *);
    static struct notifier_block xpc_die_notifier = {
    	.notifier_call = xpc_system_die,
    };
    
    
    struct xpc_arch_operations xpc_arch_ops;
    
     * Timer function to enforce the timelimit on the partition disengage.
    
    xpc_timeout_partition_disengage(unsigned long data)
    
    	struct xpc_partition *part = (struct xpc_partition *)data;
    
    	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
    
    	(void)xpc_partition_disengaged(part);
    
    	DBUG_ON(part->disengage_timeout != 0);
    
    	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
    
    /*
     * Timer to produce the heartbeat.  The timer structures function is
     * already set when this is initially called.  A tunable is used to
     * specify when the next timeout should occur.
     */
    static void
    xpc_hb_beater(unsigned long dummy)
    {
    
    	xpc_arch_ops.increment_heartbeat();
    
    	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
    
    		wake_up_interruptible(&xpc_activate_IRQ_wq);
    
    
    	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
    	add_timer(&xpc_hb_timer);
    }
    
    
    static void
    xpc_start_hb_beater(void)
    {
    
    	xpc_arch_ops.heartbeat_init();
    
    	init_timer(&xpc_hb_timer);
    	xpc_hb_timer.function = xpc_hb_beater;
    	xpc_hb_beater(0);
    }
    
    static void
    xpc_stop_hb_beater(void)
    {
    	del_timer_sync(&xpc_hb_timer);
    
    	xpc_arch_ops.heartbeat_exit();
    
    /*
     * At periodic intervals, scan through all active partitions and ensure
     * their heartbeat is still active.  If not, the partition is deactivated.
     */
    static void
    xpc_check_remote_hb(void)
    {
    	struct xpc_partition *part;
    	short partid;
    	enum xp_retval ret;
    
    	for (partid = 0; partid < xp_max_npartitions; partid++) {
    
    		if (xpc_exiting)
    			break;
    
    		if (partid == xp_partition_id)
    			continue;
    
    		part = &xpc_partitions[partid];
    
    
    		if (part->act_state == XPC_P_AS_INACTIVE ||
    		    part->act_state == XPC_P_AS_DEACTIVATING) {
    
    		ret = xpc_arch_ops.get_remote_heartbeat(part);
    
    		if (ret != xpSuccess)
    			XPC_DEACTIVATE_PARTITION(part, ret);
    	}
    }
    
    
    /*
     * This thread is responsible for nearly all of the partition
     * activation/deactivation.
     */
    static int
    xpc_hb_checker(void *ignore)
    {
    
    
    	/* this thread was marked active by xpc_hb_init() */
    
    
    	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
    
    	/* set our heartbeating to other partitions into motion */
    
    	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
    
    	xpc_start_hb_beater();
    
    
    		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
    			"been received\n",
    
    			(int)(xpc_hb_check_timeout - jiffies),
    
    			xpc_activate_IRQ_rcvd);
    
    
    		/* checking of remote heartbeats is skewed by IRQ handling */
    
    		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
    
    			xpc_hb_check_timeout = jiffies +
    			    (xpc_hb_check_interval * HZ);
    
    
    			dev_dbg(xpc_part, "checking remote heartbeats\n");
    			xpc_check_remote_hb();
    
    			/*
    
    			 * On sn2 we need to periodically recheck to ensure no
    			 * IRQ/amo pairs have been missed.
    
    			if (is_shub())
    				force_IRQ = 1;
    
    		/* check for outstanding IRQs */
    
    		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
    
    			dev_dbg(xpc_part, "processing activate IRQs "
    				"received\n");
    
    			xpc_arch_ops.process_activate_IRQ_rcvd();
    
    		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
    
    					       (time_is_before_eq_jiffies(
    
    						xpc_hb_check_timeout) ||
    
    						xpc_activate_IRQ_rcvd > 0 ||
    
    	xpc_stop_hb_beater();
    
    
    	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
    
    
    	/* mark this thread as having exited */
    
    	complete(&xpc_hb_checker_exited);
    
    	return 0;
    }
    
    /*
     * This thread will attempt to discover other partitions to activate
     * based on info provided by SAL. This new thread is short lived and
     * will exit once discovery is complete.
     */
    static int
    xpc_initiate_discovery(void *ignore)
    {
    	xpc_discovery();
    
    	dev_dbg(xpc_part, "discovery thread is exiting\n");
    
    
    	/* mark this thread as having exited */
    
    	complete(&xpc_discovery_exited);
    
    	return 0;
    }
    
    /*
     * The first kthread assigned to a newly activated partition is the one
    
     * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
    
     * that kthread until the partition is brought down, at which time that kthread
     * returns back to XPC HB. (The return of that kthread will signify to XPC HB
     * that XPC has dismantled all communication infrastructure for the associated
     * partition.) This kthread becomes the channel manager for that partition.
     *
     * Each active partition has a channel manager, who, besides connecting and
     * disconnecting channels, will ensure that each of the partition's connected
     * channels has the required number of assigned kthreads to get the work done.
     */
    static void
    xpc_channel_mgr(struct xpc_partition *part)
    {
    
    	while (part->act_state != XPC_P_AS_DEACTIVATING ||
    
    	       atomic_read(&part->nchannels_active) > 0 ||
    	       !xpc_partition_disengaged(part)) {
    
    		xpc_process_sent_chctl_flags(part);
    
    
    		/*
    		 * Wait until we've been requested to activate kthreads or
    		 * all of the channel's message queues have been torn down or
    		 * a signal is pending.
    		 *
    		 * The channel_mgr_requests is set to 1 after being awakened,
    		 * This is done to prevent the channel mgr from making one pass
    		 * through the loop for each request, since he will
    		 * be servicing all the requests in one pass. The reason it's
    		 * set to 1 instead of 0 is so that other kthreads will know
    		 * that the channel mgr is running and won't bother trying to
    		 * wake him up.
    		 */
    		atomic_dec(&part->channel_mgr_requests);
    
    		(void)wait_event_interruptible(part->channel_mgr_wq,
    
    				(atomic_read(&part->channel_mgr_requests) > 0 ||
    
    				 part->chctl.all_flags != 0 ||
    
    				 (part->act_state == XPC_P_AS_DEACTIVATING &&
    
    				 atomic_read(&part->nchannels_active) == 0 &&
    				 xpc_partition_disengaged(part))));
    
    		atomic_set(&part->channel_mgr_requests, 1);
    	}
    }
    
    
    /*
     * Guarantee that the kzalloc'd memory is cacheline aligned.
     */
    void *
    xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
    {
    	/* see if kzalloc will give us cachline aligned memory by default */
    	*base = kzalloc(size, flags);
    	if (*base == NULL)
    		return NULL;
    
    	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
    		return *base;
    
    	kfree(*base);
    
    	/* nope, we'll have to do it ourselves */
    	*base = kzalloc(size + L1_CACHE_BYTES, flags);
    	if (*base == NULL)
    		return NULL;
    
    	return (void *)L1_CACHE_ALIGN((u64)*base);
    }
    
    /*
     * Setup the channel structures necessary to support XPartition Communication
     * between the specified remote partition and the local one.
     */
    static enum xp_retval
    xpc_setup_ch_structures(struct xpc_partition *part)
    {
    	enum xp_retval ret;
    	int ch_number;
    	struct xpc_channel *ch;
    	short partid = XPC_PARTID(part);
    
    	/*
    	 * Allocate all of the channel structures as a contiguous chunk of
    	 * memory.
    	 */
    	DBUG_ON(part->channels != NULL);
    	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
    				 GFP_KERNEL);
    	if (part->channels == NULL) {
    		dev_err(xpc_chan, "can't get memory for channels\n");
    		return xpNoMemory;
    	}
    
    	/* allocate the remote open and close args */
    
    	part->remote_openclose_args =
    	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
    					  GFP_KERNEL, &part->
    					  remote_openclose_args_base);
    	if (part->remote_openclose_args == NULL) {
    		dev_err(xpc_chan, "can't get memory for remote connect args\n");
    		ret = xpNoMemory;
    		goto out_1;
    	}
    
    	part->chctl.all_flags = 0;
    	spin_lock_init(&part->chctl_lock);
    
    	atomic_set(&part->channel_mgr_requests, 1);
    	init_waitqueue_head(&part->channel_mgr_wq);
    
    	part->nchannels = XPC_MAX_NCHANNELS;
    
    	atomic_set(&part->nchannels_active, 0);
    	atomic_set(&part->nchannels_engaged, 0);
    
    	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
    		ch = &part->channels[ch_number];
    
    		ch->partid = partid;
    		ch->number = ch_number;
    		ch->flags = XPC_C_DISCONNECTED;
    
    		atomic_set(&ch->kthreads_assigned, 0);
    		atomic_set(&ch->kthreads_idle, 0);
    		atomic_set(&ch->kthreads_active, 0);
    
    		atomic_set(&ch->references, 0);
    		atomic_set(&ch->n_to_notify, 0);
    
    		spin_lock_init(&ch->lock);
    		init_completion(&ch->wdisconnect_wait);
    
    		atomic_set(&ch->n_on_msg_allocate_wq, 0);
    		init_waitqueue_head(&ch->msg_allocate_wq);
    		init_waitqueue_head(&ch->idle_wq);
    	}
    
    
    	ret = xpc_arch_ops.setup_ch_structures(part);
    
    	if (ret != xpSuccess)
    		goto out_2;
    
    	/*
    	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
    	 * we're declaring that this partition is ready to go.
    	 */
    	part->setup_state = XPC_P_SS_SETUP;
    
    	return xpSuccess;
    
    	/* setup of ch structures failed */
    out_2:
    	kfree(part->remote_openclose_args_base);
    	part->remote_openclose_args = NULL;
    out_1:
    	kfree(part->channels);
    	part->channels = NULL;
    	return ret;
    }
    
    /*
     * Teardown the channel structures necessary to support XPartition Communication
     * between the specified remote partition and the local one.
     */
    static void
    xpc_teardown_ch_structures(struct xpc_partition *part)
    {
    	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
    	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
    
    	/*
    	 * Make this partition inaccessible to local processes by marking it
    	 * as no longer setup. Then wait before proceeding with the teardown
    	 * until all existing references cease.
    	 */
    	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
    	part->setup_state = XPC_P_SS_WTEARDOWN;
    
    	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
    
    	/* now we can begin tearing down the infrastructure */
    
    
    	xpc_arch_ops.teardown_ch_structures(part);
    
    
    	kfree(part->remote_openclose_args_base);
    	part->remote_openclose_args = NULL;
    	kfree(part->channels);
    	part->channels = NULL;
    
    	part->setup_state = XPC_P_SS_TORNDOWN;
    }
    
    
    /*
     * When XPC HB determines that a partition has come up, it will create a new
     * kthread and that kthread will call this function to attempt to set up the
     * basic infrastructure used for Cross Partition Communication with the newly
     * upped partition.
     *
     * The kthread that was created by XPC HB and which setup the XPC
    
     * infrastructure will remain assigned to the partition becoming the channel
     * manager for that partition until the partition is deactivating, at which
     * time the kthread will teardown the XPC infrastructure and then exit.
    
     */
    static int
    xpc_activating(void *__partid)
    {
    
    	short partid = (u64)__partid;
    
    	struct xpc_partition *part = &xpc_partitions[partid];
    	unsigned long irq_flags;
    
    
    	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
    
    
    	spin_lock_irqsave(&part->act_lock, irq_flags);
    
    
    	if (part->act_state == XPC_P_AS_DEACTIVATING) {
    		part->act_state = XPC_P_AS_INACTIVE;
    
    		spin_unlock_irqrestore(&part->act_lock, irq_flags);
    		part->remote_rp_pa = 0;
    		return 0;
    	}
    
    	/* indicate the thread is activating */
    
    	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
    	part->act_state = XPC_P_AS_ACTIVATING;
    
    
    	XPC_SET_REASON(part, 0, 0);
    	spin_unlock_irqrestore(&part->act_lock, irq_flags);
    
    
    	dev_dbg(xpc_part, "activating partition %d\n", partid);
    
    	xpc_arch_ops.allow_hb(partid);
    
    	if (xpc_setup_ch_structures(part) == xpSuccess) {
    
    		(void)xpc_part_ref(part);	/* this will always succeed */
    
    
    		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
    
    			xpc_mark_partition_active(part);
    			xpc_channel_mgr(part);
    			/* won't return until partition is deactivating */
    		}
    
    		xpc_part_deref(part);
    
    		xpc_teardown_ch_structures(part);
    
    	xpc_arch_ops.disallow_hb(partid);
    
    	xpc_mark_partition_inactive(part);
    
    
    	if (part->reason == xpReactivating) {
    
    		/* interrupting ourselves results in activating partition */
    
    		xpc_arch_ops.request_partition_reactivation(part);
    
    	}
    
    	return 0;
    }
    
    void
    xpc_activate_partition(struct xpc_partition *part)
    {
    
    	short partid = XPC_PARTID(part);
    
    	unsigned long irq_flags;
    
    	struct task_struct *kthread;
    
    
    	spin_lock_irqsave(&part->act_lock, irq_flags);
    
    
    	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
    
    	part->act_state = XPC_P_AS_ACTIVATION_REQ;
    
    	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
    
    
    	spin_unlock_irqrestore(&part->act_lock, irq_flags);
    
    	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
    			      partid);
    	if (IS_ERR(kthread)) {
    
    		spin_lock_irqsave(&part->act_lock, irq_flags);
    
    		part->act_state = XPC_P_AS_INACTIVE;
    
    		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
    
    		spin_unlock_irqrestore(&part->act_lock, irq_flags);
    	}
    
    }
    
    void
    xpc_activate_kthreads(struct xpc_channel *ch, int needed)
    {
    	int idle = atomic_read(&ch->kthreads_idle);
    	int assigned = atomic_read(&ch->kthreads_assigned);
    	int wakeup;
    
    	DBUG_ON(needed <= 0);
    
    	if (idle > 0) {
    		wakeup = (needed > idle) ? idle : needed;
    		needed -= wakeup;
    
    		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
    			"channel=%d\n", wakeup, ch->partid, ch->number);
    
    		/* only wakeup the requested number of kthreads */
    		wake_up_nr(&ch->idle_wq, wakeup);
    	}
    
    
    		return;
    
    	if (needed + assigned > ch->kthreads_assigned_limit) {
    		needed = ch->kthreads_assigned_limit - assigned;
    
    			return;
    	}
    
    	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
    		needed, ch->partid, ch->number);
    
    
    	xpc_create_kthreads(ch, needed, 0);
    
    }
    
    /*
     * This function is where XPC's kthreads wait for messages to deliver.
     */
    static void
    xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
    {
    
    	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
    		xpc_arch_ops.n_of_deliverable_payloads;
    
    
    	do {
    		/* deliver messages to their intended recipients */
    
    
    		while (n_of_deliverable_payloads(ch) > 0 &&
    
    		       !(ch->flags & XPC_C_DISCONNECTING)) {
    
    			xpc_deliver_payload(ch);
    
    		}
    
    		if (atomic_inc_return(&ch->kthreads_idle) >
    
    		    ch->kthreads_idle_limit) {
    
    			/* too many idle kthreads on this channel */
    			atomic_dec(&ch->kthreads_idle);
    			break;
    		}
    
    		dev_dbg(xpc_chan, "idle kthread calling "
    			"wait_event_interruptible_exclusive()\n");
    
    
    		(void)wait_event_interruptible_exclusive(ch->idle_wq,
    
    				(n_of_deliverable_payloads(ch) > 0 ||
    
    				 (ch->flags & XPC_C_DISCONNECTING)));
    
    
    		atomic_dec(&ch->kthreads_idle);
    
    
    	} while (!(ch->flags & XPC_C_DISCONNECTING));
    
    xpc_kthread_start(void *args)
    
    	short partid = XPC_UNPACK_ARG1(args);
    
    	u16 ch_number = XPC_UNPACK_ARG2(args);
    	struct xpc_partition *part = &xpc_partitions[partid];
    	struct xpc_channel *ch;
    	int n_needed;
    
    	unsigned long irq_flags;
    
    	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
    		xpc_arch_ops.n_of_deliverable_payloads;
    
    
    	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
    		partid, ch_number);
    
    	ch = &part->channels[ch_number];
    
    	if (!(ch->flags & XPC_C_DISCONNECTING)) {
    
    		/* let registerer know that connection has been established */
    
    
    		spin_lock_irqsave(&ch->lock, irq_flags);
    
    		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
    			ch->flags |= XPC_C_CONNECTEDCALLOUT;
    
    			spin_unlock_irqrestore(&ch->lock, irq_flags);
    
    
    			spin_lock_irqsave(&ch->lock, irq_flags);
    			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
    			spin_unlock_irqrestore(&ch->lock, irq_flags);
    
    
    			/*
    			 * It is possible that while the callout was being
    			 * made that the remote partition sent some messages.
    			 * If that is the case, we may need to activate
    			 * additional kthreads to help deliver them. We only
    			 * need one less than total #of messages to deliver.
    			 */
    
    			n_needed = n_of_deliverable_payloads(ch) - 1;
    
    			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
    
    				xpc_activate_kthreads(ch, n_needed);
    
    		} else {
    			spin_unlock_irqrestore(&ch->lock, irq_flags);
    
    	/* let registerer know that connection is disconnecting */
    
    	spin_lock_irqsave(&ch->lock, irq_flags);
    	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
    
    	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
    
    		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
    
    		spin_unlock_irqrestore(&ch->lock, irq_flags);
    
    		xpc_disconnect_callout(ch, xpDisconnecting);
    
    
    		spin_lock_irqsave(&ch->lock, irq_flags);
    		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
    	}
    	spin_unlock_irqrestore(&ch->lock, irq_flags);
    
    
    	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
    	    atomic_dec_return(&part->nchannels_engaged) == 0) {
    
    		xpc_arch_ops.indicate_partition_disengaged(part);
    
    	}
    
    	xpc_msgqueue_deref(ch);
    
    	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
    		partid, ch_number);
    
    	xpc_part_deref(part);
    	return 0;
    }
    
    /*
     * For each partition that XPC has established communications with, there is
     * a minimum of one kernel thread assigned to perform any operation that
     * may potentially sleep or block (basically the callouts to the asynchronous
     * functions registered via xpc_connect()).
     *
     * Additional kthreads are created and destroyed by XPC as the workload
     * demands.
     *
     * A kthread is assigned to one of the active channels that exists for a given
     * partition.
     */
    void
    
    xpc_create_kthreads(struct xpc_channel *ch, int needed,
    
    		    int ignore_disconnecting)
    
    {
    	unsigned long irq_flags;
    	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
    
    	struct xpc_partition *part = &xpc_partitions[ch->partid];
    
    	struct task_struct *kthread;
    
    	void (*indicate_partition_disengaged) (struct xpc_partition *) =
    		xpc_arch_ops.indicate_partition_disengaged;
    
    
    		/*
    		 * The following is done on behalf of the newly created
    		 * kthread. That kthread is responsible for doing the
    		 * counterpart to the following before it exits.
    		 */
    
    		if (ignore_disconnecting) {
    			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
    				/* kthreads assigned had gone to zero */
    				BUG_ON(!(ch->flags &
    
    					 XPC_C_DISCONNECTINGCALLOUT_MADE));
    
    				break;
    			}
    
    		} else if (ch->flags & XPC_C_DISCONNECTING) {
    			break;
    
    
    		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
    			   atomic_inc_return(&part->nchannels_engaged) == 1) {
    
    			xpc_arch_ops.indicate_partition_engaged(part);
    
    		(void)xpc_part_ref(part);
    
    		kthread = kthread_run(xpc_kthread_start, (void *)args,
    				      "xpc%02dc%d", ch->partid, ch->number);
    		if (IS_ERR(kthread)) {
    
    
    			/*
    			 * NOTE: if (ignore_disconnecting &&
    			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
    			 * then we'll deadlock if all other kthreads assigned
    			 * to this channel are blocked in the channel's
    			 * registerer, because the only thing that will unblock
    
    			 * them is the xpDisconnecting callout that this
    
    			 * failed kthread_run() would have made.
    
    			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
    			    atomic_dec_return(&part->nchannels_engaged) == 0) {
    
    				indicate_partition_disengaged(part);
    
    			}
    			xpc_msgqueue_deref(ch);
    			xpc_part_deref(part);
    
    
    			if (atomic_read(&ch->kthreads_assigned) <
    
    			    ch->kthreads_idle_limit) {
    
    				/*
    				 * Flag this as an error only if we have an
    				 * insufficient #of kthreads for the channel
    				 * to function.
    				 */
    				spin_lock_irqsave(&ch->lock, irq_flags);
    
    				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
    
    				spin_unlock_irqrestore(&ch->lock, irq_flags);
    			}
    			break;
    		}
    	}
    }
    
    void
    xpc_disconnect_wait(int ch_number)
    {
    
    	struct xpc_partition *part;
    	struct xpc_channel *ch;
    
    
    	/* now wait for all callouts to the caller's function to cease */
    
    	for (partid = 0; partid < xp_max_npartitions; partid++) {
    
    		part = &xpc_partitions[partid];
    
    
    		ch = &part->channels[ch_number];
    
    		if (!(ch->flags & XPC_C_WDISCONNECT)) {
    
    		wait_for_completion(&ch->wdisconnect_wait);
    
    
    		spin_lock_irqsave(&ch->lock, irq_flags);
    		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
    		wakeup_channel_mgr = 0;
    
    
    		if (ch->delayed_chctl_flags) {
    
    			if (part->act_state != XPC_P_AS_DEACTIVATING) {
    
    				spin_lock(&part->chctl_lock);
    				part->chctl.flags[ch->number] |=
    				    ch->delayed_chctl_flags;
    				spin_unlock(&part->chctl_lock);
    
    			ch->delayed_chctl_flags = 0;
    
    
    		ch->flags &= ~XPC_C_WDISCONNECT;
    		spin_unlock_irqrestore(&ch->lock, irq_flags);
    
    
    			xpc_wakeup_channel_mgr(part);
    
    		xpc_part_deref(part);
    
    static int
    xpc_setup_partitions(void)
    {
    	short partid;
    	struct xpc_partition *part;
    
    	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
    				 xp_max_npartitions, GFP_KERNEL);
    	if (xpc_partitions == NULL) {
    		dev_err(xpc_part, "can't get memory for partition structure\n");
    		return -ENOMEM;
    	}
    
    	/*
    	 * The first few fields of each entry of xpc_partitions[] need to
    	 * be initialized now so that calls to xpc_connect() and
    	 * xpc_disconnect() can be made prior to the activation of any remote
    	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
    	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
    	 * PARTITION HAS BEEN ACTIVATED.
    	 */
    	for (partid = 0; partid < xp_max_npartitions; partid++) {
    		part = &xpc_partitions[partid];
    
    		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
    
    		part->activate_IRQ_rcvd = 0;
    		spin_lock_init(&part->act_lock);
    		part->act_state = XPC_P_AS_INACTIVE;
    		XPC_SET_REASON(part, 0, 0);
    
    		init_timer(&part->disengage_timer);
    		part->disengage_timer.function =
    		    xpc_timeout_partition_disengage;
    		part->disengage_timer.data = (unsigned long)part;
    
    		part->setup_state = XPC_P_SS_UNSET;
    		init_waitqueue_head(&part->teardown_wq);
    		atomic_set(&part->references, 0);
    	}
    
    
    	return xpc_arch_ops.setup_partitions();
    
    }
    
    static void
    xpc_teardown_partitions(void)
    {
    
    	xpc_arch_ops.teardown_partitions();
    
    	kfree(xpc_partitions);
    }
    
    
    xpc_do_exit(enum xp_retval reason)
    
    	int active_part_count, printed_waiting_msg = 0;
    
    	struct xpc_partition *part;
    
    	unsigned long printmsg_time, disengage_timeout = 0;
    
    	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
    	DBUG_ON(xpc_exiting == 1);
    
    	 * Let the heartbeat checker thread and the discovery thread
    	 * (if one is running) know that they should exit. Also wake up
    	 * the heartbeat checker thread in case it's sleeping.
    
    	wake_up_interruptible(&xpc_activate_IRQ_wq);
    
    	/* wait for the discovery thread to exit */
    
    	wait_for_completion(&xpc_discovery_exited);
    
    	/* wait for the heartbeat checker thread to exit */
    
    	wait_for_completion(&xpc_hb_checker_exited);
    
    	/* sleep for a 1/3 of a second or so */
    
    	(void)msleep_interruptible(300);
    
    
    	/* wait for all partitions to become inactive */
    
    
    	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
    	xpc_disengage_timedout = 0;
    
    		for (partid = 0; partid < xp_max_npartitions; partid++) {
    
    			part = &xpc_partitions[partid];
    
    
    			if (xpc_partition_disengaged(part) &&
    
    			    part->act_state == XPC_P_AS_INACTIVE) {
    
    
    			active_part_count++;
    
    			XPC_DEACTIVATE_PARTITION(part, reason);