Skip to content
Snippets Groups Projects
genalloc.c 15.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • Jes Sorensen's avatar
    Jes Sorensen committed
    /*
    
     * Basic general purpose allocator for managing special purpose
     * memory, for example, memory that is not managed by the regular
     * kmalloc/kfree interface.  Uses for this includes on-device special
     * memory, uncached memory etc.
     *
     * It is safe to use the allocator in NMI handlers and other special
     * unblockable contexts that could otherwise deadlock on locks.  This
     * is implemented by using atomic operations and retries on any
     * conflicts.  The disadvantage is that there may be livelocks in
     * extreme cases.  For better scalability, one allocator can be used
     * for each CPU.
     *
     * The lockless operation only works if there is enough memory
     * available.  If new memory is added to the pool a lock has to be
     * still taken.  So any user relying on locklessness has to ensure
     * that sufficient memory is preallocated.
     *
     * The basic atomic operation of this allocator is cmpxchg on long.
     * On architectures that don't have NMI-safe cmpxchg implementation,
     * the allocator can NOT be used in NMI handler.  So code uses the
     * allocator in NMI handler should depend on
     * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
    
    Jes Sorensen's avatar
    Jes Sorensen committed
     *
     * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
     *
     * This source code is licensed under the GNU General Public License,
     * Version 2.  See the file COPYING for more details.
     */
    
    
    #include <linux/export.h>
    
    #include <linux/bitmap.h>
    
    #include <linux/rculist.h>
    #include <linux/interrupt.h>
    
    Jes Sorensen's avatar
    Jes Sorensen committed
    #include <linux/genalloc.h>
    
    #include <linux/of_address.h>
    #include <linux/of_device.h>
    
    static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
    {
    	unsigned long val, nval;
    
    	nval = *addr;
    	do {
    		val = nval;
    		if (val & mask_to_set)
    			return -EBUSY;
    		cpu_relax();
    	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
    
    	return 0;
    }
    
    static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
    {
    	unsigned long val, nval;
    
    	nval = *addr;
    	do {
    		val = nval;
    		if ((val & mask_to_clear) != mask_to_clear)
    			return -EBUSY;
    		cpu_relax();
    	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
    
    	return 0;
    }
    
    /*
     * bitmap_set_ll - set the specified number of bits at the specified position
     * @map: pointer to a bitmap
     * @start: a bit position in @map
     * @nr: number of bits to set
     *
     * Set @nr bits start from @start in @map lock-lessly. Several users
     * can set/clear the same bitmap simultaneously without lock. If two
     * users set the same bit, one user will return remain bits, otherwise
     * return 0.
     */
    static int bitmap_set_ll(unsigned long *map, int start, int nr)
    {
    	unsigned long *p = map + BIT_WORD(start);
    	const int size = start + nr;
    	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
    	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
    
    	while (nr - bits_to_set >= 0) {
    		if (set_bits_ll(p, mask_to_set))
    			return nr;
    		nr -= bits_to_set;
    		bits_to_set = BITS_PER_LONG;
    		mask_to_set = ~0UL;
    		p++;
    	}
    	if (nr) {
    		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
    		if (set_bits_ll(p, mask_to_set))
    			return nr;
    	}
    
    	return 0;
    }
    
    /*
     * bitmap_clear_ll - clear the specified number of bits at the specified position
     * @map: pointer to a bitmap
     * @start: a bit position in @map
     * @nr: number of bits to set
     *
     * Clear @nr bits start from @start in @map lock-lessly. Several users
     * can set/clear the same bitmap simultaneously without lock. If two
     * users clear the same bit, one user will return remain bits,
     * otherwise return 0.
     */
    static int bitmap_clear_ll(unsigned long *map, int start, int nr)
    {
    	unsigned long *p = map + BIT_WORD(start);
    	const int size = start + nr;
    	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
    
    	while (nr - bits_to_clear >= 0) {
    		if (clear_bits_ll(p, mask_to_clear))
    			return nr;
    		nr -= bits_to_clear;
    		bits_to_clear = BITS_PER_LONG;
    		mask_to_clear = ~0UL;
    		p++;
    	}
    	if (nr) {
    		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
    		if (clear_bits_ll(p, mask_to_clear))
    			return nr;
    	}
    
    	return 0;
    }
    
    /**
     * gen_pool_create - create a new special memory pool
    
     * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
     * @nid: node id of the node the pool structure should be allocated on, or -1
    
     *
     * Create a new special memory pool that can be used to manage special purpose
     * memory not managed by the regular kmalloc/kfree interface.
    
     */
    struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
    
    	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
    	if (pool != NULL) {
    
    		spin_lock_init(&pool->lock);
    
    		INIT_LIST_HEAD(&pool->chunks);
    		pool->min_alloc_order = min_alloc_order;
    
    		pool->algo = gen_pool_first_fit;
    		pool->data = NULL;
    
    Jes Sorensen's avatar
    Jes Sorensen committed
    }
    EXPORT_SYMBOL(gen_pool_create);
    
    
     * gen_pool_add_virt - add a new chunk of special memory to the pool
    
     * @pool: pool to add new memory chunk to
    
     * @virt: virtual starting address of memory chunk to add to pool
     * @phys: physical starting address of memory chunk to add to pool
    
     * @size: size in bytes of the memory chunk to add to pool
     * @nid: node id of the node the chunk structure and bitmap should be
     *       allocated on, or -1
    
     *
     * Add a new chunk of special memory to the specified pool.
    
     *
     * Returns 0 on success or a -ve errno on failure.
    
    int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
    		 size_t size, int nid)
    
    	struct gen_pool_chunk *chunk;
    	int nbits = size >> pool->min_alloc_order;
    	int nbytes = sizeof(struct gen_pool_chunk) +
    
    				BITS_TO_LONGS(nbits) * sizeof(long);
    
    	chunk = kmalloc_node(nbytes, GFP_KERNEL | __GFP_ZERO, nid);
    
    	if (unlikely(chunk == NULL))
    
    	chunk->phys_addr = phys;
    	chunk->start_addr = virt;
    	chunk->end_addr = virt + size;
    
    	atomic_set(&chunk->avail, size);
    
    	spin_lock(&pool->lock);
    	list_add_rcu(&chunk->next_chunk, &pool->chunks);
    	spin_unlock(&pool->lock);
    
    EXPORT_SYMBOL(gen_pool_add_virt);
    
    /**
     * gen_pool_virt_to_phys - return the physical address of memory
     * @pool: pool to allocate from
     * @addr: starting address of memory
     *
     * Returns the physical address on success, or -1 on error.
     */
    phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
    {
    	struct gen_pool_chunk *chunk;
    
    	phys_addr_t paddr = -1;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
    			paddr = chunk->phys_addr + (addr - chunk->start_addr);
    			break;
    		}
    
    	rcu_read_unlock();
    
    /**
     * gen_pool_destroy - destroy a special memory pool
    
     * @pool: pool to destroy
    
     *
     * Destroy the specified special memory pool. Verifies that there are no
     * outstanding allocations.
    
     */
    void gen_pool_destroy(struct gen_pool *pool)
    {
    	struct list_head *_chunk, *_next_chunk;
    	struct gen_pool_chunk *chunk;
    	int order = pool->min_alloc_order;
    	int bit, end_bit;
    
    	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
    		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
    		list_del(&chunk->next_chunk);
    
    		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
    		bit = find_next_bit(chunk->bits, end_bit, 0);
    		BUG_ON(bit < end_bit);
    
    		kfree(chunk);
    	}
    	kfree(pool);
    	return;
    }
    EXPORT_SYMBOL(gen_pool_destroy);
    
    
    /**
     * gen_pool_alloc - allocate special memory from the pool
    
     * @pool: pool to allocate from
     * @size: number of bytes to allocate from the pool
    
     *
     * Allocate the requested number of bytes from the specified pool.
    
     * Uses the pool allocation function (with first-fit algorithm by default).
     * Can not be used in NMI handler on architectures without
     * NMI-safe cmpxchg implementation.
    
    unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
    
    	struct gen_pool_chunk *chunk;
    
    	unsigned long addr = 0;
    
    	int order = pool->min_alloc_order;
    
    	int nbits, start_bit = 0, end_bit, remain;
    
    #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
    	BUG_ON(in_nmi());
    #endif
    
    	nbits = (size + (1UL << order) - 1) >> order;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    		if (size > atomic_read(&chunk->avail))
    			continue;
    
    
    		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
    
    		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
    				pool->data);
    
    		if (start_bit >= end_bit)
    
    		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
    		if (remain) {
    			remain = bitmap_clear_ll(chunk->bits, start_bit,
    						 nbits - remain);
    			BUG_ON(remain);
    			goto retry;
    
    
    		addr = chunk->start_addr + ((unsigned long)start_bit << order);
    
    		size = nbits << order;
    		atomic_sub(size, &chunk->avail);
    		break;
    
    	rcu_read_unlock();
    	return addr;
    
    }
    EXPORT_SYMBOL(gen_pool_alloc);
    
    /**
     * gen_pool_free - free allocated special memory back to the pool
    
     * @pool: pool to free to
     * @addr: starting address of memory to free back to pool
     * @size: size in bytes of memory to free
    
     * Free previously allocated special memory back to the specified
     * pool.  Can not be used in NMI handler on architectures without
     * NMI-safe cmpxchg implementation.
    
     */
    void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
    {
    	struct gen_pool_chunk *chunk;
    	int order = pool->min_alloc_order;
    
    	int start_bit, nbits, remain;
    
    #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
    	BUG_ON(in_nmi());
    #endif
    
    	nbits = (size + (1UL << order) - 1) >> order;
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    
    		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
    			BUG_ON(addr + size > chunk->end_addr);
    
    			start_bit = (addr - chunk->start_addr) >> order;
    			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
    			BUG_ON(remain);
    			size = nbits << order;
    			atomic_add(size, &chunk->avail);
    			rcu_read_unlock();
    			return;
    
    	rcu_read_unlock();
    	BUG();
    
    Jes Sorensen's avatar
    Jes Sorensen committed
    }
    EXPORT_SYMBOL(gen_pool_free);
    
    
    /**
     * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
     * @pool:	the generic memory pool
     * @func:	func to call
     * @data:	additional data used by @func
     *
     * Call @func for every chunk of generic memory pool.  The @func is
     * called with rcu_read_lock held.
     */
    void gen_pool_for_each_chunk(struct gen_pool *pool,
    	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
    	void *data)
    {
    	struct gen_pool_chunk *chunk;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
    		func(pool, chunk, data);
    	rcu_read_unlock();
    }
    EXPORT_SYMBOL(gen_pool_for_each_chunk);
    
    /**
     * gen_pool_avail - get available free space of the pool
     * @pool: pool to get available free space
     *
     * Return available free space of the specified pool.
     */
    size_t gen_pool_avail(struct gen_pool *pool)
    {
    	struct gen_pool_chunk *chunk;
    	size_t avail = 0;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
    		avail += atomic_read(&chunk->avail);
    	rcu_read_unlock();
    	return avail;
    }
    EXPORT_SYMBOL_GPL(gen_pool_avail);
    
    /**
     * gen_pool_size - get size in bytes of memory managed by the pool
     * @pool: pool to get size
     *
     * Return size in bytes of memory managed by the pool.
     */
    size_t gen_pool_size(struct gen_pool *pool)
    {
    	struct gen_pool_chunk *chunk;
    	size_t size = 0;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
    		size += chunk->end_addr - chunk->start_addr;
    	rcu_read_unlock();
    	return size;
    }
    EXPORT_SYMBOL_GPL(gen_pool_size);
    
    
    /**
     * gen_pool_set_algo - set the allocation algorithm
     * @pool: pool to change allocation algorithm
     * @algo: custom algorithm function
     * @data: additional data used by @algo
     *
     * Call @algo for each memory allocation in the pool.
     * If @algo is NULL use gen_pool_first_fit as default
     * memory allocation function.
     */
    void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
    {
    	rcu_read_lock();
    
    	pool->algo = algo;
    	if (!pool->algo)
    		pool->algo = gen_pool_first_fit;
    
    	pool->data = data;
    
    	rcu_read_unlock();
    }
    EXPORT_SYMBOL(gen_pool_set_algo);
    
    /**
     * gen_pool_first_fit - find the first available region
     * of memory matching the size requirement (no alignment constraint)
     * @map: The address to base the search on
     * @size: The bitmap size in bits
     * @start: The bitnumber to start searching at
     * @nr: The number of zeroed bits we're looking for
     * @data: additional data - unused
     */
    unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
    		unsigned long start, unsigned int nr, void *data)
    {
    	return bitmap_find_next_zero_area(map, size, start, nr, 0);
    }
    EXPORT_SYMBOL(gen_pool_first_fit);
    
    /**
     * gen_pool_best_fit - find the best fitting region of memory
     * macthing the size requirement (no alignment constraint)
     * @map: The address to base the search on
     * @size: The bitmap size in bits
     * @start: The bitnumber to start searching at
     * @nr: The number of zeroed bits we're looking for
     * @data: additional data - unused
     *
     * Iterate over the bitmap to find the smallest free region
     * which we can allocate the memory.
     */
    unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
    		unsigned long start, unsigned int nr, void *data)
    {
    	unsigned long start_bit = size;
    	unsigned long len = size + 1;
    	unsigned long index;
    
    	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
    
    	while (index < size) {
    		int next_bit = find_next_bit(map, size, index + nr);
    		if ((next_bit - index) < len) {
    			len = next_bit - index;
    			start_bit = index;
    			if (len == nr)
    				return start_bit;
    		}
    		index = bitmap_find_next_zero_area(map, size,
    						   next_bit + 1, nr, 0);
    	}
    
    	return start_bit;
    }
    EXPORT_SYMBOL(gen_pool_best_fit);
    
    
    static void devm_gen_pool_release(struct device *dev, void *res)
    {
    	gen_pool_destroy(*(struct gen_pool **)res);
    }
    
    /**
     * devm_gen_pool_create - managed gen_pool_create
     * @dev: device that provides the gen_pool
     * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
     * @nid: node id of the node the pool structure should be allocated on, or -1
     *
     * Create a new special memory pool that can be used to manage special purpose
     * memory not managed by the regular kmalloc/kfree interface. The pool will be
     * automatically destroyed by the device management code.
     */
    struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
    		int nid)
    {
    	struct gen_pool **ptr, *pool;
    
    	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
    
    	pool = gen_pool_create(min_alloc_order, nid);
    	if (pool) {
    		*ptr = pool;
    		devres_add(dev, ptr);
    	} else {
    		devres_free(ptr);
    	}
    
    	return pool;
    }
    
    /**
     * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
     * @dev: device to retrieve the gen_pool from
     * @name: Optional name for the gen_pool, usually NULL
     *
     * Returns the gen_pool for the device if one is present, or NULL.
     */
    struct gen_pool *dev_get_gen_pool(struct device *dev)
    {
    	struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
    					NULL);
    
    	if (!p)
    		return NULL;
    	return *p;
    }
    EXPORT_SYMBOL_GPL(dev_get_gen_pool);
    
    #ifdef CONFIG_OF
    /**
     * of_get_named_gen_pool - find a pool by phandle property
     * @np: device node
     * @propname: property name containing phandle(s)
     * @index: index into the phandle array
     *
     * Returns the pool that contains the chunk starting at the physical
     * address of the device tree node pointed at by the phandle property,
     * or NULL if not found.
     */
    struct gen_pool *of_get_named_gen_pool(struct device_node *np,
    	const char *propname, int index)
    {
    	struct platform_device *pdev;
    	struct device_node *np_pool;
    
    	np_pool = of_parse_phandle(np, propname, index);
    	if (!np_pool)
    		return NULL;
    	pdev = of_find_device_by_node(np_pool);
    	if (!pdev)
    		return NULL;
    	return dev_get_gen_pool(&pdev->dev);
    }
    EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
    #endif /* CONFIG_OF */