Skip to content
Snippets Groups Projects
workqueue.c 13.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • Linus Torvalds's avatar
    Linus Torvalds committed
    /*
     * linux/kernel/workqueue.c
     *
     * Generic mechanism for defining kernel helper threads for running
     * arbitrary tasks in process context.
     *
     * Started by Ingo Molnar, Copyright (C) 2002
     *
     * Derived from the taskqueue/keventd code by:
     *
     *   David Woodhouse <dwmw2@infradead.org>
     *   Andrew Morton <andrewm@uow.edu.au>
     *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
     *   Theodore Ts'o <tytso@mit.edu>
    
     *
     * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/sched.h>
    #include <linux/init.h>
    #include <linux/signal.h>
    #include <linux/completion.h>
    #include <linux/workqueue.h>
    #include <linux/slab.h>
    #include <linux/cpu.h>
    #include <linux/notifier.h>
    #include <linux/kthread.h>
    
    /*
     * The per-CPU workqueue (if single thread, we always use cpu 0's).
     *
     * The sequence counters are for flush_scheduled_work().  It wants to wait
     * until until all currently-scheduled works are completed, but it doesn't
     * want to be livelocked by new, incoming ones.  So it waits until
     * remove_sequence is >= the insert_sequence which pertained when
     * flush_scheduled_work() was called.
     */
    struct cpu_workqueue_struct {
    
    	spinlock_t lock;
    
    	long remove_sequence;	/* Least-recently added (next to run) */
    	long insert_sequence;	/* Next to add */
    
    	struct list_head worklist;
    	wait_queue_head_t more_work;
    	wait_queue_head_t work_done;
    
    	struct workqueue_struct *wq;
    	task_t *thread;
    
    	int run_depth;		/* Detect run_workqueue() recursion depth */
    } ____cacheline_aligned;
    
    /*
     * The externally visible workqueue abstraction is an array of
     * per-CPU workqueues:
     */
    struct workqueue_struct {
    
    	struct cpu_workqueue_struct *cpu_wq;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	const char *name;
    	struct list_head list; 	/* Empty if single thread */
    };
    
    /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
       threads to each one as cpus come/go. */
    static DEFINE_SPINLOCK(workqueue_lock);
    static LIST_HEAD(workqueues);
    
    /* If it's single threaded, it isn't in the list of workqueues. */
    static inline int is_single_threaded(struct workqueue_struct *wq)
    {
    	return list_empty(&wq->list);
    }
    
    /* Preempt must be disabled. */
    static void __queue_work(struct cpu_workqueue_struct *cwq,
    			 struct work_struct *work)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&cwq->lock, flags);
    	work->wq_data = cwq;
    	list_add_tail(&work->entry, &cwq->worklist);
    	cwq->insert_sequence++;
    	wake_up(&cwq->more_work);
    	spin_unlock_irqrestore(&cwq->lock, flags);
    }
    
    /*
     * Queue work on a workqueue. Return non-zero if it was successfully
     * added.
     *
     * We queue the work to the CPU it was submitted, but there is no
     * guarantee that it will be processed by that CPU.
     */
    int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
    {
    	int ret = 0, cpu = get_cpu();
    
    	if (!test_and_set_bit(0, &work->pending)) {
    		if (unlikely(is_single_threaded(wq)))
    			cpu = 0;
    		BUG_ON(!list_empty(&work->entry));
    
    		__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		ret = 1;
    	}
    	put_cpu();
    	return ret;
    }
    
    static void delayed_work_timer_fn(unsigned long __data)
    {
    	struct work_struct *work = (struct work_struct *)__data;
    	struct workqueue_struct *wq = work->wq_data;
    	int cpu = smp_processor_id();
    
    	if (unlikely(is_single_threaded(wq)))
    		cpu = 0;
    
    
    	__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    }
    
    int fastcall queue_delayed_work(struct workqueue_struct *wq,
    			struct work_struct *work, unsigned long delay)
    {
    	int ret = 0;
    	struct timer_list *timer = &work->timer;
    
    	if (!test_and_set_bit(0, &work->pending)) {
    		BUG_ON(timer_pending(timer));
    		BUG_ON(!list_empty(&work->entry));
    
    		/* This stores wq for the moment, for the timer_fn */
    		work->wq_data = wq;
    		timer->expires = jiffies + delay;
    		timer->data = (unsigned long)work;
    		timer->function = delayed_work_timer_fn;
    		add_timer(timer);
    		ret = 1;
    	}
    	return ret;
    }
    
    static inline void run_workqueue(struct cpu_workqueue_struct *cwq)
    {
    	unsigned long flags;
    
    	/*
    	 * Keep taking off work from the queue until
    	 * done.
    	 */
    	spin_lock_irqsave(&cwq->lock, flags);
    	cwq->run_depth++;
    	if (cwq->run_depth > 3) {
    		/* morton gets to eat his hat */
    		printk("%s: recursion depth exceeded: %d\n",
    			__FUNCTION__, cwq->run_depth);
    		dump_stack();
    	}
    	while (!list_empty(&cwq->worklist)) {
    		struct work_struct *work = list_entry(cwq->worklist.next,
    						struct work_struct, entry);
    		void (*f) (void *) = work->func;
    		void *data = work->data;
    
    		list_del_init(cwq->worklist.next);
    		spin_unlock_irqrestore(&cwq->lock, flags);
    
    		BUG_ON(work->wq_data != cwq);
    		clear_bit(0, &work->pending);
    		f(data);
    
    		spin_lock_irqsave(&cwq->lock, flags);
    		cwq->remove_sequence++;
    		wake_up(&cwq->work_done);
    	}
    	cwq->run_depth--;
    	spin_unlock_irqrestore(&cwq->lock, flags);
    }
    
    static int worker_thread(void *__cwq)
    {
    	struct cpu_workqueue_struct *cwq = __cwq;
    	DECLARE_WAITQUEUE(wait, current);
    	struct k_sigaction sa;
    	sigset_t blocked;
    
    	current->flags |= PF_NOFREEZE;
    
    	set_user_nice(current, -5);
    
    	/* Block and flush all signals */
    	sigfillset(&blocked);
    	sigprocmask(SIG_BLOCK, &blocked, NULL);
    	flush_signals(current);
    
    	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
    	sa.sa.sa_handler = SIG_IGN;
    	sa.sa.sa_flags = 0;
    	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
    	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
    
    	set_current_state(TASK_INTERRUPTIBLE);
    	while (!kthread_should_stop()) {
    		add_wait_queue(&cwq->more_work, &wait);
    		if (list_empty(&cwq->worklist))
    			schedule();
    		else
    			__set_current_state(TASK_RUNNING);
    		remove_wait_queue(&cwq->more_work, &wait);
    
    		if (!list_empty(&cwq->worklist))
    			run_workqueue(cwq);
    		set_current_state(TASK_INTERRUPTIBLE);
    	}
    	__set_current_state(TASK_RUNNING);
    	return 0;
    }
    
    static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
    {
    	if (cwq->thread == current) {
    		/*
    		 * Probably keventd trying to flush its own queue. So simply run
    		 * it by hand rather than deadlocking.
    		 */
    		run_workqueue(cwq);
    	} else {
    		DEFINE_WAIT(wait);
    		long sequence_needed;
    
    		spin_lock_irq(&cwq->lock);
    		sequence_needed = cwq->insert_sequence;
    
    		while (sequence_needed - cwq->remove_sequence > 0) {
    			prepare_to_wait(&cwq->work_done, &wait,
    					TASK_UNINTERRUPTIBLE);
    			spin_unlock_irq(&cwq->lock);
    			schedule();
    			spin_lock_irq(&cwq->lock);
    		}
    		finish_wait(&cwq->work_done, &wait);
    		spin_unlock_irq(&cwq->lock);
    	}
    }
    
    /*
     * flush_workqueue - ensure that any scheduled work has run to completion.
     *
     * Forces execution of the workqueue and blocks until its completion.
     * This is typically used in driver shutdown handlers.
     *
     * This function will sample each workqueue's current insert_sequence number and
     * will sleep until the head sequence is greater than or equal to that.  This
     * means that we sleep until all works which were queued on entry have been
     * handled, but we are not livelocked by new incoming ones.
     *
     * This function used to run the workqueues itself.  Now we just wait for the
     * helper threads to do it.
     */
    void fastcall flush_workqueue(struct workqueue_struct *wq)
    {
    	might_sleep();
    
    	if (is_single_threaded(wq)) {
    		/* Always use cpu 0's area. */
    
    		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, 0));
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	} else {
    		int cpu;
    
    		lock_cpu_hotplug();
    		for_each_online_cpu(cpu)
    
    			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		unlock_cpu_hotplug();
    	}
    }
    
    static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
    						   int cpu)
    {
    
    	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	struct task_struct *p;
    
    	spin_lock_init(&cwq->lock);
    	cwq->wq = wq;
    	cwq->thread = NULL;
    	cwq->insert_sequence = 0;
    	cwq->remove_sequence = 0;
    	INIT_LIST_HEAD(&cwq->worklist);
    	init_waitqueue_head(&cwq->more_work);
    	init_waitqueue_head(&cwq->work_done);
    
    	if (is_single_threaded(wq))
    		p = kthread_create(worker_thread, cwq, "%s", wq->name);
    	else
    		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
    	if (IS_ERR(p))
    		return NULL;
    	cwq->thread = p;
    	return p;
    }
    
    struct workqueue_struct *__create_workqueue(const char *name,
    					    int singlethread)
    {
    	int cpu, destroy = 0;
    	struct workqueue_struct *wq;
    	struct task_struct *p;
    
    
    	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	if (!wq)
    		return NULL;
    
    
    	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	wq->name = name;
    	/* We don't need the distraction of CPUs appearing and vanishing. */
    	lock_cpu_hotplug();
    	if (singlethread) {
    		INIT_LIST_HEAD(&wq->list);
    		p = create_workqueue_thread(wq, 0);
    		if (!p)
    			destroy = 1;
    		else
    			wake_up_process(p);
    	} else {
    		spin_lock(&workqueue_lock);
    		list_add(&wq->list, &workqueues);
    		spin_unlock(&workqueue_lock);
    		for_each_online_cpu(cpu) {
    			p = create_workqueue_thread(wq, cpu);
    			if (p) {
    				kthread_bind(p, cpu);
    				wake_up_process(p);
    			} else
    				destroy = 1;
    		}
    	}
    	unlock_cpu_hotplug();
    
    	/*
    	 * Was there any error during startup? If yes then clean up:
    	 */
    	if (destroy) {
    		destroy_workqueue(wq);
    		wq = NULL;
    	}
    	return wq;
    }
    
    static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
    {
    	struct cpu_workqueue_struct *cwq;
    	unsigned long flags;
    	struct task_struct *p;
    
    
    	cwq = per_cpu_ptr(wq->cpu_wq, cpu);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	spin_lock_irqsave(&cwq->lock, flags);
    	p = cwq->thread;
    	cwq->thread = NULL;
    	spin_unlock_irqrestore(&cwq->lock, flags);
    	if (p)
    		kthread_stop(p);
    }
    
    void destroy_workqueue(struct workqueue_struct *wq)
    {
    	int cpu;
    
    	flush_workqueue(wq);
    
    	/* We don't need the distraction of CPUs appearing and vanishing. */
    	lock_cpu_hotplug();
    	if (is_single_threaded(wq))
    		cleanup_workqueue_thread(wq, 0);
    	else {
    		for_each_online_cpu(cpu)
    			cleanup_workqueue_thread(wq, cpu);
    		spin_lock(&workqueue_lock);
    		list_del(&wq->list);
    		spin_unlock(&workqueue_lock);
    	}
    	unlock_cpu_hotplug();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	kfree(wq);
    }
    
    static struct workqueue_struct *keventd_wq;
    
    int fastcall schedule_work(struct work_struct *work)
    {
    	return queue_work(keventd_wq, work);
    }
    
    int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
    {
    	return queue_delayed_work(keventd_wq, work, delay);
    }
    
    int schedule_delayed_work_on(int cpu,
    			struct work_struct *work, unsigned long delay)
    {
    	int ret = 0;
    	struct timer_list *timer = &work->timer;
    
    	if (!test_and_set_bit(0, &work->pending)) {
    		BUG_ON(timer_pending(timer));
    		BUG_ON(!list_empty(&work->entry));
    		/* This stores keventd_wq for the moment, for the timer_fn */
    		work->wq_data = keventd_wq;
    		timer->expires = jiffies + delay;
    		timer->data = (unsigned long)work;
    		timer->function = delayed_work_timer_fn;
    		add_timer_on(timer, cpu);
    		ret = 1;
    	}
    	return ret;
    }
    
    void flush_scheduled_work(void)
    {
    	flush_workqueue(keventd_wq);
    }
    
    /**
     * cancel_rearming_delayed_workqueue - reliably kill off a delayed
     *			work whose handler rearms the delayed work.
     * @wq:   the controlling workqueue structure
     * @work: the delayed work struct
     */
    
    void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
    				       struct work_struct *work)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	while (!cancel_delayed_work(work))
    		flush_workqueue(wq);
    }
    
    EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    /**
     * cancel_rearming_delayed_work - reliably kill off a delayed keventd
     *			work whose handler rearms the delayed work.
     * @work: the delayed work struct
     */
    void cancel_rearming_delayed_work(struct work_struct *work)
    {
    	cancel_rearming_delayed_workqueue(keventd_wq, work);
    }
    EXPORT_SYMBOL(cancel_rearming_delayed_work);
    
    int keventd_up(void)
    {
    	return keventd_wq != NULL;
    }
    
    int current_is_keventd(void)
    {
    	struct cpu_workqueue_struct *cwq;
    	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
    	int ret = 0;
    
    	BUG_ON(!keventd_wq);
    
    
    	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	if (current == cwq->thread)
    		ret = 1;
    
    	return ret;
    
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    /* Take the work from this (downed) CPU. */
    static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
    {
    
    	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	LIST_HEAD(list);
    	struct work_struct *work;
    
    	spin_lock_irq(&cwq->lock);
    	list_splice_init(&cwq->worklist, &list);
    
    	while (!list_empty(&list)) {
    		printk("Taking work for %s\n", wq->name);
    		work = list_entry(list.next,struct work_struct,entry);
    		list_del(&work->entry);
    
    		__queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	}
    	spin_unlock_irq(&cwq->lock);
    }
    
    /* We're holding the cpucontrol mutex here */
    static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
    				  unsigned long action,
    				  void *hcpu)
    {
    	unsigned int hotcpu = (unsigned long)hcpu;
    	struct workqueue_struct *wq;
    
    	switch (action) {
    	case CPU_UP_PREPARE:
    		/* Create a new workqueue thread for it. */
    		list_for_each_entry(wq, &workqueues, list) {
    
    			if (!create_workqueue_thread(wq, hotcpu)) {
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    				printk("workqueue for %i failed\n", hotcpu);
    				return NOTIFY_BAD;
    			}
    		}
    		break;
    
    	case CPU_ONLINE:
    		/* Kick off worker threads. */
    		list_for_each_entry(wq, &workqueues, list) {
    
    			struct cpu_workqueue_struct *cwq;
    
    			cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
    			kthread_bind(cwq->thread, hotcpu);
    			wake_up_process(cwq->thread);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		}
    		break;
    
    	case CPU_UP_CANCELED:
    		list_for_each_entry(wq, &workqueues, list) {
    			/* Unbind so it can run. */
    
    			kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    				     smp_processor_id());
    			cleanup_workqueue_thread(wq, hotcpu);
    		}
    		break;
    
    	case CPU_DEAD:
    		list_for_each_entry(wq, &workqueues, list)
    			cleanup_workqueue_thread(wq, hotcpu);
    		list_for_each_entry(wq, &workqueues, list)
    			take_over_work(wq, hotcpu);
    		break;
    	}
    
    	return NOTIFY_OK;
    }
    #endif
    
    void init_workqueues(void)
    {
    	hotcpu_notifier(workqueue_cpu_callback, 0);
    	keventd_wq = create_workqueue("events");
    	BUG_ON(!keventd_wq);
    }
    
    EXPORT_SYMBOL_GPL(__create_workqueue);
    EXPORT_SYMBOL_GPL(queue_work);
    EXPORT_SYMBOL_GPL(queue_delayed_work);
    EXPORT_SYMBOL_GPL(flush_workqueue);
    EXPORT_SYMBOL_GPL(destroy_workqueue);
    
    EXPORT_SYMBOL(schedule_work);
    EXPORT_SYMBOL(schedule_delayed_work);
    EXPORT_SYMBOL(schedule_delayed_work_on);
    EXPORT_SYMBOL(flush_scheduled_work);