Skip to content
Snippets Groups Projects
time.c 29.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • Linus Torvalds's avatar
    Linus Torvalds committed
    /*
     * Common time routines among all ppc machines.
     *
     * Written by Cort Dougan (cort@cs.nmt.edu) to merge
     * Paul Mackerras' version and mine for PReP and Pmac.
     * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
     * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
     *
     * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
     * to make clock more stable (2.4.0-test5). The only thing
     * that this code assumes is that the timebases have been synchronized
     * by firmware on SMP and are never stopped (never do sleep
     * on SMP then, nap and doze are OK).
     * 
     * Speeded up do_gettimeofday by getting rid of references to
     * xtime (which required locks for consistency). (mikejc@us.ibm.com)
     *
     * TODO (not necessarily in this file):
     * - improve precision and reproducibility of timebase frequency
     * measurement at boot time. (for iSeries, we calibrate the timebase
     * against the Titan chip's clock.)
     * - for astronomical applications: add a new function to get
     * non ambiguous timestamps even around leap seconds. This needs
     * a new timestamp format and a good name.
     *
     * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
     *             "A Kernel Model for Precision Timekeeping" by Dave Mills
     *
     *      This program is free software; you can redistribute it and/or
     *      modify it under the terms of the GNU General Public License
     *      as published by the Free Software Foundation; either version
     *      2 of the License, or (at your option) any later version.
     */
    
    #include <linux/errno.h>
    #include <linux/module.h>
    #include <linux/sched.h>
    #include <linux/kernel.h>
    #include <linux/param.h>
    #include <linux/string.h>
    #include <linux/mm.h>
    #include <linux/interrupt.h>
    #include <linux/timex.h>
    #include <linux/kernel_stat.h>
    #include <linux/time.h>
    #include <linux/init.h>
    #include <linux/profile.h>
    #include <linux/cpu.h>
    #include <linux/security.h>
    
    #include <linux/percpu.h>
    #include <linux/rtc.h>
    
    #include <linux/jiffies.h>
    
    #include <linux/posix-timers.h>
    
    #include <linux/delay.h>
    
    #include <linux/irq_work.h>
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    #include <asm/io.h>
    #include <asm/processor.h>
    #include <asm/nvram.h>
    #include <asm/cache.h>
    #include <asm/machdep.h>
    #include <asm/uaccess.h>
    #include <asm/time.h>
    #include <asm/prom.h>
    
    #include <asm/irq.h>
    #include <asm/div64.h>
    
    #include <asm/smp.h>
    
    #include <asm/firmware.h>
    
    #include <asm/cputime.h>
    
    #ifdef CONFIG_PPC_ISERIES
    
    #include <asm/iseries/it_lp_queue.h>
    
    #include <asm/iseries/hv_call_xm.h>
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    /* powerpc clocksource/clockevent code */
    
    
    #include <linux/clockchips.h>
    
    #include <linux/clocksource.h>
    
    
    static cycle_t rtc_read(struct clocksource *);
    
    static struct clocksource clocksource_rtc = {
    	.name         = "rtc",
    	.rating       = 400,
    	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
    	.mask         = CLOCKSOURCE_MASK(64),
    	.shift        = 22,
    	.mult         = 0,	/* To be filled in */
    	.read         = rtc_read,
    };
    
    
    static cycle_t timebase_read(struct clocksource *);
    
    static struct clocksource clocksource_timebase = {
    	.name         = "timebase",
    	.rating       = 400,
    	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
    	.mask         = CLOCKSOURCE_MASK(64),
    	.shift        = 22,
    	.mult         = 0,	/* To be filled in */
    	.read         = timebase_read,
    };
    
    
    #define DECREMENTER_MAX	0x7fffffff
    
    static int decrementer_set_next_event(unsigned long evt,
    				      struct clock_event_device *dev);
    static void decrementer_set_mode(enum clock_event_mode mode,
    				 struct clock_event_device *dev);
    
    static struct clock_event_device decrementer_clockevent = {
           .name           = "decrementer",
           .rating         = 200,
    
           .shift          = 0,	/* To be filled in */
    
           .mult           = 0,	/* To be filled in */
           .irq            = 0,
           .set_next_event = decrementer_set_next_event,
           .set_mode       = decrementer_set_mode,
           .features       = CLOCK_EVT_FEAT_ONESHOT,
    };
    
    
    struct decrementer_clock {
    	struct clock_event_device event;
    	u64 next_tb;
    };
    
    static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #ifdef CONFIG_PPC_ISERIES
    
    static unsigned long __initdata iSeries_recal_titan;
    static signed long __initdata iSeries_recal_tb;
    
    
    /* Forward declaration is only needed for iSereis compiles */
    
    static void __init clocksource_init(void);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #endif
    
    #define XSEC_PER_SEC (1024*1024)
    
    
    #ifdef CONFIG_PPC64
    #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
    #else
    /* compute ((xsec << 12) * max) >> 32 */
    #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
    #endif
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    unsigned long tb_ticks_per_jiffy;
    unsigned long tb_ticks_per_usec = 100; /* sane default */
    EXPORT_SYMBOL(tb_ticks_per_usec);
    unsigned long tb_ticks_per_sec;
    
    EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    DEFINE_SPINLOCK(rtc_lock);
    
    EXPORT_SYMBOL_GPL(rtc_lock);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    static u64 tb_to_ns_scale __read_mostly;
    static unsigned tb_to_ns_shift __read_mostly;
    
    static u64 boot_tb __read_mostly;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    extern struct timezone sys_tz;
    
    static long timezone_offset;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    unsigned long ppc_proc_freq;
    
    EXPORT_SYMBOL_GPL(ppc_proc_freq);
    
    unsigned long ppc_tb_freq;
    
    EXPORT_SYMBOL_GPL(ppc_tb_freq);
    
    #ifdef CONFIG_VIRT_CPU_ACCOUNTING
    /*
     * Factors for converting from cputime_t (timebase ticks) to
     * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
     * These are all stored as 0.64 fixed-point binary fractions.
     */
    u64 __cputime_jiffies_factor;
    
    EXPORT_SYMBOL(__cputime_jiffies_factor);
    
    u64 __cputime_msec_factor;
    
    EXPORT_SYMBOL(__cputime_msec_factor);
    
    u64 __cputime_sec_factor;
    
    EXPORT_SYMBOL(__cputime_sec_factor);
    
    u64 __cputime_clockt_factor;
    
    EXPORT_SYMBOL(__cputime_clockt_factor);
    
    DEFINE_PER_CPU(unsigned long, cputime_last_delta);
    DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
    
    cputime_t cputime_one_jiffy;
    
    
    void (*dtl_consumer)(struct dtl_entry *, u64);
    
    
    static void calc_cputime_factors(void)
    {
    	struct div_result res;
    
    	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
    	__cputime_jiffies_factor = res.result_low;
    	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
    	__cputime_msec_factor = res.result_low;
    	div128_by_32(1, 0, tb_ticks_per_sec, &res);
    	__cputime_sec_factor = res.result_low;
    	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
    	__cputime_clockt_factor = res.result_low;
    }
    
    /*
    
     * Read the SPURR on systems that have it, otherwise the PURR,
     * or if that doesn't exist return the timebase value passed in.
    
    static u64 read_spurr(u64 tb)
    
    	if (cpu_has_feature(CPU_FTR_SPURR))
    		return mfspr(SPRN_SPURR);
    
    	if (cpu_has_feature(CPU_FTR_PURR))
    		return mfspr(SPRN_PURR);
    
     * Scan the dispatch trace log and count up the stolen time.
     * Should be called with interrupts disabled.
    
    static u64 scan_dispatch_log(u64 stop_tb)
    
    	struct dtl_entry *dtl = local_paca->dtl_curr;
    	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
    	struct lppaca *vpa = local_paca->lppaca_ptr;
    	u64 tb_delta;
    	u64 stolen = 0;
    	u64 dtb;
    
    	if (i == vpa->dtl_idx)
    		return 0;
    	while (i < vpa->dtl_idx) {
    
    		if (dtl_consumer)
    			dtl_consumer(dtl, i);
    
    		dtb = dtl->timebase;
    		tb_delta = dtl->enqueue_to_dispatch_time +
    			dtl->ready_to_enqueue_time;
    		barrier();
    		if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
    			/* buffer has overflowed */
    			i = vpa->dtl_idx - N_DISPATCH_LOG;
    			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
    			continue;
    		}
    		if (dtb > stop_tb)
    			break;
    		stolen += tb_delta;
    		++i;
    		++dtl;
    		if (dtl == dtl_end)
    			dtl = local_paca->dispatch_log;
    	}
    	local_paca->dtl_ridx = i;
    	local_paca->dtl_curr = dtl;
    	return stolen;
    
    /*
     * Accumulate stolen time by scanning the dispatch trace log.
     * Called on entry from user mode.
     */
    void accumulate_stolen_time(void)
    {
    	u64 sst, ust;
    
    
    	u8 save_soft_enabled = local_paca->soft_enabled;
    	u8 save_hard_enabled = local_paca->hard_enabled;
    
    	/* We are called early in the exception entry, before
    	 * soft/hard_enabled are sync'ed to the expected state
    	 * for the exception. We are hard disabled but the PACA
    	 * needs to reflect that so various debug stuff doesn't
    	 * complain
    	 */
    	local_paca->soft_enabled = 0;
    	local_paca->hard_enabled = 0;
    
    	sst = scan_dispatch_log(local_paca->starttime_user);
    	ust = scan_dispatch_log(local_paca->starttime);
    	local_paca->system_time -= sst;
    	local_paca->user_time -= ust;
    	local_paca->stolen_time += ust + sst;
    
    	local_paca->soft_enabled = save_soft_enabled;
    	local_paca->hard_enabled = save_hard_enabled;
    
    }
    
    static inline u64 calculate_stolen_time(u64 stop_tb)
    {
    	u64 stolen = 0;
    
    	if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
    		stolen = scan_dispatch_log(stop_tb);
    		get_paca()->system_time -= stolen;
    	}
    
    	stolen += get_paca()->stolen_time;
    	get_paca()->stolen_time = 0;
    	return stolen;
    
    #else /* CONFIG_PPC_SPLPAR */
    static inline u64 calculate_stolen_time(u64 stop_tb)
    {
    	return 0;
    }
    
    #endif /* CONFIG_PPC_SPLPAR */
    
    
    /*
     * Account time for a transition between system, hard irq
     * or soft irq state.
     */
    void account_system_vtime(struct task_struct *tsk)
    {
    
    	u64 now, nowscaled, delta, deltascaled;
    
    	u64 stolen, udelta, sys_scaled, user_scaled;
    
    	nowscaled = read_spurr(now);
    
    	get_paca()->system_time += now - get_paca()->starttime;
    	get_paca()->starttime = now;
    
    	deltascaled = nowscaled - get_paca()->startspurr;
    	get_paca()->startspurr = nowscaled;
    
    
    	stolen = calculate_stolen_time(now);
    
    	delta = get_paca()->system_time;
    	get_paca()->system_time = 0;
    	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
    	get_paca()->utime_sspurr = get_paca()->user_time;
    
    	/*
    	 * Because we don't read the SPURR on every kernel entry/exit,
    	 * deltascaled includes both user and system SPURR ticks.
    	 * Apportion these ticks to system SPURR ticks and user
    	 * SPURR ticks in the same ratio as the system time (delta)
    	 * and user time (udelta) values obtained from the timebase
    	 * over the same interval.  The system ticks get accounted here;
    	 * the user ticks get saved up in paca->user_time_scaled to be
    	 * used by account_process_tick.
    	 */
    	sys_scaled = delta;
    	user_scaled = udelta;
    	if (deltascaled != delta + udelta) {
    		if (udelta) {
    			sys_scaled = deltascaled * delta / (delta + udelta);
    			user_scaled = deltascaled - sys_scaled;
    		} else {
    			sys_scaled = deltascaled;
    		}
    	}
    	get_paca()->user_time_scaled += user_scaled;
    
    
    	if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
    
    		account_system_time(tsk, 0, delta, sys_scaled);
    		if (stolen)
    			account_steal_time(stolen);
    	} else {
    		account_idle_time(delta + stolen);
    
    EXPORT_SYMBOL_GPL(account_system_vtime);
    
    
    /*
     * Transfer the user and system times accumulated in the paca
     * by the exception entry and exit code to the generic process
     * user and system time records.
     * Must be called with interrupts disabled.
    
     * Assumes that account_system_vtime() has been called recently
     * (i.e. since the last entry from usermode) so that
     * get_paca()->user_time_scaled is up to date.
    
    void account_process_tick(struct task_struct *tsk, int user_tick)
    
    	cputime_t utime, utimescaled;
    
    
    	utime = get_paca()->user_time;
    
    	utimescaled = get_paca()->user_time_scaled;
    
    	get_paca()->user_time = 0;
    
    	get_paca()->user_time_scaled = 0;
    	get_paca()->utime_sspurr = 0;
    
    	account_user_time(tsk, utime, utimescaled);
    
    }
    
    #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
    #define calc_cputime_factors()
    #endif
    
    
    void __delay(unsigned long loops)
    {
    	unsigned long start;
    	int diff;
    
    	if (__USE_RTC()) {
    		start = get_rtcl();
    		do {
    			/* the RTCL register wraps at 1000000000 */
    			diff = get_rtcl() - start;
    			if (diff < 0)
    				diff += 1000000000;
    		} while (diff < loops);
    	} else {
    		start = get_tbl();
    		while (get_tbl() - start < loops)
    			HMT_low();
    		HMT_medium();
    	}
    }
    EXPORT_SYMBOL(__delay);
    
    void udelay(unsigned long usecs)
    {
    	__delay(tb_ticks_per_usec * usecs);
    }
    EXPORT_SYMBOL(udelay);
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #ifdef CONFIG_SMP
    unsigned long profile_pc(struct pt_regs *regs)
    {
    	unsigned long pc = instruction_pointer(regs);
    
    	if (in_lock_functions(pc))
    		return regs->link;
    
    	return pc;
    }
    EXPORT_SYMBOL(profile_pc);
    #endif
    
    #ifdef CONFIG_PPC_ISERIES
    
    /* 
     * This function recalibrates the timebase based on the 49-bit time-of-day
     * value in the Titan chip.  The Titan is much more accurate than the value
     * returned by the service processor for the timebase frequency.  
     */
    
    
    static int __init iSeries_tb_recal(void)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	unsigned long titan, tb;
    
    
    	/* Make sure we only run on iSeries */
    	if (!firmware_has_feature(FW_FEATURE_ISERIES))
    		return -ENODEV;
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	tb = get_tb();
    	titan = HvCallXm_loadTod();
    	if ( iSeries_recal_titan ) {
    		unsigned long tb_ticks = tb - iSeries_recal_tb;
    		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
    		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
    
    		unsigned long new_tb_ticks_per_jiffy =
    			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
    		char sign = '+';		
    		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
    		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
    
    		if ( tick_diff < 0 ) {
    			tick_diff = -tick_diff;
    			sign = '-';
    		}
    		if ( tick_diff ) {
    			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
    				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
    						new_tb_ticks_per_jiffy, sign, tick_diff );
    				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
    				tb_ticks_per_sec   = new_tb_ticks_per_sec;
    
    				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
    
    				setup_cputime_one_jiffy();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    			}
    			else {
    				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
    					"                   new tb_ticks_per_jiffy = %lu\n"
    					"                   old tb_ticks_per_jiffy = %lu\n",
    					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
    			}
    		}
    	}
    	iSeries_recal_titan = titan;
    	iSeries_recal_tb = tb;
    
    	/* Called here as now we know accurate values for the timebase */
    	clocksource_init();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    }
    
    late_initcall(iSeries_tb_recal);
    
    /* Called from platform early init */
    void __init iSeries_time_init_early(void)
    {
    	iSeries_recal_tb = get_tb();
    	iSeries_recal_titan = HvCallXm_loadTod();
    }
    #endif /* CONFIG_PPC_ISERIES */
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    #ifdef CONFIG_IRQ_WORK
    
    /*
     * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
     */
    #ifdef CONFIG_PPC64
    
    static inline unsigned long test_irq_work_pending(void)
    
    	unsigned long x;
    
    	asm volatile("lbz %0,%1(13)"
    		: "=r" (x)
    
    		: "i" (offsetof(struct paca_struct, irq_work_pending)));
    
    static inline void set_irq_work_pending_flag(void)
    
    {
    	asm volatile("stb %0,%1(13)" : :
    		"r" (1),
    
    		"i" (offsetof(struct paca_struct, irq_work_pending)));
    
    static inline void clear_irq_work_pending(void)
    
    {
    	asm volatile("stb %0,%1(13)" : :
    		"r" (0),
    
    		"i" (offsetof(struct paca_struct, irq_work_pending)));
    
    DEFINE_PER_CPU(u8, irq_work_pending);
    
    #define set_irq_work_pending_flag()	__get_cpu_var(irq_work_pending) = 1
    #define test_irq_work_pending()		__get_cpu_var(irq_work_pending)
    #define clear_irq_work_pending()	__get_cpu_var(irq_work_pending) = 0
    
    void set_irq_work_pending(void)
    
    	set_irq_work_pending_flag();
    
    #else  /* CONFIG_IRQ_WORK */
    
    #define test_irq_work_pending()	0
    #define clear_irq_work_pending()
    
    #endif /* CONFIG_IRQ_WORK */
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    /*
     * For iSeries shared processors, we have to let the hypervisor
     * set the hardware decrementer.  We set a virtual decrementer
     * in the lppaca and call the hypervisor if the virtual
     * decrementer is less than the current value in the hardware
     * decrementer. (almost always the new decrementer value will
     * be greater than the current hardware decementer so the hypervisor
     * call will not be needed)
     */
    
    /*
     * timer_interrupt - gets called when the decrementer overflows,
     * with interrupts disabled.
     */
    
    void timer_interrupt(struct pt_regs * regs)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
    	struct clock_event_device *evt = &decrementer->event;
    
    	/* Ensure a positive value is written to the decrementer, or else
    	 * some CPUs will continuue to take decrementer exceptions */
    	set_dec(DECREMENTER_MAX);
    
    #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
    
    	if (atomic_read(&ppc_n_lost_interrupts) != 0)
    		do_IRQ(regs);
    #endif
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	irq_enter();
    
    
    	if (test_irq_work_pending()) {
    		clear_irq_work_pending();
    		irq_work_run();
    
    #ifdef CONFIG_PPC_ISERIES
    
    	if (firmware_has_feature(FW_FEATURE_ISERIES))
    		get_lppaca()->int_dword.fields.decr_int = 0;
    
    	now = get_tb_or_rtc();
    	if (now >= decrementer->next_tb) {
    		decrementer->next_tb = ~(u64)0;
    		if (evt->event_handler)
    			evt->event_handler(evt);
    	} else {
    		now = decrementer->next_tb - now;
    		if (now <= DECREMENTER_MAX)
    			set_dec((int)now);
    	}
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    #ifdef CONFIG_PPC_ISERIES
    
    	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
    
    		process_hvlpevents();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #endif
    
    
    #ifdef CONFIG_PPC64
    
    	/* collect purr register values often, for accurate calculations */
    
    	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
    		cu->current_tb = mfspr(SPRN_PURR);
    	}
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    	irq_exit();
    
    #ifdef CONFIG_SUSPEND
    
    static void generic_suspend_disable_irqs(void)
    
    {
    	/* Disable the decrementer, so that it doesn't interfere
    	 * with suspending.
    	 */
    
    	set_dec(0x7fffffff);
    	local_irq_disable();
    	set_dec(0x7fffffff);
    }
    
    
    static void generic_suspend_enable_irqs(void)
    
    {
    	local_irq_enable();
    }
    
    /* Overrides the weak version in kernel/power/main.c */
    void arch_suspend_disable_irqs(void)
    {
    	if (ppc_md.suspend_disable_irqs)
    		ppc_md.suspend_disable_irqs();
    	generic_suspend_disable_irqs();
    }
    
    /* Overrides the weak version in kernel/power/main.c */
    void arch_suspend_enable_irqs(void)
    {
    	generic_suspend_enable_irqs();
    	if (ppc_md.suspend_enable_irqs)
    		ppc_md.suspend_enable_irqs();
    }
    #endif
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    /*
     * Scheduler clock - returns current time in nanosec units.
     *
     * Note: mulhdu(a, b) (multiply high double unsigned) returns
     * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
     * are 64-bit unsigned numbers.
     */
    unsigned long long sched_clock(void)
    {
    
    	if (__USE_RTC())
    		return get_rtc();
    
    	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
    
    static int __init get_freq(char *name, int cells, unsigned long *val)
    
    	const unsigned int *fp;
    
    	/* The cpu node should have timebase and clock frequency properties */
    
    	cpu = of_find_node_by_type(NULL, "cpu");
    
    
    		fp = of_get_property(cpu, name, NULL);
    
    			*val = of_read_ulong(fp, cells);
    
    /* should become __cpuinit when secondary_cpu_time_init also is */
    void start_cpu_decrementer(void)
    {
    #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
    	/* Clear any pending timer interrupts */
    	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
    
    	/* Enable decrementer interrupt */
    	mtspr(SPRN_TCR, TCR_DIE);
    #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
    }
    
    
    void __init generic_calibrate_decr(void)
    {
    	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
    
    	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
    	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
    
    
    		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
    				"(not found)\n");
    
    	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
    
    	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
    	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
    
    		printk(KERN_ERR "WARNING: Estimating processor frequency "
    				"(not found)\n");
    
    int update_persistent_clock(struct timespec now)
    
    {
    	struct rtc_time tm;
    
    
    	if (!ppc_md.set_rtc_time)
    		return 0;
    
    	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
    	tm.tm_year -= 1900;
    	tm.tm_mon -= 1;
    
    	return ppc_md.set_rtc_time(&tm);
    }
    
    
    static void __read_persistent_clock(struct timespec *ts)
    
    {
    	struct rtc_time tm;
    	static int first = 1;
    
    
    	/* XXX this is a litle fragile but will work okay in the short term */
    	if (first) {
    		first = 0;
    		if (ppc_md.time_init)
    			timezone_offset = ppc_md.time_init();
    
    		/* get_boot_time() isn't guaranteed to be safe to call late */
    
    		if (ppc_md.get_boot_time) {
    			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
    			return;
    		}
    	}
    	if (!ppc_md.get_rtc_time) {
    		ts->tv_sec = 0;
    		return;
    
    	ppc_md.get_rtc_time(&tm);
    
    	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
    			    tm.tm_hour, tm.tm_min, tm.tm_sec);
    
    void read_persistent_clock(struct timespec *ts)
    {
    	__read_persistent_clock(ts);
    
    	/* Sanitize it in case real time clock is set below EPOCH */
    	if (ts->tv_sec < 0) {
    		ts->tv_sec = 0;
    		ts->tv_nsec = 0;
    	}
    		
    }
    
    
    static cycle_t rtc_read(struct clocksource *cs)
    
    static cycle_t timebase_read(struct clocksource *cs)
    
    void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
    			struct clocksource *clock, u32 mult)
    
    	u64 new_tb_to_xs, new_stamp_xsec;
    
    
    	if (clock != &clocksource_timebase)
    		return;
    
    	/* Make userspace gettimeofday spin until we're done. */
    	++vdso_data->tb_update_count;
    	smp_mb();
    
    	/* XXX this assumes clock->shift == 22 */
    	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
    
    	new_tb_to_xs = (u64) mult * 4611686018ULL;
    
    	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
    
    	do_div(new_stamp_xsec, 1000000000);
    
    	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
    
    	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
    	/* this is tv_nsec / 1e9 as a 0.32 fraction */
    	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
    
    
    	/*
    	 * tb_update_count is used to allow the userspace gettimeofday code
    	 * to assure itself that it sees a consistent view of the tb_to_xs and
    	 * stamp_xsec variables.  It reads the tb_update_count, then reads
    	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
    	 * the two values of tb_update_count match and are even then the
    	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
    	 * loops back and reads them again until this criteria is met.
    	 * We expect the caller to have done the first increment of
    	 * vdso_data->tb_update_count already.
    	 */
    	vdso_data->tb_orig_stamp = clock->cycle_last;
    	vdso_data->stamp_xsec = new_stamp_xsec;
    	vdso_data->tb_to_xs = new_tb_to_xs;
    
    	vdso_data->wtom_clock_sec = wtm->tv_sec;
    	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
    
    	vdso_data->stamp_xtime = *wall_time;
    
    	vdso_data->stamp_sec_fraction = frac_sec;
    
    	smp_wmb();
    	++(vdso_data->tb_update_count);
    
    }
    
    void update_vsyscall_tz(void)
    {
    	/* Make userspace gettimeofday spin until we're done. */
    	++vdso_data->tb_update_count;
    	smp_mb();
    	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
    	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
    	smp_mb();
    	++vdso_data->tb_update_count;
    }
    
    
    static void __init clocksource_init(void)
    
    {
    	struct clocksource *clock;
    
    	if (__USE_RTC())
    		clock = &clocksource_rtc;
    	else
    		clock = &clocksource_timebase;
    
    	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
    
    	if (clocksource_register(clock)) {
    		printk(KERN_ERR "clocksource: %s is already registered\n",
    		       clock->name);
    		return;
    	}
    
    	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
    	       clock->name, clock->mult, clock->shift);
    }
    
    
    static int decrementer_set_next_event(unsigned long evt,
    				      struct clock_event_device *dev)
    {
    
    	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
    
    	set_dec(evt);
    	return 0;
    }
    
    static void decrementer_set_mode(enum clock_event_mode mode,
    				 struct clock_event_device *dev)
    {
    	if (mode != CLOCK_EVT_MODE_ONESHOT)
    		decrementer_set_next_event(DECREMENTER_MAX, dev);
    }
    
    
    static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
    				int shift)
    {
    	uint64_t tmp = ((uint64_t)ticks) << shift;
    
    	do_div(tmp, nsec);
    	return tmp;
    }
    
    
    static void __init setup_clockevent_multiplier(unsigned long hz)
    {
    	u64 mult, shift = 32;
    
    	while (1) {
    
    		mult = div_sc64(hz, NSEC_PER_SEC, shift);
    
    		if (mult && (mult >> 32UL) == 0UL)
    			break;
    
    		shift--;
    	}
    
    	decrementer_clockevent.shift = shift;
    	decrementer_clockevent.mult = mult;
    }
    
    
    static void register_decrementer_clockevent(int cpu)
    {
    
    	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
    
    
    	*dec = decrementer_clockevent;
    
    	dec->cpumask = cpumask_of(cpu);
    
    	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
    		    dec->name, dec->mult, dec->shift, cpu);
    
    
    	clockevents_register_device(dec);
    }
    
    
    static void __init init_decrementer_clockevent(void)
    
    {
    	int cpu = smp_processor_id();
    
    
    	setup_clockevent_multiplier(ppc_tb_freq);
    
    	decrementer_clockevent.max_delta_ns =
    		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
    
    	decrementer_clockevent.min_delta_ns =
    		clockevent_delta2ns(2, &decrementer_clockevent);
    
    
    	register_decrementer_clockevent(cpu);
    }
    
    void secondary_cpu_time_init(void)
    {
    
    	/* Start the decrementer on CPUs that have manual control
    	 * such as BookE
    	 */
    	start_cpu_decrementer();
    
    
    	/* FIME: Should make unrelatred change to move snapshot_timebase
    	 * call here ! */
    	register_decrementer_clockevent(smp_processor_id());
    }
    
    
    /* This function is only called on the boot processor */
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    void __init time_init(void)
    {
    	struct div_result res;
    
    	if (__USE_RTC()) {
    		/* 601 processor: dec counts down by 128 every 128ns */
    		ppc_tb_freq = 1000000000;
    	} else {
    		/* Normal PowerPC with timebase register */
    		ppc_md.calibrate_decr();
    
    		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
    
    		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
    
    		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
    
    		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
    	}
    
    
    	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
    
    	tb_ticks_per_sec = ppc_tb_freq;
    
    	tb_ticks_per_usec = ppc_tb_freq / 1000000;
    
    	setup_cputime_one_jiffy();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	/*
    	 * Compute scale factor for sched_clock.
    	 * The calibrate_decr() function has set tb_ticks_per_sec,
    	 * which is the timebase frequency.
    	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
    	 * the 128-bit result as a 64.64 fixed-point number.
    	 * We then shift that number right until it is less than 1.0,
    	 * giving us the scale factor and shift count to use in
    	 * sched_clock().
    	 */
    	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
    	scale = res.result_low;
    	for (shift = 0; res.result_high != 0; ++shift) {
    		scale = (scale >> 1) | (res.result_high << 63);
    		res.result_high >>= 1;
    	}