Skip to content
Snippets Groups Projects
dir.c 23.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * fs/kernfs/dir.c - kernfs directory implementation
     *
     * Copyright (c) 2001-3 Patrick Mochel
     * Copyright (c) 2007 SUSE Linux Products GmbH
     * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
     *
     * This file is released under the GPLv2.
     */
    
    
    #include <linux/fs.h>
    #include <linux/namei.h>
    #include <linux/idr.h>
    #include <linux/slab.h>
    #include <linux/security.h>
    #include <linux/hash.h>
    
    #include "kernfs-internal.h"
    
    DEFINE_MUTEX(sysfs_mutex);
    
    #define to_sysfs_dirent(X) rb_entry((X), struct sysfs_dirent, s_rb)
    
    /**
     *	sysfs_name_hash
     *	@name: Null terminated string to hash
     *	@ns:   Namespace tag to hash
     *
     *	Returns 31 bit hash of ns + name (so it fits in an off_t )
     */
    static unsigned int sysfs_name_hash(const char *name, const void *ns)
    {
    	unsigned long hash = init_name_hash();
    	unsigned int len = strlen(name);
    	while (len--)
    		hash = partial_name_hash(*name++, hash);
    	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
    	hash &= 0x7fffffffU;
    	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
    	if (hash < 1)
    		hash += 2;
    	if (hash >= INT_MAX)
    		hash = INT_MAX - 1;
    	return hash;
    }
    
    static int sysfs_name_compare(unsigned int hash, const char *name,
    			      const void *ns, const struct sysfs_dirent *sd)
    {
    	if (hash != sd->s_hash)
    		return hash - sd->s_hash;
    	if (ns != sd->s_ns)
    		return ns - sd->s_ns;
    	return strcmp(name, sd->s_name);
    }
    
    static int sysfs_sd_compare(const struct sysfs_dirent *left,
    			    const struct sysfs_dirent *right)
    {
    	return sysfs_name_compare(left->s_hash, left->s_name, left->s_ns,
    				  right);
    }
    
    /**
     *	sysfs_link_sibling - link sysfs_dirent into sibling rbtree
     *	@sd: sysfs_dirent of interest
     *
     *	Link @sd into its sibling rbtree which starts from
     *	sd->s_parent->s_dir.children.
     *
     *	Locking:
     *	mutex_lock(sysfs_mutex)
     *
     *	RETURNS:
     *	0 on susccess -EEXIST on failure.
     */
    static int sysfs_link_sibling(struct sysfs_dirent *sd)
    {
    	struct rb_node **node = &sd->s_parent->s_dir.children.rb_node;
    	struct rb_node *parent = NULL;
    
    	if (sysfs_type(sd) == SYSFS_DIR)
    		sd->s_parent->s_dir.subdirs++;
    
    	while (*node) {
    		struct sysfs_dirent *pos;
    		int result;
    
    		pos = to_sysfs_dirent(*node);
    		parent = *node;
    		result = sysfs_sd_compare(sd, pos);
    		if (result < 0)
    			node = &pos->s_rb.rb_left;
    		else if (result > 0)
    			node = &pos->s_rb.rb_right;
    		else
    			return -EEXIST;
    	}
    	/* add new node and rebalance the tree */
    	rb_link_node(&sd->s_rb, parent, node);
    	rb_insert_color(&sd->s_rb, &sd->s_parent->s_dir.children);
    	return 0;
    }
    
    /**
     *	sysfs_unlink_sibling - unlink sysfs_dirent from sibling rbtree
     *	@sd: sysfs_dirent of interest
     *
     *	Unlink @sd from its sibling rbtree which starts from
     *	sd->s_parent->s_dir.children.
     *
     *	Locking:
     *	mutex_lock(sysfs_mutex)
     */
    static void sysfs_unlink_sibling(struct sysfs_dirent *sd)
    {
    	if (sysfs_type(sd) == SYSFS_DIR)
    		sd->s_parent->s_dir.subdirs--;
    
    	rb_erase(&sd->s_rb, &sd->s_parent->s_dir.children);
    }
    
    /**
     *	sysfs_get_active - get an active reference to sysfs_dirent
     *	@sd: sysfs_dirent to get an active reference to
     *
     *	Get an active reference of @sd.  This function is noop if @sd
     *	is NULL.
     *
     *	RETURNS:
     *	Pointer to @sd on success, NULL on failure.
     */
    struct sysfs_dirent *sysfs_get_active(struct sysfs_dirent *sd)
    {
    	if (unlikely(!sd))
    		return NULL;
    
    	if (!atomic_inc_unless_negative(&sd->s_active))
    		return NULL;
    
    	if (sd->s_flags & SYSFS_FLAG_LOCKDEP)
    		rwsem_acquire_read(&sd->dep_map, 0, 1, _RET_IP_);
    	return sd;
    }
    
    /**
     *	sysfs_put_active - put an active reference to sysfs_dirent
     *	@sd: sysfs_dirent to put an active reference to
     *
     *	Put an active reference to @sd.  This function is noop if @sd
     *	is NULL.
     */
    void sysfs_put_active(struct sysfs_dirent *sd)
    {
    	int v;
    
    	if (unlikely(!sd))
    		return;
    
    	if (sd->s_flags & SYSFS_FLAG_LOCKDEP)
    		rwsem_release(&sd->dep_map, 1, _RET_IP_);
    	v = atomic_dec_return(&sd->s_active);
    	if (likely(v != SD_DEACTIVATED_BIAS))
    		return;
    
    	/* atomic_dec_return() is a mb(), we'll always see the updated
    	 * sd->u.completion.
    	 */
    	complete(sd->u.completion);
    }
    
    /**
     *	sysfs_deactivate - deactivate sysfs_dirent
     *	@sd: sysfs_dirent to deactivate
     *
     *	Deny new active references and drain existing ones.
     */
    static void sysfs_deactivate(struct sysfs_dirent *sd)
    {
    	DECLARE_COMPLETION_ONSTACK(wait);
    	int v;
    
    	BUG_ON(!(sd->s_flags & SYSFS_FLAG_REMOVED));
    
    	if (!(sysfs_type(sd) & SYSFS_ACTIVE_REF))
    		return;
    
    	sd->u.completion = (void *)&wait;
    
    	rwsem_acquire(&sd->dep_map, 0, 0, _RET_IP_);
    	/* atomic_add_return() is a mb(), put_active() will always see
    	 * the updated sd->u.completion.
    	 */
    	v = atomic_add_return(SD_DEACTIVATED_BIAS, &sd->s_active);
    
    	if (v != SD_DEACTIVATED_BIAS) {
    		lock_contended(&sd->dep_map, _RET_IP_);
    		wait_for_completion(&wait);
    	}
    
    	lock_acquired(&sd->dep_map, _RET_IP_);
    	rwsem_release(&sd->dep_map, 1, _RET_IP_);
    }
    
    /**
     * kernfs_get - get a reference count on a sysfs_dirent
     * @sd: the target sysfs_dirent
     */
    void kernfs_get(struct sysfs_dirent *sd)
    {
    	if (sd) {
    		WARN_ON(!atomic_read(&sd->s_count));
    		atomic_inc(&sd->s_count);
    	}
    }
    EXPORT_SYMBOL_GPL(kernfs_get);
    
    /**
     * kernfs_put - put a reference count on a sysfs_dirent
     * @sd: the target sysfs_dirent
     *
     * Put a reference count of @sd and destroy it if it reached zero.
     */
    void kernfs_put(struct sysfs_dirent *sd)
    {
    	struct sysfs_dirent *parent_sd;
    
    	struct kernfs_root *root;
    
    
    	if (!sd || !atomic_dec_and_test(&sd->s_count))
    		return;
    
    	root = kernfs_root(sd);
    
     repeat:
    	/* Moving/renaming is always done while holding reference.
    	 * sd->s_parent won't change beneath us.
    	 */
    	parent_sd = sd->s_parent;
    
    	WARN(!(sd->s_flags & SYSFS_FLAG_REMOVED),
    		"sysfs: free using entry: %s/%s\n",
    		parent_sd ? parent_sd->s_name : "", sd->s_name);
    
    	if (sysfs_type(sd) == SYSFS_KOBJ_LINK)
    		kernfs_put(sd->s_symlink.target_sd);
    	if (sysfs_type(sd) & SYSFS_COPY_NAME)
    		kfree(sd->s_name);
    	if (sd->s_iattr && sd->s_iattr->ia_secdata)
    		security_release_secctx(sd->s_iattr->ia_secdata,
    					sd->s_iattr->ia_secdata_len);
    	kfree(sd->s_iattr);
    
    	ida_simple_remove(&root->ino_ida, sd->s_ino);
    
    	kmem_cache_free(sysfs_dir_cachep, sd);
    
    	sd = parent_sd;
    
    	if (sd) {
    		if (atomic_dec_and_test(&sd->s_count))
    			goto repeat;
    	} else {
    		/* just released the root sd, free @root too */
    
    		ida_destroy(&root->ino_ida);
    
    }
    EXPORT_SYMBOL_GPL(kernfs_put);
    
    static int sysfs_dentry_delete(const struct dentry *dentry)
    {
    	struct sysfs_dirent *sd = dentry->d_fsdata;
    	return !(sd && !(sd->s_flags & SYSFS_FLAG_REMOVED));
    }
    
    static int sysfs_dentry_revalidate(struct dentry *dentry, unsigned int flags)
    {
    	struct sysfs_dirent *sd;
    
    	if (flags & LOOKUP_RCU)
    		return -ECHILD;
    
    	sd = dentry->d_fsdata;
    	mutex_lock(&sysfs_mutex);
    
    	/* The sysfs dirent has been deleted */
    	if (sd->s_flags & SYSFS_FLAG_REMOVED)
    		goto out_bad;
    
    	/* The sysfs dirent has been moved? */
    	if (dentry->d_parent->d_fsdata != sd->s_parent)
    		goto out_bad;
    
    	/* The sysfs dirent has been renamed */
    	if (strcmp(dentry->d_name.name, sd->s_name) != 0)
    		goto out_bad;
    
    	/* The sysfs dirent has been moved to a different namespace */
    
    	if (sd->s_parent && kernfs_ns_enabled(sd->s_parent) &&
    
    	    sysfs_info(dentry->d_sb)->ns != sd->s_ns)
    		goto out_bad;
    
    	mutex_unlock(&sysfs_mutex);
    out_valid:
    	return 1;
    out_bad:
    	/* Remove the dentry from the dcache hashes.
    	 * If this is a deleted dentry we use d_drop instead of d_delete
    	 * so sysfs doesn't need to cope with negative dentries.
    	 *
    	 * If this is a dentry that has simply been renamed we
    	 * use d_drop to remove it from the dcache lookup on its
    	 * old parent.  If this dentry persists later when a lookup
    	 * is performed at its new name the dentry will be readded
    	 * to the dcache hashes.
    	 */
    	mutex_unlock(&sysfs_mutex);
    
    	/* If we have submounts we must allow the vfs caches
    	 * to lie about the state of the filesystem to prevent
    	 * leaks and other nasty things.
    	 */
    	if (check_submounts_and_drop(dentry) != 0)
    		goto out_valid;
    
    	return 0;
    }
    
    static void sysfs_dentry_release(struct dentry *dentry)
    {
    	kernfs_put(dentry->d_fsdata);
    }
    
    const struct dentry_operations sysfs_dentry_ops = {
    	.d_revalidate	= sysfs_dentry_revalidate,
    	.d_delete	= sysfs_dentry_delete,
    	.d_release	= sysfs_dentry_release,
    };
    
    
    struct sysfs_dirent *sysfs_new_dirent(struct kernfs_root *root,
    				      const char *name, umode_t mode, int type)
    
    {
    	char *dup_name = NULL;
    	struct sysfs_dirent *sd;
    
    
    	if (type & SYSFS_COPY_NAME) {
    		name = dup_name = kstrdup(name, GFP_KERNEL);
    		if (!name)
    			return NULL;
    	}
    
    	sd = kmem_cache_zalloc(sysfs_dir_cachep, GFP_KERNEL);
    	if (!sd)
    		goto err_out1;
    
    
    	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
    	if (ret < 0)
    
    
    	atomic_set(&sd->s_count, 1);
    	atomic_set(&sd->s_active, 0);
    
    	sd->s_name = name;
    	sd->s_mode = mode;
    	sd->s_flags = type | SYSFS_FLAG_REMOVED;
    
    	return sd;
    
     err_out2:
    	kmem_cache_free(sysfs_dir_cachep, sd);
     err_out1:
    	kfree(dup_name);
    	return NULL;
    }
    
    /**
     *	sysfs_addrm_start - prepare for sysfs_dirent add/remove
     *	@acxt: pointer to sysfs_addrm_cxt to be used
     *
     *	This function is called when the caller is about to add or remove
     *	sysfs_dirent.  This function acquires sysfs_mutex.  @acxt is used
     *	to keep and pass context to other addrm functions.
     *
     *	LOCKING:
     *	Kernel thread context (may sleep).  sysfs_mutex is locked on
     *	return.
     */
    void sysfs_addrm_start(struct sysfs_addrm_cxt *acxt)
    	__acquires(sysfs_mutex)
    {
    	memset(acxt, 0, sizeof(*acxt));
    
    	mutex_lock(&sysfs_mutex);
    }
    
    /**
     *	sysfs_add_one - add sysfs_dirent to parent without warning
     *	@acxt: addrm context to use
     *	@sd: sysfs_dirent to be added
     *	@parent_sd: the parent sysfs_dirent to add @sd to
     *
     *	Get @parent_sd and set @sd->s_parent to it and increment nlink of
     *	the parent inode if @sd is a directory and link into the children
     *	list of the parent.
     *
     *	This function should be called between calls to
     *	sysfs_addrm_start() and sysfs_addrm_finish() and should be
     *	passed the same @acxt as passed to sysfs_addrm_start().
     *
     *	LOCKING:
     *	Determined by sysfs_addrm_start().
     *
     *	RETURNS:
     *	0 on success, -EEXIST if entry with the given name already
     *	exists.
     */
    int sysfs_add_one(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd,
    		  struct sysfs_dirent *parent_sd)
    {
    
    	bool has_ns = kernfs_ns_enabled(parent_sd);
    
    	struct sysfs_inode_attrs *ps_iattr;
    	int ret;
    
    	if (has_ns != (bool)sd->s_ns) {
    		WARN(1, KERN_WARNING "sysfs: ns %s in '%s' for '%s'\n",
    		     has_ns ? "required" : "invalid",
    		     parent_sd->s_name, sd->s_name);
    		return -EINVAL;
    	}
    
    	if (sysfs_type(parent_sd) != SYSFS_DIR)
    		return -EINVAL;
    
    	sd->s_hash = sysfs_name_hash(sd->s_name, sd->s_ns);
    	sd->s_parent = parent_sd;
    	kernfs_get(parent_sd);
    
    	ret = sysfs_link_sibling(sd);
    	if (ret)
    		return ret;
    
    	/* Update timestamps on the parent */
    	ps_iattr = parent_sd->s_iattr;
    	if (ps_iattr) {
    		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
    		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
    	}
    
    	/* Mark the entry added into directory tree */
    	sd->s_flags &= ~SYSFS_FLAG_REMOVED;
    
    	return 0;
    }
    
    /**
     *	sysfs_remove_one - remove sysfs_dirent from parent
     *	@acxt: addrm context to use
     *	@sd: sysfs_dirent to be removed
     *
     *	Mark @sd removed and drop nlink of parent inode if @sd is a
     *	directory.  @sd is unlinked from the children list.
     *
     *	This function should be called between calls to
     *	sysfs_addrm_start() and sysfs_addrm_finish() and should be
     *	passed the same @acxt as passed to sysfs_addrm_start().
     *
     *	LOCKING:
     *	Determined by sysfs_addrm_start().
     */
    static void sysfs_remove_one(struct sysfs_addrm_cxt *acxt,
    			     struct sysfs_dirent *sd)
    {
    	struct sysfs_inode_attrs *ps_iattr;
    
    	/*
    	 * Removal can be called multiple times on the same node.  Only the
    	 * first invocation is effective and puts the base ref.
    	 */
    	if (sd->s_flags & SYSFS_FLAG_REMOVED)
    		return;
    
    
    	if (sd->s_parent) {
    		sysfs_unlink_sibling(sd);
    
    		/* Update timestamps on the parent */
    		ps_iattr = sd->s_parent->s_iattr;
    		if (ps_iattr) {
    			ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
    			ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
    		}
    
    	}
    
    	sd->s_flags |= SYSFS_FLAG_REMOVED;
    	sd->u.removed_list = acxt->removed;
    	acxt->removed = sd;
    }
    
    /**
     *	sysfs_addrm_finish - finish up sysfs_dirent add/remove
     *	@acxt: addrm context to finish up
     *
     *	Finish up sysfs_dirent add/remove.  Resources acquired by
     *	sysfs_addrm_start() are released and removed sysfs_dirents are
     *	cleaned up.
     *
     *	LOCKING:
     *	sysfs_mutex is released.
     */
    void sysfs_addrm_finish(struct sysfs_addrm_cxt *acxt)
    	__releases(sysfs_mutex)
    {
    	/* release resources acquired by sysfs_addrm_start() */
    	mutex_unlock(&sysfs_mutex);
    
    	/* kill removed sysfs_dirents */
    	while (acxt->removed) {
    		struct sysfs_dirent *sd = acxt->removed;
    
    		acxt->removed = sd->u.removed_list;
    
    		sysfs_deactivate(sd);
    		sysfs_unmap_bin_file(sd);
    		kernfs_put(sd);
    	}
    }
    
    /**
     * kernfs_find_ns - find sysfs_dirent with the given name
     * @parent: sysfs_dirent to search under
     * @name: name to look for
     * @ns: the namespace tag to use
     *
     * Look for sysfs_dirent with name @name under @parent.  Returns pointer to
     * the found sysfs_dirent on success, %NULL on failure.
     */
    static struct sysfs_dirent *kernfs_find_ns(struct sysfs_dirent *parent,
    					   const unsigned char *name,
    					   const void *ns)
    {
    	struct rb_node *node = parent->s_dir.children.rb_node;
    
    	bool has_ns = kernfs_ns_enabled(parent);
    
    	unsigned int hash;
    
    	lockdep_assert_held(&sysfs_mutex);
    
    	if (has_ns != (bool)ns) {
    		WARN(1, KERN_WARNING "sysfs: ns %s in '%s' for '%s'\n",
    		     has_ns ? "required" : "invalid",
    		     parent->s_name, name);
    		return NULL;
    	}
    
    	hash = sysfs_name_hash(name, ns);
    	while (node) {
    		struct sysfs_dirent *sd;
    		int result;
    
    		sd = to_sysfs_dirent(node);
    		result = sysfs_name_compare(hash, name, ns, sd);
    		if (result < 0)
    			node = node->rb_left;
    		else if (result > 0)
    			node = node->rb_right;
    		else
    			return sd;
    	}
    	return NULL;
    }
    
    /**
     * kernfs_find_and_get_ns - find and get sysfs_dirent with the given name
     * @parent: sysfs_dirent to search under
     * @name: name to look for
     * @ns: the namespace tag to use
     *
     * Look for sysfs_dirent with name @name under @parent and get a reference
     * if found.  This function may sleep and returns pointer to the found
     * sysfs_dirent on success, %NULL on failure.
     */
    struct sysfs_dirent *kernfs_find_and_get_ns(struct sysfs_dirent *parent,
    					    const char *name, const void *ns)
    {
    	struct sysfs_dirent *sd;
    
    	mutex_lock(&sysfs_mutex);
    	sd = kernfs_find_ns(parent, name, ns);
    	kernfs_get(sd);
    	mutex_unlock(&sysfs_mutex);
    
    	return sd;
    }
    EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
    
    
    /**
     * kernfs_create_root - create a new kernfs hierarchy
     * @priv: opaque data associated with the new directory
     *
     * Returns the root of the new hierarchy on success, ERR_PTR() value on
     * failure.
     */
    struct kernfs_root *kernfs_create_root(void *priv)
    {
    	struct kernfs_root *root;
    	struct sysfs_dirent *sd;
    
    	root = kzalloc(sizeof(*root), GFP_KERNEL);
    	if (!root)
    		return ERR_PTR(-ENOMEM);
    
    
    	ida_init(&root->ino_ida);
    
    	sd = sysfs_new_dirent(root, "", S_IFDIR | S_IRUGO | S_IXUGO, SYSFS_DIR);
    
    		ida_destroy(&root->ino_ida);
    
    		kfree(root);
    		return ERR_PTR(-ENOMEM);
    	}
    
    	sd->s_flags &= ~SYSFS_FLAG_REMOVED;
    	sd->priv = priv;
    	sd->s_dir.root = root;
    
    	root->sd = sd;
    
    	return root;
    }
    
    /**
     * kernfs_destroy_root - destroy a kernfs hierarchy
     * @root: root of the hierarchy to destroy
     *
     * Destroy the hierarchy anchored at @root by removing all existing
     * directories and destroying @root.
     */
    void kernfs_destroy_root(struct kernfs_root *root)
    {
    	kernfs_remove(root->sd);	/* will also free @root */
    }
    
    
    /**
     * kernfs_create_dir_ns - create a directory
     * @parent: parent in which to create a new directory
     * @name: name of the new directory
     * @priv: opaque data associated with the new directory
     * @ns: optional namespace tag of the directory
     *
     * Returns the created node on success, ERR_PTR() value on failure.
     */
    struct sysfs_dirent *kernfs_create_dir_ns(struct sysfs_dirent *parent,
    					  const char *name, void *priv,
    					  const void *ns)
    {
    	umode_t mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
    	struct sysfs_addrm_cxt acxt;
    	struct sysfs_dirent *sd;
    	int rc;
    
    	/* allocate */
    
    	sd = sysfs_new_dirent(kernfs_root(parent), name, mode, SYSFS_DIR);
    
    	if (!sd)
    		return ERR_PTR(-ENOMEM);
    
    
    	sd->s_dir.root = parent->s_dir.root;
    
    	sd->s_ns = ns;
    	sd->priv = priv;
    
    	/* link in */
    	sysfs_addrm_start(&acxt);
    	rc = sysfs_add_one(&acxt, sd, parent);
    	sysfs_addrm_finish(&acxt);
    
    	if (!rc)
    		return sd;
    
    	kernfs_put(sd);
    	return ERR_PTR(rc);
    }
    
    static struct dentry *sysfs_lookup(struct inode *dir, struct dentry *dentry,
    				   unsigned int flags)
    {
    	struct dentry *ret = NULL;
    	struct dentry *parent = dentry->d_parent;
    	struct sysfs_dirent *parent_sd = parent->d_fsdata;
    	struct sysfs_dirent *sd;
    	struct inode *inode;
    	const void *ns = NULL;
    
    	mutex_lock(&sysfs_mutex);
    
    
    	if (kernfs_ns_enabled(parent_sd))
    
    		ns = sysfs_info(dir->i_sb)->ns;
    
    	sd = kernfs_find_ns(parent_sd, dentry->d_name.name, ns);
    
    	/* no such entry */
    	if (!sd) {
    		ret = ERR_PTR(-ENOENT);
    		goto out_unlock;
    	}
    	kernfs_get(sd);
    	dentry->d_fsdata = sd;
    
    	/* attach dentry and inode */
    	inode = sysfs_get_inode(dir->i_sb, sd);
    	if (!inode) {
    		ret = ERR_PTR(-ENOMEM);
    		goto out_unlock;
    	}
    
    	/* instantiate and hash dentry */
    	ret = d_materialise_unique(dentry, inode);
     out_unlock:
    	mutex_unlock(&sysfs_mutex);
    	return ret;
    }
    
    const struct inode_operations sysfs_dir_inode_operations = {
    	.lookup		= sysfs_lookup,
    	.permission	= sysfs_permission,
    	.setattr	= sysfs_setattr,
    	.getattr	= sysfs_getattr,
    	.setxattr	= sysfs_setxattr,
    };
    
    static struct sysfs_dirent *sysfs_leftmost_descendant(struct sysfs_dirent *pos)
    {
    	struct sysfs_dirent *last;
    
    	while (true) {
    		struct rb_node *rbn;
    
    		last = pos;
    
    		if (sysfs_type(pos) != SYSFS_DIR)
    			break;
    
    		rbn = rb_first(&pos->s_dir.children);
    		if (!rbn)
    			break;
    
    		pos = to_sysfs_dirent(rbn);
    	}
    
    	return last;
    }
    
    /**
     * sysfs_next_descendant_post - find the next descendant for post-order walk
     * @pos: the current position (%NULL to initiate traversal)
     * @root: sysfs_dirent whose descendants to walk
     *
     * Find the next descendant to visit for post-order traversal of @root's
     * descendants.  @root is included in the iteration and the last node to be
     * visited.
     */
    static struct sysfs_dirent *sysfs_next_descendant_post(struct sysfs_dirent *pos,
    						       struct sysfs_dirent *root)
    {
    	struct rb_node *rbn;
    
    	lockdep_assert_held(&sysfs_mutex);
    
    	/* if first iteration, visit leftmost descendant which may be root */
    	if (!pos)
    		return sysfs_leftmost_descendant(root);
    
    	/* if we visited @root, we're done */
    	if (pos == root)
    		return NULL;
    
    	/* if there's an unvisited sibling, visit its leftmost descendant */
    	rbn = rb_next(&pos->s_rb);
    	if (rbn)
    		return sysfs_leftmost_descendant(to_sysfs_dirent(rbn));
    
    	/* no sibling left, visit parent */
    	return pos->s_parent;
    }
    
    static void __kernfs_remove(struct sysfs_addrm_cxt *acxt,
    			    struct sysfs_dirent *sd)
    {
    	struct sysfs_dirent *pos, *next;
    
    	if (!sd)
    		return;
    
    	pr_debug("sysfs %s: removing\n", sd->s_name);
    
    	next = NULL;
    	do {
    		pos = next;
    		next = sysfs_next_descendant_post(pos, sd);
    		if (pos)
    			sysfs_remove_one(acxt, pos);
    	} while (next);
    }
    
    /**
     * kernfs_remove - remove a sysfs_dirent recursively
     * @sd: the sysfs_dirent to remove
     *
     * Remove @sd along with all its subdirectories and files.
     */
    void kernfs_remove(struct sysfs_dirent *sd)
    {
    	struct sysfs_addrm_cxt acxt;
    
    	sysfs_addrm_start(&acxt);
    	__kernfs_remove(&acxt, sd);
    	sysfs_addrm_finish(&acxt);
    }
    
    /**
     * kernfs_remove_by_name_ns - find a sysfs_dirent by name and remove it
     * @dir_sd: parent of the target
     * @name: name of the sysfs_dirent to remove
     * @ns: namespace tag of the sysfs_dirent to remove
     *
     * Look for the sysfs_dirent with @name and @ns under @dir_sd and remove
     * it.  Returns 0 on success, -ENOENT if such entry doesn't exist.
     */
    int kernfs_remove_by_name_ns(struct sysfs_dirent *dir_sd, const char *name,
    			     const void *ns)
    {
    	struct sysfs_addrm_cxt acxt;
    	struct sysfs_dirent *sd;
    
    	if (!dir_sd) {
    		WARN(1, KERN_WARNING "sysfs: can not remove '%s', no directory\n",
    			name);
    		return -ENOENT;
    	}
    
    	sysfs_addrm_start(&acxt);
    
    	sd = kernfs_find_ns(dir_sd, name, ns);
    	if (sd)
    		__kernfs_remove(&acxt, sd);
    
    	sysfs_addrm_finish(&acxt);
    
    	if (sd)
    		return 0;
    	else
    		return -ENOENT;
    }
    
    /**
     * kernfs_rename_ns - move and rename a kernfs_node
     * @sd: target node
     * @new_parent: new parent to put @sd under
     * @new_name: new name
     * @new_ns: new namespace tag
     */
    int kernfs_rename_ns(struct sysfs_dirent *sd, struct sysfs_dirent *new_parent,
    		     const char *new_name, const void *new_ns)
    {
    	int error;
    
    	mutex_lock(&sysfs_mutex);
    
    	error = 0;
    	if ((sd->s_parent == new_parent) && (sd->s_ns == new_ns) &&
    	    (strcmp(sd->s_name, new_name) == 0))
    		goto out;	/* nothing to rename */
    
    	error = -EEXIST;
    	if (kernfs_find_ns(new_parent, new_name, new_ns))
    		goto out;
    
    	/* rename sysfs_dirent */
    	if (strcmp(sd->s_name, new_name) != 0) {
    		error = -ENOMEM;
    		new_name = kstrdup(new_name, GFP_KERNEL);
    		if (!new_name)
    			goto out;
    
    		kfree(sd->s_name);
    		sd->s_name = new_name;
    	}
    
    	/*
    	 * Move to the appropriate place in the appropriate directories rbtree.
    	 */
    	sysfs_unlink_sibling(sd);
    	kernfs_get(new_parent);
    	kernfs_put(sd->s_parent);
    	sd->s_ns = new_ns;
    	sd->s_hash = sysfs_name_hash(sd->s_name, sd->s_ns);
    	sd->s_parent = new_parent;
    	sysfs_link_sibling(sd);
    
    	error = 0;
     out:
    	mutex_unlock(&sysfs_mutex);
    	return error;
    }
    
    /* Relationship between s_mode and the DT_xxx types */
    static inline unsigned char dt_type(struct sysfs_dirent *sd)
    {
    	return (sd->s_mode >> 12) & 15;
    }
    
    static int sysfs_dir_release(struct inode *inode, struct file *filp)
    {
    	kernfs_put(filp->private_data);
    	return 0;
    }
    
    static struct sysfs_dirent *sysfs_dir_pos(const void *ns,
    	struct sysfs_dirent *parent_sd,	loff_t hash, struct sysfs_dirent *pos)
    {
    	if (pos) {
    		int valid = !(pos->s_flags & SYSFS_FLAG_REMOVED) &&
    			pos->s_parent == parent_sd &&
    			hash == pos->s_hash;
    		kernfs_put(pos);
    		if (!valid)
    			pos = NULL;
    	}
    	if (!pos && (hash > 1) && (hash < INT_MAX)) {
    		struct rb_node *node = parent_sd->s_dir.children.rb_node;
    		while (node) {
    			pos = to_sysfs_dirent(node);
    
    			if (hash < pos->s_hash)
    				node = node->rb_left;
    			else if (hash > pos->s_hash)
    				node = node->rb_right;
    			else
    				break;
    		}
    	}
    	/* Skip over entries in the wrong namespace */
    	while (pos && pos->s_ns != ns) {
    		struct rb_node *node = rb_next(&pos->s_rb);
    		if (!node)
    			pos = NULL;
    		else
    			pos = to_sysfs_dirent(node);
    	}
    	return pos;
    }
    
    static struct sysfs_dirent *sysfs_dir_next_pos(const void *ns,
    	struct sysfs_dirent *parent_sd,	ino_t ino, struct sysfs_dirent *pos)
    {
    	pos = sysfs_dir_pos(ns, parent_sd, ino, pos);
    	if (pos)
    		do {
    			struct rb_node *node = rb_next(&pos->s_rb);
    			if (!node)
    				pos = NULL;
    			else
    				pos = to_sysfs_dirent(node);
    		} while (pos && pos->s_ns != ns);
    	return pos;
    }
    
    static int sysfs_readdir(struct file *file, struct dir_context *ctx)
    {
    	struct dentry *dentry = file->f_path.dentry;
    	struct sysfs_dirent *parent_sd = dentry->d_fsdata;
    	struct sysfs_dirent *pos = file->private_data;
    	const void *ns = NULL;
    
    	if (!dir_emit_dots(file, ctx))
    		return 0;
    	mutex_lock(&sysfs_mutex);
    
    
    	if (kernfs_ns_enabled(parent_sd))
    
    		ns = sysfs_info(dentry->d_sb)->ns;
    
    	for (pos = sysfs_dir_pos(ns, parent_sd, ctx->pos, pos);
    	     pos;
    	     pos = sysfs_dir_next_pos(ns, parent_sd, ctx->pos, pos)) {
    		const char *name = pos->s_name;
    		unsigned int type = dt_type(pos);
    		int len = strlen(name);
    		ino_t ino = pos->s_ino;
    
    		ctx->pos = pos->s_hash;
    		file->private_data = pos;
    		kernfs_get(pos);
    
    		mutex_unlock(&sysfs_mutex);
    		if (!dir_emit(ctx, name, len, ino, type))
    			return 0;
    		mutex_lock(&sysfs_mutex);
    	}
    	mutex_unlock(&sysfs_mutex);
    	file->private_data = NULL;
    	ctx->pos = INT_MAX;
    	return 0;
    }
    
    static loff_t sysfs_dir_llseek(struct file *file, loff_t offset, int whence)
    {
    	struct inode *inode = file_inode(file);
    	loff_t ret;