Skip to content
Snippets Groups Projects
check-integrity.c 103 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) STRATO AG 2011.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    /*
     * This module can be used to catch cases when the btrfs kernel
     * code executes write requests to the disk that bring the file
     * system in an inconsistent state. In such a state, a power-loss
     * or kernel panic event would cause that the data on disk is
     * lost or at least damaged.
     *
     * Code is added that examines all block write requests during
     * runtime (including writes of the super block). Three rules
     * are verified and an error is printed on violation of the
     * rules:
     * 1. It is not allowed to write a disk block which is
     *    currently referenced by the super block (either directly
     *    or indirectly).
     * 2. When a super block is written, it is verified that all
     *    referenced (directly or indirectly) blocks fulfill the
     *    following requirements:
     *    2a. All referenced blocks have either been present when
     *        the file system was mounted, (i.e., they have been
     *        referenced by the super block) or they have been
     *        written since then and the write completion callback
    
     *        was called and no write error was indicated and a
     *        FLUSH request to the device where these blocks are
     *        located was received and completed.
    
     *    2b. All referenced blocks need to have a generation
     *        number which is equal to the parent's number.
     *
     * One issue that was found using this module was that the log
     * tree on disk became temporarily corrupted because disk blocks
     * that had been in use for the log tree had been freed and
     * reused too early, while being referenced by the written super
     * block.
     *
     * The search term in the kernel log that can be used to filter
     * on the existence of detected integrity issues is
     * "btrfs: attempt".
     *
     * The integrity check is enabled via mount options. These
     * mount options are only supported if the integrity check
     * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
     *
     * Example #1, apply integrity checks to all metadata:
     * mount /dev/sdb1 /mnt -o check_int
     *
     * Example #2, apply integrity checks to all metadata and
     * to data extents:
     * mount /dev/sdb1 /mnt -o check_int_data
     *
     * Example #3, apply integrity checks to all metadata and dump
     * the tree that the super block references to kernel messages
     * each time after a super block was written:
     * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
     *
     * If the integrity check tool is included and activated in
     * the mount options, plenty of kernel memory is used, and
     * plenty of additional CPU cycles are spent. Enabling this
     * functionality is not intended for normal use. In most
     * cases, unless you are a btrfs developer who needs to verify
     * the integrity of (super)-block write requests, do not
     * enable the config option BTRFS_FS_CHECK_INTEGRITY to
     * include and compile the integrity check tool.
     */
    
    #include <linux/sched.h>
    #include <linux/slab.h>
    #include <linux/buffer_head.h>
    #include <linux/mutex.h>
    #include <linux/crc32c.h>
    #include <linux/genhd.h>
    #include <linux/blkdev.h>
    #include "ctree.h"
    #include "disk-io.h"
    #include "transaction.h"
    #include "extent_io.h"
    #include "volumes.h"
    #include "print-tree.h"
    #include "locking.h"
    #include "check-integrity.h"
    
    #include "rcu-string.h"
    
    
    #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
    #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
    #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
    #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
    #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
    #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
    #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
    #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
    							 * excluding " [...]" */
    #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
    
    /*
     * The definition of the bitmask fields for the print_mask.
     * They are specified with the mount option check_integrity_print_mask.
     */
    #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
    #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
    #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
    #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
    #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
    #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
    #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
    #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
    #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
    #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
    #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
    #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
    #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
    
    struct btrfsic_dev_state;
    struct btrfsic_state;
    
    struct btrfsic_block {
    	u32 magic_num;		/* only used for debug purposes */
    	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
    	unsigned int is_superblock:1;	/* if it is one of the superblocks */
    	unsigned int is_iodone:1;	/* if is done by lower subsystem */
    	unsigned int iodone_w_error:1;	/* error was indicated to endio */
    	unsigned int never_written:1;	/* block was added because it was
    					 * referenced, not because it was
    					 * written */
    
    	unsigned int mirror_num;	/* large enough to hold
    
    					 * BTRFS_SUPER_MIRROR_MAX */
    	struct btrfsic_dev_state *dev_state;
    	u64 dev_bytenr;		/* key, physical byte num on disk */
    	u64 logical_bytenr;	/* logical byte num on disk */
    	u64 generation;
    	struct btrfs_disk_key disk_key;	/* extra info to print in case of
    					 * issues, will not always be correct */
    	struct list_head collision_resolving_node;	/* list node */
    	struct list_head all_blocks_node;	/* list node */
    
    	/* the following two lists contain block_link items */
    	struct list_head ref_to_list;	/* list */
    	struct list_head ref_from_list;	/* list */
    	struct btrfsic_block *next_in_same_bio;
    	void *orig_bio_bh_private;
    	union {
    		bio_end_io_t *bio;
    		bh_end_io_t *bh;
    	} orig_bio_bh_end_io;
    	int submit_bio_bh_rw;
    	u64 flush_gen; /* only valid if !never_written */
    };
    
    /*
     * Elements of this type are allocated dynamically and required because
     * each block object can refer to and can be ref from multiple blocks.
     * The key to lookup them in the hashtable is the dev_bytenr of
     * the block ref to plus the one from the block refered from.
     * The fact that they are searchable via a hashtable and that a
     * ref_cnt is maintained is not required for the btrfs integrity
     * check algorithm itself, it is only used to make the output more
     * beautiful in case that an error is detected (an error is defined
     * as a write operation to a block while that block is still referenced).
     */
    struct btrfsic_block_link {
    	u32 magic_num;		/* only used for debug purposes */
    	u32 ref_cnt;
    	struct list_head node_ref_to;	/* list node */
    	struct list_head node_ref_from;	/* list node */
    	struct list_head collision_resolving_node;	/* list node */
    	struct btrfsic_block *block_ref_to;
    	struct btrfsic_block *block_ref_from;
    	u64 parent_generation;
    };
    
    struct btrfsic_dev_state {
    	u32 magic_num;		/* only used for debug purposes */
    	struct block_device *bdev;
    	struct btrfsic_state *state;
    	struct list_head collision_resolving_node;	/* list node */
    	struct btrfsic_block dummy_block_for_bio_bh_flush;
    	u64 last_flush_gen;
    	char name[BDEVNAME_SIZE];
    };
    
    struct btrfsic_block_hashtable {
    	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
    };
    
    struct btrfsic_block_link_hashtable {
    	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
    };
    
    struct btrfsic_dev_state_hashtable {
    	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
    };
    
    struct btrfsic_block_data_ctx {
    	u64 start;		/* virtual bytenr */
    	u64 dev_bytenr;		/* physical bytenr on device */
    	u32 len;
    	struct btrfsic_dev_state *dev;
    
    	char **datav;
    	struct page **pagev;
    	void *mem_to_free;
    
    };
    
    /* This structure is used to implement recursion without occupying
     * any stack space, refer to btrfsic_process_metablock() */
    struct btrfsic_stack_frame {
    	u32 magic;
    	u32 nr;
    	int error;
    	int i;
    	int limit_nesting;
    	int num_copies;
    	int mirror_num;
    	struct btrfsic_block *block;
    	struct btrfsic_block_data_ctx *block_ctx;
    	struct btrfsic_block *next_block;
    	struct btrfsic_block_data_ctx next_block_ctx;
    	struct btrfs_header *hdr;
    	struct btrfsic_stack_frame *prev;
    };
    
    /* Some state per mounted filesystem */
    struct btrfsic_state {
    	u32 print_mask;
    	int include_extent_data;
    	int csum_size;
    	struct list_head all_blocks_list;
    	struct btrfsic_block_hashtable block_hashtable;
    	struct btrfsic_block_link_hashtable block_link_hashtable;
    	struct btrfs_root *root;
    	u64 max_superblock_generation;
    	struct btrfsic_block *latest_superblock;
    
    	u32 metablock_size;
    	u32 datablock_size;
    
    };
    
    static void btrfsic_block_init(struct btrfsic_block *b);
    static struct btrfsic_block *btrfsic_block_alloc(void);
    static void btrfsic_block_free(struct btrfsic_block *b);
    static void btrfsic_block_link_init(struct btrfsic_block_link *n);
    static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
    static void btrfsic_block_link_free(struct btrfsic_block_link *n);
    static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
    static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
    static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
    static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
    static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
    					struct btrfsic_block_hashtable *h);
    static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
    static struct btrfsic_block *btrfsic_block_hashtable_lookup(
    		struct block_device *bdev,
    		u64 dev_bytenr,
    		struct btrfsic_block_hashtable *h);
    static void btrfsic_block_link_hashtable_init(
    		struct btrfsic_block_link_hashtable *h);
    static void btrfsic_block_link_hashtable_add(
    		struct btrfsic_block_link *l,
    		struct btrfsic_block_link_hashtable *h);
    static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
    static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
    		struct block_device *bdev_ref_to,
    		u64 dev_bytenr_ref_to,
    		struct block_device *bdev_ref_from,
    		u64 dev_bytenr_ref_from,
    		struct btrfsic_block_link_hashtable *h);
    static void btrfsic_dev_state_hashtable_init(
    		struct btrfsic_dev_state_hashtable *h);
    static void btrfsic_dev_state_hashtable_add(
    		struct btrfsic_dev_state *ds,
    		struct btrfsic_dev_state_hashtable *h);
    static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
    static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
    		struct block_device *bdev,
    		struct btrfsic_dev_state_hashtable *h);
    static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
    static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
    static int btrfsic_process_superblock(struct btrfsic_state *state,
    				      struct btrfs_fs_devices *fs_devices);
    static int btrfsic_process_metablock(struct btrfsic_state *state,
    				     struct btrfsic_block *block,
    				     struct btrfsic_block_data_ctx *block_ctx,
    				     int limit_nesting, int force_iodone_flag);
    
    static void btrfsic_read_from_block_data(
    	struct btrfsic_block_data_ctx *block_ctx,
    	void *dst, u32 offset, size_t len);
    
    static int btrfsic_create_link_to_next_block(
    		struct btrfsic_state *state,
    		struct btrfsic_block *block,
    		struct btrfsic_block_data_ctx
    		*block_ctx, u64 next_bytenr,
    		int limit_nesting,
    		struct btrfsic_block_data_ctx *next_block_ctx,
    		struct btrfsic_block **next_blockp,
    		int force_iodone_flag,
    		int *num_copiesp, int *mirror_nump,
    		struct btrfs_disk_key *disk_key,
    		u64 parent_generation);
    static int btrfsic_handle_extent_data(struct btrfsic_state *state,
    				      struct btrfsic_block *block,
    				      struct btrfsic_block_data_ctx *block_ctx,
    				      u32 item_offset, int force_iodone_flag);
    static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
    			     struct btrfsic_block_data_ctx *block_ctx_out,
    			     int mirror_num);
    static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
    				  u32 len, struct block_device *bdev,
    				  struct btrfsic_block_data_ctx *block_ctx_out);
    static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
    static int btrfsic_read_block(struct btrfsic_state *state,
    			      struct btrfsic_block_data_ctx *block_ctx);
    static void btrfsic_dump_database(struct btrfsic_state *state);
    
    static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
    
    static int btrfsic_test_for_metadata(struct btrfsic_state *state,
    
    				     char **datav, unsigned int num_pages);
    
    static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
    
    					  u64 dev_bytenr, char **mapped_datav,
    					  unsigned int num_pages,
    					  struct bio *bio, int *bio_is_patched,
    
    					  struct buffer_head *bh,
    					  int submit_bio_bh_rw);
    static int btrfsic_process_written_superblock(
    		struct btrfsic_state *state,
    		struct btrfsic_block *const block,
    		struct btrfs_super_block *const super_hdr);
    static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
    static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
    static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
    					      const struct btrfsic_block *block,
    					      int recursion_level);
    static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
    					struct btrfsic_block *const block,
    					int recursion_level);
    static void btrfsic_print_add_link(const struct btrfsic_state *state,
    				   const struct btrfsic_block_link *l);
    static void btrfsic_print_rem_link(const struct btrfsic_state *state,
    				   const struct btrfsic_block_link *l);
    static char btrfsic_get_block_type(const struct btrfsic_state *state,
    				   const struct btrfsic_block *block);
    static void btrfsic_dump_tree(const struct btrfsic_state *state);
    static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
    				  const struct btrfsic_block *block,
    				  int indent_level);
    static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
    		struct btrfsic_state *state,
    		struct btrfsic_block_data_ctx *next_block_ctx,
    		struct btrfsic_block *next_block,
    		struct btrfsic_block *from_block,
    		u64 parent_generation);
    static struct btrfsic_block *btrfsic_block_lookup_or_add(
    		struct btrfsic_state *state,
    		struct btrfsic_block_data_ctx *block_ctx,
    		const char *additional_string,
    		int is_metadata,
    		int is_iodone,
    		int never_written,
    		int mirror_num,
    		int *was_created);
    static int btrfsic_process_superblock_dev_mirror(
    		struct btrfsic_state *state,
    		struct btrfsic_dev_state *dev_state,
    		struct btrfs_device *device,
    		int superblock_mirror_num,
    		struct btrfsic_dev_state **selected_dev_state,
    		struct btrfs_super_block *selected_super);
    static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
    		struct block_device *bdev);
    static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
    					   u64 bytenr,
    					   struct btrfsic_dev_state *dev_state,
    
    
    static struct mutex btrfsic_mutex;
    static int btrfsic_is_initialized;
    static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
    
    
    static void btrfsic_block_init(struct btrfsic_block *b)
    {
    	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
    	b->dev_state = NULL;
    	b->dev_bytenr = 0;
    	b->logical_bytenr = 0;
    	b->generation = BTRFSIC_GENERATION_UNKNOWN;
    	b->disk_key.objectid = 0;
    	b->disk_key.type = 0;
    	b->disk_key.offset = 0;
    	b->is_metadata = 0;
    	b->is_superblock = 0;
    	b->is_iodone = 0;
    	b->iodone_w_error = 0;
    	b->never_written = 0;
    	b->mirror_num = 0;
    	b->next_in_same_bio = NULL;
    	b->orig_bio_bh_private = NULL;
    	b->orig_bio_bh_end_io.bio = NULL;
    	INIT_LIST_HEAD(&b->collision_resolving_node);
    	INIT_LIST_HEAD(&b->all_blocks_node);
    	INIT_LIST_HEAD(&b->ref_to_list);
    	INIT_LIST_HEAD(&b->ref_from_list);
    	b->submit_bio_bh_rw = 0;
    	b->flush_gen = 0;
    }
    
    static struct btrfsic_block *btrfsic_block_alloc(void)
    {
    	struct btrfsic_block *b;
    
    	b = kzalloc(sizeof(*b), GFP_NOFS);
    	if (NULL != b)
    		btrfsic_block_init(b);
    
    	return b;
    }
    
    static void btrfsic_block_free(struct btrfsic_block *b)
    {
    	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
    	kfree(b);
    }
    
    static void btrfsic_block_link_init(struct btrfsic_block_link *l)
    {
    	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
    	l->ref_cnt = 1;
    	INIT_LIST_HEAD(&l->node_ref_to);
    	INIT_LIST_HEAD(&l->node_ref_from);
    	INIT_LIST_HEAD(&l->collision_resolving_node);
    	l->block_ref_to = NULL;
    	l->block_ref_from = NULL;
    }
    
    static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
    {
    	struct btrfsic_block_link *l;
    
    	l = kzalloc(sizeof(*l), GFP_NOFS);
    	if (NULL != l)
    		btrfsic_block_link_init(l);
    
    	return l;
    }
    
    static void btrfsic_block_link_free(struct btrfsic_block_link *l)
    {
    	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
    	kfree(l);
    }
    
    static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
    {
    	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
    	ds->bdev = NULL;
    	ds->state = NULL;
    	ds->name[0] = '\0';
    	INIT_LIST_HEAD(&ds->collision_resolving_node);
    	ds->last_flush_gen = 0;
    	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
    	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
    	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
    }
    
    static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
    {
    	struct btrfsic_dev_state *ds;
    
    	ds = kzalloc(sizeof(*ds), GFP_NOFS);
    	if (NULL != ds)
    		btrfsic_dev_state_init(ds);
    
    	return ds;
    }
    
    static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
    {
    	BUG_ON(!(NULL == ds ||
    		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
    	kfree(ds);
    }
    
    static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
    {
    	int i;
    
    	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
    		INIT_LIST_HEAD(h->table + i);
    }
    
    static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
    					struct btrfsic_block_hashtable *h)
    {
    	const unsigned int hashval =
    	    (((unsigned int)(b->dev_bytenr >> 16)) ^
    	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
    	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
    
    	list_add(&b->collision_resolving_node, h->table + hashval);
    }
    
    static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
    {
    	list_del(&b->collision_resolving_node);
    }
    
    static struct btrfsic_block *btrfsic_block_hashtable_lookup(
    		struct block_device *bdev,
    		u64 dev_bytenr,
    		struct btrfsic_block_hashtable *h)
    {
    	const unsigned int hashval =
    	    (((unsigned int)(dev_bytenr >> 16)) ^
    	     ((unsigned int)((uintptr_t)bdev))) &
    	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
    	struct list_head *elem;
    
    	list_for_each(elem, h->table + hashval) {
    		struct btrfsic_block *const b =
    		    list_entry(elem, struct btrfsic_block,
    			       collision_resolving_node);
    
    		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
    			return b;
    	}
    
    	return NULL;
    }
    
    static void btrfsic_block_link_hashtable_init(
    		struct btrfsic_block_link_hashtable *h)
    {
    	int i;
    
    	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
    		INIT_LIST_HEAD(h->table + i);
    }
    
    static void btrfsic_block_link_hashtable_add(
    		struct btrfsic_block_link *l,
    		struct btrfsic_block_link_hashtable *h)
    {
    	const unsigned int hashval =
    	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
    	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
    	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
    	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
    	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
    
    	BUG_ON(NULL == l->block_ref_to);
    	BUG_ON(NULL == l->block_ref_from);
    	list_add(&l->collision_resolving_node, h->table + hashval);
    }
    
    static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
    {
    	list_del(&l->collision_resolving_node);
    }
    
    static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
    		struct block_device *bdev_ref_to,
    		u64 dev_bytenr_ref_to,
    		struct block_device *bdev_ref_from,
    		u64 dev_bytenr_ref_from,
    		struct btrfsic_block_link_hashtable *h)
    {
    	const unsigned int hashval =
    	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
    	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
    	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
    	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
    	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
    	struct list_head *elem;
    
    	list_for_each(elem, h->table + hashval) {
    		struct btrfsic_block_link *const l =
    		    list_entry(elem, struct btrfsic_block_link,
    			       collision_resolving_node);
    
    		BUG_ON(NULL == l->block_ref_to);
    		BUG_ON(NULL == l->block_ref_from);
    		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
    		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
    		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
    		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
    			return l;
    	}
    
    	return NULL;
    }
    
    static void btrfsic_dev_state_hashtable_init(
    		struct btrfsic_dev_state_hashtable *h)
    {
    	int i;
    
    	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
    		INIT_LIST_HEAD(h->table + i);
    }
    
    static void btrfsic_dev_state_hashtable_add(
    		struct btrfsic_dev_state *ds,
    		struct btrfsic_dev_state_hashtable *h)
    {
    	const unsigned int hashval =
    	    (((unsigned int)((uintptr_t)ds->bdev)) &
    	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
    
    	list_add(&ds->collision_resolving_node, h->table + hashval);
    }
    
    static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
    {
    	list_del(&ds->collision_resolving_node);
    }
    
    static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
    		struct block_device *bdev,
    		struct btrfsic_dev_state_hashtable *h)
    {
    	const unsigned int hashval =
    	    (((unsigned int)((uintptr_t)bdev)) &
    	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
    	struct list_head *elem;
    
    	list_for_each(elem, h->table + hashval) {
    		struct btrfsic_dev_state *const ds =
    		    list_entry(elem, struct btrfsic_dev_state,
    			       collision_resolving_node);
    
    		if (ds->bdev == bdev)
    			return ds;
    	}
    
    	return NULL;
    }
    
    static int btrfsic_process_superblock(struct btrfsic_state *state,
    				      struct btrfs_fs_devices *fs_devices)
    {
    
    	struct btrfs_super_block *selected_super;
    	struct list_head *dev_head = &fs_devices->devices;
    	struct btrfs_device *device;
    	struct btrfsic_dev_state *selected_dev_state = NULL;
    	int pass;
    
    	BUG_ON(NULL == state);
    
    	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
    
    	if (NULL == selected_super) {
    		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
    		return -1;
    	}
    
    	list_for_each_entry(device, dev_head, dev_list) {
    		int i;
    		struct btrfsic_dev_state *dev_state;
    
    		if (!device->bdev || !device->name)
    			continue;
    
    		dev_state = btrfsic_dev_state_lookup(device->bdev);
    		BUG_ON(NULL == dev_state);
    		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
    			ret = btrfsic_process_superblock_dev_mirror(
    					state, dev_state, device, i,
    					&selected_dev_state, selected_super);
    			if (0 != ret && 0 == i) {
    				kfree(selected_super);
    				return ret;
    			}
    		}
    	}
    
    	if (NULL == state->latest_superblock) {
    		printk(KERN_INFO "btrfsic: no superblock found!\n");
    		kfree(selected_super);
    		return -1;
    	}
    
    	state->csum_size = btrfs_super_csum_size(selected_super);
    
    	for (pass = 0; pass < 3; pass++) {
    		int num_copies;
    		int mirror_num;
    		u64 next_bytenr;
    
    		switch (pass) {
    		case 0:
    			next_bytenr = btrfs_super_root(selected_super);
    			if (state->print_mask &
    			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
    				printk(KERN_INFO "root@%llu\n",
    				       (unsigned long long)next_bytenr);
    			break;
    		case 1:
    			next_bytenr = btrfs_super_chunk_root(selected_super);
    			if (state->print_mask &
    			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
    				printk(KERN_INFO "chunk@%llu\n",
    				       (unsigned long long)next_bytenr);
    			break;
    		case 2:
    			next_bytenr = btrfs_super_log_root(selected_super);
    			if (0 == next_bytenr)
    				continue;
    			if (state->print_mask &
    			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
    				printk(KERN_INFO "log@%llu\n",
    				       (unsigned long long)next_bytenr);
    			break;
    		}
    
    		num_copies =
    
    		    btrfs_num_copies(state->root->fs_info,
    
    				     next_bytenr, state->metablock_size);
    
    		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
    			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
    			       (unsigned long long)next_bytenr, num_copies);
    
    		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
    			struct btrfsic_block *next_block;
    			struct btrfsic_block_data_ctx tmp_next_block_ctx;
    			struct btrfsic_block_link *l;
    
    
    			ret = btrfsic_map_block(state, next_bytenr,
    						state->metablock_size,
    
    						&tmp_next_block_ctx,
    						mirror_num);
    			if (ret) {
    				printk(KERN_INFO "btrfsic:"
    				       " btrfsic_map_block(root @%llu,"
    				       " mirror %d) failed!\n",
    				       (unsigned long long)next_bytenr,
    				       mirror_num);
    				kfree(selected_super);
    				return -1;
    			}
    
    			next_block = btrfsic_block_hashtable_lookup(
    					tmp_next_block_ctx.dev->bdev,
    					tmp_next_block_ctx.dev_bytenr,
    					&state->block_hashtable);
    			BUG_ON(NULL == next_block);
    
    			l = btrfsic_block_link_hashtable_lookup(
    					tmp_next_block_ctx.dev->bdev,
    					tmp_next_block_ctx.dev_bytenr,
    					state->latest_superblock->dev_state->
    					bdev,
    					state->latest_superblock->dev_bytenr,
    					&state->block_link_hashtable);
    			BUG_ON(NULL == l);
    
    			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
    
    			if (ret < (int)PAGE_CACHE_SIZE) {
    
    				printk(KERN_INFO
    				       "btrfsic: read @logical %llu failed!\n",
    				       (unsigned long long)
    				       tmp_next_block_ctx.start);
    				btrfsic_release_block_ctx(&tmp_next_block_ctx);
    				kfree(selected_super);
    				return -1;
    			}
    
    			ret = btrfsic_process_metablock(state,
    							next_block,
    							&tmp_next_block_ctx,
    							BTRFS_MAX_LEVEL + 3, 1);
    			btrfsic_release_block_ctx(&tmp_next_block_ctx);
    		}
    	}
    
    	kfree(selected_super);
    	return ret;
    }
    
    static int btrfsic_process_superblock_dev_mirror(
    		struct btrfsic_state *state,
    		struct btrfsic_dev_state *dev_state,
    		struct btrfs_device *device,
    		int superblock_mirror_num,
    		struct btrfsic_dev_state **selected_dev_state,
    		struct btrfs_super_block *selected_super)
    {
    	struct btrfs_super_block *super_tmp;
    	u64 dev_bytenr;
    	struct buffer_head *bh;
    	struct btrfsic_block *superblock_tmp;
    	int pass;
    	struct block_device *const superblock_bdev = device->bdev;
    
    	/* super block bytenr is always the unmapped device bytenr */
    	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
    
    	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
    		return -1;
    	bh = __bread(superblock_bdev, dev_bytenr / 4096,
    		     BTRFS_SUPER_INFO_SIZE);
    
    	if (NULL == bh)
    		return -1;
    	super_tmp = (struct btrfs_super_block *)
    	    (bh->b_data + (dev_bytenr & 4095));
    
    	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
    	    strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
    		    sizeof(super_tmp->magic)) ||
    
    	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
    	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
    	    btrfs_super_leafsize(super_tmp) != state->metablock_size ||
    	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
    
    		brelse(bh);
    		return 0;
    	}
    
    	superblock_tmp =
    	    btrfsic_block_hashtable_lookup(superblock_bdev,
    					   dev_bytenr,
    					   &state->block_hashtable);
    	if (NULL == superblock_tmp) {
    		superblock_tmp = btrfsic_block_alloc();
    		if (NULL == superblock_tmp) {
    			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
    			brelse(bh);
    			return -1;
    		}
    		/* for superblock, only the dev_bytenr makes sense */
    		superblock_tmp->dev_bytenr = dev_bytenr;
    		superblock_tmp->dev_state = dev_state;
    		superblock_tmp->logical_bytenr = dev_bytenr;
    		superblock_tmp->generation = btrfs_super_generation(super_tmp);
    		superblock_tmp->is_metadata = 1;
    		superblock_tmp->is_superblock = 1;
    		superblock_tmp->is_iodone = 1;
    		superblock_tmp->never_written = 0;
    		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
    		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
    
    			printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
    				     " @%llu (%s/%llu/%d)\n",
    				     superblock_bdev,
    				     rcu_str_deref(device->name),
    				     (unsigned long long)dev_bytenr,
    				     dev_state->name,
    				     (unsigned long long)dev_bytenr,
    				     superblock_mirror_num);
    
    		list_add(&superblock_tmp->all_blocks_node,
    			 &state->all_blocks_list);
    		btrfsic_block_hashtable_add(superblock_tmp,
    					    &state->block_hashtable);
    	}
    
    	/* select the one with the highest generation field */
    	if (btrfs_super_generation(super_tmp) >
    	    state->max_superblock_generation ||
    	    0 == state->max_superblock_generation) {
    		memcpy(selected_super, super_tmp, sizeof(*selected_super));
    		*selected_dev_state = dev_state;
    		state->max_superblock_generation =
    		    btrfs_super_generation(super_tmp);
    		state->latest_superblock = superblock_tmp;
    	}
    
    	for (pass = 0; pass < 3; pass++) {
    		u64 next_bytenr;
    		int num_copies;
    		int mirror_num;
    		const char *additional_string = NULL;
    		struct btrfs_disk_key tmp_disk_key;
    
    		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
    		tmp_disk_key.offset = 0;
    		switch (pass) {
    		case 0:
    			tmp_disk_key.objectid =
    			    cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
    			additional_string = "initial root ";
    			next_bytenr = btrfs_super_root(super_tmp);
    			break;
    		case 1:
    			tmp_disk_key.objectid =
    			    cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
    			additional_string = "initial chunk ";
    			next_bytenr = btrfs_super_chunk_root(super_tmp);
    			break;
    		case 2:
    			tmp_disk_key.objectid =
    			    cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
    			additional_string = "initial log ";
    			next_bytenr = btrfs_super_log_root(super_tmp);
    			if (0 == next_bytenr)
    				continue;
    			break;
    		}
    
    		num_copies =
    
    		    btrfs_num_copies(state->root->fs_info,
    
    				     next_bytenr, state->metablock_size);
    
    		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
    			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
    			       (unsigned long long)next_bytenr, num_copies);
    		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
    			struct btrfsic_block *next_block;
    			struct btrfsic_block_data_ctx tmp_next_block_ctx;
    			struct btrfsic_block_link *l;
    
    
    			if (btrfsic_map_block(state, next_bytenr,
    					      state->metablock_size,
    
    					      &tmp_next_block_ctx,
    					      mirror_num)) {
    				printk(KERN_INFO "btrfsic: btrfsic_map_block("
    				       "bytenr @%llu, mirror %d) failed!\n",
    				       (unsigned long long)next_bytenr,
    				       mirror_num);
    				brelse(bh);
    				return -1;
    			}
    
    			next_block = btrfsic_block_lookup_or_add(
    					state, &tmp_next_block_ctx,
    					additional_string, 1, 1, 0,
    					mirror_num, NULL);
    			if (NULL == next_block) {
    				btrfsic_release_block_ctx(&tmp_next_block_ctx);
    				brelse(bh);
    				return -1;
    			}
    
    			next_block->disk_key = tmp_disk_key;
    			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
    			l = btrfsic_block_link_lookup_or_add(
    					state, &tmp_next_block_ctx,
    					next_block, superblock_tmp,
    					BTRFSIC_GENERATION_UNKNOWN);
    			btrfsic_release_block_ctx(&tmp_next_block_ctx);
    			if (NULL == l) {
    				brelse(bh);
    				return -1;
    			}
    		}
    	}
    	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
    		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
    
    	brelse(bh);
    	return 0;
    }
    
    static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
    {
    	struct btrfsic_stack_frame *sf;
    
    	sf = kzalloc(sizeof(*sf), GFP_NOFS);
    	if (NULL == sf)
    		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
    	else
    		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
    	return sf;
    }
    
    static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
    {
    	BUG_ON(!(NULL == sf ||
    		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
    	kfree(sf);
    }
    
    static int btrfsic_process_metablock(
    		struct btrfsic_state *state,
    		struct btrfsic_block *const first_block,
    		struct btrfsic_block_data_ctx *const first_block_ctx,
    		int first_limit_nesting, int force_iodone_flag)
    {
    	struct btrfsic_stack_frame initial_stack_frame = { 0 };
    	struct btrfsic_stack_frame *sf;
    	struct btrfsic_stack_frame *next_stack;
    
    	struct btrfs_header *const first_hdr =
    		(struct btrfs_header *)first_block_ctx->datav[0];
    
    	sf = &initial_stack_frame;
    	sf->error = 0;
    	sf->i = -1;
    	sf->limit_nesting = first_limit_nesting;
    	sf->block = first_block;
    	sf->block_ctx = first_block_ctx;
    	sf->next_block = NULL;
    	sf->hdr = first_hdr;
    	sf->prev = NULL;
    
    continue_with_new_stack_frame: