Newer
Older
/*
* linux/fs/namespace.c
*
* (C) Copyright Al Viro 2000, 2001
* Released under GPL v2.
*
* Based on code from fs/super.c, copyright Linus Torvalds and others.
* Heavily rewritten.
*/
#include <linux/syscalls.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/kernel.h>
#include <linux/cpumask.h>
#include <linux/mnt_namespace.h>
#include <linux/security.h>
#include <linux/mount.h>

David Howells
committed
#include <linux/ramfs.h>
#include <linux/fsnotify.h>
#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
#define HASH_SIZE (1UL << HASH_SHIFT)
static DEFINE_IDA(mnt_group_ida);
static int mnt_id_start = 0;
static int mnt_group_start = 1;
static struct list_head *mount_hashtable __read_mostly;
static struct kmem_cache *mnt_cache __read_mostly;
struct kobject *fs_kobj;
EXPORT_SYMBOL_GPL(fs_kobj);
/*
* vfsmount lock may be taken for read to prevent changes to the
* vfsmount hash, ie. during mountpoint lookups or walking back
* up the tree.
*
* It should be taken for write in all cases where the vfsmount
* tree or hash is modified or when a vfsmount structure is modified.
*/
DEFINE_BRLOCK(vfsmount_lock);
static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
{
unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
tmp = tmp + (tmp >> HASH_SHIFT);
return tmp & (HASH_SIZE - 1);
#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
/*
* allocation is serialized by namespace_sem, but we need the spinlock to
* serialize with freeing.
*/
static int mnt_alloc_id(struct mount *mnt)
{
int res;
retry:
ida_pre_get(&mnt_id_ida, GFP_KERNEL);
res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt.mnt_id);
mnt_id_start = mnt->mnt.mnt_id + 1;
if (res == -EAGAIN)
goto retry;
return res;
}
static void mnt_free_id(struct mount *mnt)
int id = mnt->mnt.mnt_id;
ida_remove(&mnt_id_ida, id);
if (mnt_id_start > id)
mnt_id_start = id;
/*
* Allocate a new peer group ID
*
* mnt_group_ida is protected by namespace_sem
*/
static int mnt_alloc_group_id(struct mount *mnt)
if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
return -ENOMEM;
res = ida_get_new_above(&mnt_group_ida,
mnt_group_start,
mnt_group_start = mnt->mnt.mnt_group_id + 1;
}
/*
* Release a peer group ID
*/
void mnt_release_group_id(struct mount *mnt)
int id = mnt->mnt.mnt_group_id;
ida_remove(&mnt_group_ida, id);
if (mnt_group_start > id)
mnt_group_start = id;
/*
* vfsmount lock must be held for read
*/
static inline void mnt_add_count(struct mount *mnt, int n)
this_cpu_add(mnt->mnt_pcp->mnt_count, n);
preempt_enable();
#endif
}
/*
* vfsmount lock must be held for write
*/
unsigned int mnt_get_count(struct mount *mnt)
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
static struct mount *alloc_vfsmnt(const char *name)
struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
if (p) {
struct vfsmount *mnt = &p->mnt;
err = mnt_alloc_id(p);
if (err)
goto out_free_cache;
if (name) {
mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
if (!mnt->mnt_devname)
goto out_free_id;
p->mnt_pcp = alloc_percpu(struct mnt_pcp);
if (!p->mnt_pcp)
this_cpu_add(p->mnt_pcp->mnt_count, 1);
p->mnt_count = 1;
p->mnt_writers = 0;
INIT_LIST_HEAD(&p->mnt_child);
INIT_LIST_HEAD(&p->mnt_mounts);
INIT_LIST_HEAD(&p->mnt_expire);
INIT_LIST_HEAD(&p->mnt_share);
INIT_LIST_HEAD(&p->mnt_slave_list);
INIT_LIST_HEAD(&p->mnt_slave);
#ifdef CONFIG_FSNOTIFY
INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
return p;
mnt_free_id(p);
/*
* Most r/o checks on a fs are for operations that take
* discrete amounts of time, like a write() or unlink().
* We must keep track of when those operations start
* (for permission checks) and when they end, so that
* we can determine when writes are able to occur to
* a filesystem.
*/
/*
* __mnt_is_readonly: check whether a mount is read-only
* @mnt: the mount to check for its write status
*
* This shouldn't be used directly ouside of the VFS.
* It does not guarantee that the filesystem will stay
* r/w, just that it is right *now*. This can not and
* should not be used in place of IS_RDONLY(inode).
* mnt_want/drop_write() will _keep_ the filesystem
* r/w.
*/
int __mnt_is_readonly(struct vfsmount *mnt)
{
if (mnt->mnt_flags & MNT_READONLY)
return 1;
if (mnt->mnt_sb->s_flags & MS_RDONLY)
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(__mnt_is_readonly);
static inline void mnt_inc_writers(struct mount *mnt)
this_cpu_inc(mnt->mnt_pcp->mnt_writers);
static inline void mnt_dec_writers(struct mount *mnt)
this_cpu_dec(mnt->mnt_pcp->mnt_writers);
static unsigned int mnt_get_writers(struct mount *mnt)
#ifdef CONFIG_SMP
unsigned int count = 0;
int cpu;
for_each_possible_cpu(cpu) {
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
return count;
#else
return mnt->mnt_writers;
#endif
/*
* Most r/o checks on a fs are for operations that take
* discrete amounts of time, like a write() or unlink().
* We must keep track of when those operations start
* (for permission checks) and when they end, so that
* we can determine when writes are able to occur to
* a filesystem.
*/
/**
* mnt_want_write - get write access to a mount
* @m: the mount on which to take a write
*
* This tells the low-level filesystem that a write is
* about to be performed to it, and makes sure that
* writes are allowed before returning success. When
* the write operation is finished, mnt_drop_write()
* must be called. This is effectively a refcount.
*/
int mnt_want_write(struct vfsmount *m)
struct mount *mnt = real_mount(m);
int ret = 0;
* The store to mnt_inc_writers must be visible before we pass
* MNT_WRITE_HOLD loop below, so that the slowpath can see our
* incremented count after it has set MNT_WRITE_HOLD.
*/
smp_mb();
while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
cpu_relax();
/*
* After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
* be set to match its requirements. So we must not load that until
* MNT_WRITE_HOLD is cleared.
*/
smp_rmb();
ret = -EROFS;
goto out;
}
out:
}
EXPORT_SYMBOL_GPL(mnt_want_write);
/**
* mnt_clone_write - get write access to a mount
* @mnt: the mount on which to take a write
*
* This is effectively like mnt_want_write, except
* it must only be used to take an extra write reference
* on a mountpoint that we already know has a write reference
* on it. This allows some optimisation.
*
* After finished, mnt_drop_write must be called as usual to
* drop the reference.
*/
int mnt_clone_write(struct vfsmount *mnt)
{
/* superblock may be r/o */
if (__mnt_is_readonly(mnt))
return -EROFS;
preempt_disable();
mnt_inc_writers(real_mount(mnt));
preempt_enable();
return 0;
}
EXPORT_SYMBOL_GPL(mnt_clone_write);
/**
* mnt_want_write_file - get write access to a file's mount
* @file: the file who's mount on which to take a write
*
* This is like mnt_want_write, but it takes a file and can
* do some optimisations if the file is open for write already
*/
int mnt_want_write_file(struct file *file)
{
struct inode *inode = file->f_dentry->d_inode;
if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
return mnt_want_write(file->f_path.mnt);
else
return mnt_clone_write(file->f_path.mnt);
}
EXPORT_SYMBOL_GPL(mnt_want_write_file);
/**
* mnt_drop_write - give up write access to a mount
* @mnt: the mount on which to give up write access
*
* Tells the low-level filesystem that we are done
* performing writes to it. Must be matched with
* mnt_want_write() call above.
*/
void mnt_drop_write(struct vfsmount *mnt)
{
mnt_dec_writers(real_mount(mnt));
}
EXPORT_SYMBOL_GPL(mnt_drop_write);
void mnt_drop_write_file(struct file *file)
{
mnt_drop_write(file->f_path.mnt);
}
EXPORT_SYMBOL(mnt_drop_write_file);
static int mnt_make_readonly(struct mount *mnt)
int ret = 0;
mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
* After storing MNT_WRITE_HOLD, we'll read the counters. This store
* should be visible before we do.
* With writers on hold, if this value is zero, then there are
* definitely no active writers (although held writers may subsequently
* increment the count, they'll have to wait, and decrement it after
* seeing MNT_READONLY).
*
* It is OK to have counter incremented on one CPU and decremented on
* another: the sum will add up correctly. The danger would be when we
* sum up each counter, if we read a counter before it is incremented,
* but then read another CPU's count which it has been subsequently
* decremented from -- we would see more decrements than we should.
* MNT_WRITE_HOLD protects against this scenario, because
* mnt_want_write first increments count, then smp_mb, then spins on
* MNT_WRITE_HOLD, so it can't be decremented by another CPU while
* we're counting up here.
mnt->mnt.mnt_flags |= MNT_READONLY;
/*
* MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
* that become unheld will see MNT_READONLY.
*/
smp_wmb();
mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
static void __mnt_unmake_readonly(struct mount *mnt)
mnt->mnt.mnt_flags &= ~MNT_READONLY;
static void free_vfsmnt(struct mount *mnt)
kfree(mnt->mnt.mnt_devname);
kmem_cache_free(mnt_cache, mnt);
* find the first or last mount at @dentry on vfsmount @mnt depending on
* @dir. If @dir is set return the first mount else return the last mount.
* vfsmount_lock must be held for read or write.
struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
struct list_head *head = mount_hashtable + hash(mnt, dentry);
struct list_head *tmp = head;
struct mount *p, *found = NULL;
p = list_entry(tmp, struct mount, mnt_hash);
if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
/*
* lookup_mnt increments the ref count before returning
* the vfsmount struct.
*/
child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
if (child_mnt) {
mnt_add_count(child_mnt, 1);
br_read_unlock(vfsmount_lock);
return &child_mnt->mnt;
} else {
br_read_unlock(vfsmount_lock);
return NULL;
}
static inline int check_mnt(struct vfsmount *mnt)
{
return mnt->mnt_ns == current->nsproxy->mnt_ns;
/*
* vfsmount lock must be held for write
*/
static void touch_mnt_namespace(struct mnt_namespace *ns)
{
if (ns) {
ns->event = ++event;
wake_up_interruptible(&ns->poll);
}
}
/*
* vfsmount lock must be held for write
*/
static void __touch_mnt_namespace(struct mnt_namespace *ns)
{
if (ns && ns->event != event) {
ns->event = event;
wake_up_interruptible(&ns->poll);
}
}
/*
* Clear dentry's mounted state if it has no remaining mounts.
* vfsmount_lock must be held for write.
*/
static void dentry_reset_mounted(struct dentry *dentry)
{
unsigned u;
for (u = 0; u < HASH_SIZE; u++) {
list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
return;
}
}
spin_lock(&dentry->d_lock);
dentry->d_flags &= ~DCACHE_MOUNTED;
spin_unlock(&dentry->d_lock);
}
/*
* vfsmount lock must be held for write
*/
static void detach_mnt(struct mount *mnt, struct path *old_path)
{
old_path->dentry = mnt->mnt_mountpoint;
old_path->mnt = &mnt->mnt_parent->mnt;
mnt->mnt_parent = mnt;
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
list_del_init(&mnt->mnt_child);
dentry_reset_mounted(old_path->dentry);
/*
* vfsmount lock must be held for write
*/
void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
struct mount *child_mnt)
child_mnt->mnt_parent = real_mount(mntget(&mnt->mnt));
child_mnt->mnt_mountpoint = dget(dentry);
spin_lock(&dentry->d_lock);
dentry->d_flags |= DCACHE_MOUNTED;
spin_unlock(&dentry->d_lock);
/*
* vfsmount lock must be held for write
*/
static void attach_mnt(struct mount *mnt, struct path *path)
mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
list_add_tail(&mnt->mnt_hash, mount_hashtable +
list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
static inline void __mnt_make_longterm(struct mount *mnt)
#endif
}
/* needs vfsmount lock for write */
static inline void __mnt_make_shortterm(struct mount *mnt)
static void commit_tree(struct mount *mnt)
struct mount *parent = mnt->mnt_parent;
struct mnt_namespace *n = parent->mnt.mnt_ns;
BUG_ON(parent == mnt);
list_add_tail(&head, &mnt->mnt.mnt_list);
list_for_each_entry(m, &head, mnt.mnt_list) {
m->mnt.mnt_ns = n;
list_splice(&head, n->list.prev);
list_add_tail(&mnt->mnt_hash, mount_hashtable +
hash(&parent->mnt, mnt->mnt_mountpoint));
list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
touch_mnt_namespace(n);
static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
struct list_head *next = p->mnt_mounts.next;
if (next == &p->mnt_mounts) {
if (&p->mnt == root)
next = p->mnt_child.next;
if (next != &p->mnt_parent->mnt_mounts)
p = p->mnt_parent;
return list_entry(next, struct mount, mnt_child);
static struct mount *skip_mnt_tree(struct mount *p)
struct list_head *prev = p->mnt_mounts.prev;
while (prev != &p->mnt_mounts) {
p = list_entry(prev, struct mount, mnt_child);
prev = p->mnt_mounts.prev;
struct vfsmount *
vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
{
struct mount *mnt;
struct dentry *root;
if (!type)
return ERR_PTR(-ENODEV);
mnt = alloc_vfsmnt(name);
if (!mnt)
return ERR_PTR(-ENOMEM);
if (flags & MS_KERNMOUNT)
mnt->mnt.mnt_flags = MNT_INTERNAL;
root = mount_fs(type, flags, name, data);
if (IS_ERR(root)) {
free_vfsmnt(mnt);
return ERR_CAST(root);
}
mnt->mnt.mnt_root = root;
mnt->mnt.mnt_sb = root->d_sb;
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;
return &mnt->mnt;
}
EXPORT_SYMBOL_GPL(vfs_kern_mount);
static struct mount *clone_mnt(struct mount *old, struct dentry *root,
struct super_block *sb = old->mnt.mnt_sb;
struct mount *mnt = alloc_vfsmnt(old->mnt.mnt_devname);
if (flag & (CL_SLAVE | CL_PRIVATE))
mnt->mnt.mnt_group_id = 0; /* not a peer of original */
mnt->mnt.mnt_group_id = old->mnt.mnt_group_id;
if ((flag & CL_MAKE_SHARED) && !mnt->mnt.mnt_group_id) {
int err = mnt_alloc_group_id(mnt);
if (err)
goto out_free;
}
mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
mnt->mnt.mnt_sb = sb;
mnt->mnt.mnt_root = dget(root);
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;
list_add(&mnt->mnt_slave, &old->mnt_slave_list);
mnt->mnt_master = old;
CLEAR_MNT_SHARED(&mnt->mnt);
} else if (!(flag & CL_PRIVATE)) {
if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(&old->mnt))
list_add(&mnt->mnt_share, &old->mnt_share);
list_add(&mnt->mnt_slave, &old->mnt_slave);
set_mnt_shared(mnt);
/* stick the duplicate mount on the same expiry list
* as the original if that was on one */
if (!list_empty(&old->mnt_expire))
list_add(&mnt->mnt_expire, &old->mnt_expire);
out_free:
free_vfsmnt(mnt);
return NULL;
static inline void mntfree(struct mount *mnt)
struct vfsmount *m = &mnt->mnt;
struct super_block *sb = m->mnt_sb;
/*
* This probably indicates that somebody messed
* up a mnt_want/drop_write() pair. If this
* happens, the filesystem was probably unable
* to make r/w->r/o transitions.
*/
* The locking used to deal with mnt_count decrement provides barriers,
* so mnt_get_writers() below is safe.
fsnotify_vfsmount_delete(m);
dput(m->mnt_root);
free_vfsmnt(mnt);
static void mntput_no_expire(struct vfsmount *m)
struct mount *mnt = real_mount(m);
#ifdef CONFIG_SMP
br_read_lock(vfsmount_lock);
if (likely(atomic_read(&mnt->mnt_longterm))) {
br_write_unlock(vfsmount_lock);
return;
}
if (unlikely(mnt->mnt.mnt_pinned)) {
mnt_add_count(mnt, mnt->mnt.mnt_pinned + 1);
mnt->mnt.mnt_pinned = 0;
mntfree(mnt);
}
void mntput(struct vfsmount *mnt)
{
if (mnt) {
/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
if (unlikely(mnt->mnt_expiry_mark))
mnt->mnt_expiry_mark = 0;
}
}
EXPORT_SYMBOL(mntput);
struct vfsmount *mntget(struct vfsmount *mnt)
{
if (mnt)
mnt_add_count(real_mount(mnt), 1);
return mnt;
}
EXPORT_SYMBOL(mntget);
void mnt_pin(struct vfsmount *mnt)
{
mnt->mnt_pinned++;
}
EXPORT_SYMBOL(mnt_pin);
void mnt_unpin(struct vfsmount *mnt)
{
if (mnt->mnt_pinned) {
mnt_add_count(real_mount(mnt), 1);
mnt->mnt_pinned--;
}
}
EXPORT_SYMBOL(mnt_unpin);
static inline void mangle(struct seq_file *m, const char *s)
{
seq_escape(m, s, " \t\n\\");
}
/*
* Simple .show_options callback for filesystems which don't want to
* implement more complex mount option showing.
*
* See also save_mount_options().
*/
int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
{
const char *options;
rcu_read_lock();
options = rcu_dereference(mnt->mnt_sb->s_options);
if (options != NULL && options[0]) {
seq_putc(m, ',');
mangle(m, options);
}
return 0;
}
EXPORT_SYMBOL(generic_show_options);
/*
* If filesystem uses generic_show_options(), this function should be
* called from the fill_super() callback.
*
* The .remount_fs callback usually needs to be handled in a special
* way, to make sure, that previous options are not overwritten if the
* remount fails.
*
* Also note, that if the filesystem's .remount_fs function doesn't
* reset all options to their default value, but changes only newly
* given options, then the displayed options will not reflect reality
* any more.
*/
void save_mount_options(struct super_block *sb, char *options)
{
BUG_ON(sb->s_options);
rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
}
EXPORT_SYMBOL(save_mount_options);
void replace_mount_options(struct super_block *sb, char *options)
{
char *old = sb->s_options;
rcu_assign_pointer(sb->s_options, options);
if (old) {
synchronize_rcu();
kfree(old);
}
}
EXPORT_SYMBOL(replace_mount_options);
#ifdef CONFIG_PROC_FS
/* iterator */
static void *m_start(struct seq_file *m, loff_t *pos)
{
struct proc_mounts *p = m->private;
return seq_list_start(&p->ns->list, *pos);
}
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
struct proc_mounts *p = m->private;
return seq_list_next(v, &p->ns->list, pos);
}
static void m_stop(struct seq_file *m, void *v)
{
int mnt_had_events(struct proc_mounts *p)
{
struct mnt_namespace *ns = p->ns;
int res = 0;
if (p->m.poll_event != ns->event) {
p->m.poll_event = ns->event;
res = 1;
}
return res;
}
struct proc_fs_info {
int flag;
const char *str;
};
static int show_sb_opts(struct seq_file *m, struct super_block *sb)
static const struct proc_fs_info fs_info[] = {
{ MS_SYNCHRONOUS, ",sync" },
{ MS_DIRSYNC, ",dirsync" },
{ MS_MANDLOCK, ",mand" },
{ 0, NULL }
};
const struct proc_fs_info *fs_infop;
for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
if (sb->s_flags & fs_infop->flag)
seq_puts(m, fs_infop->str);
}
return security_sb_show_options(m, sb);
}
static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
{
static const struct proc_fs_info mnt_info[] = {
{ MNT_NOSUID, ",nosuid" },
{ MNT_NODEV, ",nodev" },
{ MNT_NOEXEC, ",noexec" },
{ MNT_NOATIME, ",noatime" },
{ MNT_NODIRATIME, ",nodiratime" },
const struct proc_fs_info *fs_infop;
for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
if (mnt->mnt_flags & fs_infop->flag)
seq_puts(m, fs_infop->str);
}
}
static void show_type(struct seq_file *m, struct super_block *sb)
{
mangle(m, sb->s_type->name);
if (sb->s_subtype && sb->s_subtype[0]) {
seq_putc(m, '.');
mangle(m, sb->s_subtype);
}
}
static int show_vfsmnt(struct seq_file *m, void *v)
{
struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
int err = 0;
struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
if (mnt->mnt_sb->s_op->show_devname) {
err = mnt->mnt_sb->s_op->show_devname(m, mnt);
if (err)
goto out;
} else {
mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
}