Newer
Older
get_cpu();
do_cpuid_1_ent(entry, function, index);
++*nent;
switch (function) {
case 0:
entry->eax = min(entry->eax, (u32)0xd);
break;
case 1:
entry->edx &= kvm_supported_word0_x86_features;
entry->ecx &= kvm_supported_word4_x86_features;
/* we support x2apic emulation even if host does not support
* it since we emulate x2apic in software */
entry->ecx |= F(X2APIC);
break;
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
* may return different values. This forces us to get_cpu() before
* issuing the first command, and also to emulate this annoying behavior
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
case 2: {
int t, times = entry->eax & 0xff;
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
for (t = 1; t < times && *nent < maxnent; ++t) {
do_cpuid_1_ent(&entry[t], function, 0);
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
++*nent;
}
break;
}
/* function 4 and 0xb have additional index. */
case 4: {
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until cache_type is zero */
for (i = 1; *nent < maxnent; ++i) {
cache_type = entry[i - 1].eax & 0x1f;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0xb: {
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until level_type is zero */
level_type = entry[i - 1].ecx & 0xff00;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0xd: {
int i;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
for (i = 1; *nent < maxnent; ++i) {
if (entry[i - 1].eax == 0 && i != 2)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case KVM_CPUID_SIGNATURE: {
char signature[12] = "KVMKVMKVM\0\0";
u32 *sigptr = (u32 *)signature;
entry->eax = 0;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
entry->edx = sigptr[2];
break;
}
case KVM_CPUID_FEATURES:
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
(1 << KVM_FEATURE_NOP_IO_DELAY) |
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
case 0x80000000:
entry->eax = min(entry->eax, 0x8000001a);
break;
case 0x80000001:
entry->edx &= kvm_supported_word1_x86_features;
entry->ecx &= kvm_supported_word6_x86_features;
break;
}
kvm_x86_ops->set_supported_cpuid(function, entry);
#undef F
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
struct kvm_cpuid_entry2 *cpuid_entries;
int limit, nent = 0, r = -E2BIG;
u32 func;
if (cpuid->nent < 1)
goto out;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
if (!cpuid_entries)
goto out;
do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
limit = cpuid_entries[0].eax;
for (func = 1; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
limit = cpuid_entries[nent - 1].eax;
for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
do_cpuid_ent(&cpuid_entries[nent], func, 0,
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
cpuid->nent);
r = -E2BIG;
if (nent >= cpuid->nent)
goto out_free;
r = -EFAULT;
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
goto out_free;
cpuid->nent = nent;
r = 0;
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
return 0;
}
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
kvm_apic_post_state_restore(vcpu);
update_cr8_intercept(vcpu);
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq < 0 || irq->irq >= 256)
return -EINVAL;
if (irqchip_in_kernel(vcpu->kvm))
return -ENXIO;
kvm_queue_interrupt(vcpu, irq->irq, false);
return 0;
}
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
{
kvm_inject_nmi(vcpu);
return 0;
}
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
struct kvm_tpr_access_ctl *tac)
{
if (tac->flags)
return -EINVAL;
vcpu->arch.tpr_access_reporting = !!tac->enabled;
return 0;
}
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
u64 mcg_cap)
{
int r;
unsigned bank_num = mcg_cap & 0xff, bank;
r = -EINVAL;
if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
goto out;
if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
goto out;
r = 0;
vcpu->arch.mcg_cap = mcg_cap;
/* Init IA32_MCG_CTL to all 1s */
if (mcg_cap & MCG_CTL_P)
vcpu->arch.mcg_ctl = ~(u64)0;
/* Init IA32_MCi_CTL to all 1s */
for (bank = 0; bank < bank_num; bank++)
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
out:
return r;
}
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
struct kvm_x86_mce *mce)
{
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
u64 *banks = vcpu->arch.mce_banks;
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
return -EINVAL;
/*
* if IA32_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
vcpu->arch.mcg_ctl != ~(u64)0)
return 0;
banks += 4 * mce->bank;
/*
* if IA32_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
return 0;
if (mce->status & MCI_STATUS_UC) {
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
!kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
printk(KERN_DEBUG "kvm: set_mce: "
"injects mce exception while "
"previous one is in progress!\n");
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
return 0;
}
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
vcpu->arch.mcg_status = mce->mcg_status;
banks[1] = mce->status;
kvm_queue_exception(vcpu, MC_VECTOR);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL)
mce->status |= MCI_STATUS_OVER;
banks[2] = mce->addr;
banks[3] = mce->misc;
banks[1] = mce->status;
} else
banks[1] |= MCI_STATUS_OVER;
return 0;
}
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
events->exception.injected =
vcpu->arch.exception.pending &&
!kvm_exception_is_soft(vcpu->arch.exception.nr);
events->exception.nr = vcpu->arch.exception.nr;
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
events->exception.error_code = vcpu->arch.exception.error_code;
events->interrupt.injected =
vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
events->interrupt.nr = vcpu->arch.interrupt.nr;
events->interrupt.soft = 0;
events->interrupt.shadow =
kvm_x86_ops->get_interrupt_shadow(vcpu,
KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
events->nmi.injected = vcpu->arch.nmi_injected;
events->nmi.pending = vcpu->arch.nmi_pending;
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
events->sipi_vector = vcpu->arch.sipi_vector;
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW);
}
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW))
return -EINVAL;
vcpu->arch.exception.pending = events->exception.injected;
vcpu->arch.exception.nr = events->exception.nr;
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
vcpu->arch.exception.error_code = events->exception.error_code;
vcpu->arch.interrupt.pending = events->interrupt.injected;
vcpu->arch.interrupt.nr = events->interrupt.nr;
vcpu->arch.interrupt.soft = events->interrupt.soft;
if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
kvm_pic_clear_isr_ack(vcpu->kvm);
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
kvm_x86_ops->set_interrupt_shadow(vcpu,
events->interrupt.shadow);
vcpu->arch.nmi_injected = events->nmi.injected;
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
vcpu->arch.nmi_pending = events->nmi.pending;
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
vcpu->arch.sipi_vector = events->sipi_vector;
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
dbgregs->dr6 = vcpu->arch.dr6;
dbgregs->dr7 = vcpu->arch.dr7;
dbgregs->flags = 0;
}
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
struct kvm_debugregs *dbgregs)
{
if (dbgregs->flags)
return -EINVAL;
memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
vcpu->arch.dr6 = dbgregs->dr6;
vcpu->arch.dr7 = dbgregs->dr7;
return 0;
}
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
if (cpu_has_xsave)
memcpy(guest_xsave->region,
&vcpu->arch.guest_fpu.state->xsave,
sizeof(struct xsave_struct));
else {
memcpy(guest_xsave->region,
&vcpu->arch.guest_fpu.state->fxsave,
sizeof(struct i387_fxsave_struct));
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
XSTATE_FPSSE;
}
}
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
struct kvm_xsave *guest_xsave)
{
u64 xstate_bv =
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
if (cpu_has_xsave)
memcpy(&vcpu->arch.guest_fpu.state->xsave,
guest_xsave->region, sizeof(struct xsave_struct));
else {
if (xstate_bv & ~XSTATE_FPSSE)
return -EINVAL;
memcpy(&vcpu->arch.guest_fpu.state->fxsave,
guest_xsave->region, sizeof(struct i387_fxsave_struct));
}
return 0;
}
static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
if (!cpu_has_xsave) {
guest_xcrs->nr_xcrs = 0;
return;
}
guest_xcrs->nr_xcrs = 1;
guest_xcrs->flags = 0;
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
}
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
struct kvm_xcrs *guest_xcrs)
{
int i, r = 0;
if (!cpu_has_xsave)
return -EINVAL;
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
return -EINVAL;
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
/* Only support XCR0 currently */
if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
guest_xcrs->xcrs[0].value);
break;
}
if (r)
r = -EINVAL;
return r;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
union {
struct kvm_lapic_state *lapic;
struct kvm_xsave *xsave;
struct kvm_xcrs *xcrs;
void *buffer;
} u;
u.buffer = NULL;
switch (ioctl) {
case KVM_GET_LAPIC: {
r = -EINVAL;
if (!vcpu->arch.apic)
goto out;
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
if (!u.lapic)
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
goto out;
r = 0;
break;
}
case KVM_SET_LAPIC: {
r = -EINVAL;
if (!vcpu->arch.apic)
goto out;
u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
if (!u.lapic)
if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
if (r)
goto out;
r = 0;
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof irq))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
if (r)
goto out;
r = 0;
break;
}
case KVM_NMI: {
r = kvm_vcpu_ioctl_nmi(vcpu);
if (r)
goto out;
r = 0;
break;
}
case KVM_SET_CPUID: {
struct kvm_cpuid __user *cpuid_arg = argp;
struct kvm_cpuid cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_SET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
if (r)
goto out;
break;
}
case KVM_GET_CPUID2: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_GET_MSRS:
r = msr_io(vcpu, argp, kvm_get_msr, 1);
break;
case KVM_SET_MSRS:
r = msr_io(vcpu, argp, do_set_msr, 0);
break;
case KVM_TPR_ACCESS_REPORTING: {
struct kvm_tpr_access_ctl tac;
r = -EFAULT;
if (copy_from_user(&tac, argp, sizeof tac))
goto out;
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tac, sizeof tac))
goto out;
r = 0;
break;
};
case KVM_SET_VAPIC_ADDR: {
struct kvm_vapic_addr va;
r = -EINVAL;
if (!irqchip_in_kernel(vcpu->kvm))
goto out;
r = -EFAULT;
if (copy_from_user(&va, argp, sizeof va))
goto out;
r = 0;
kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
break;
}
case KVM_X86_SETUP_MCE: {
u64 mcg_cap;
r = -EFAULT;
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
goto out;
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
break;
}
case KVM_X86_SET_MCE: {
struct kvm_x86_mce mce;
r = -EFAULT;
if (copy_from_user(&mce, argp, sizeof mce))
goto out;
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
break;
}
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
case KVM_GET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
r = -EFAULT;
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
break;
r = 0;
break;
}
case KVM_SET_VCPU_EVENTS: {
struct kvm_vcpu_events events;
r = -EFAULT;
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
break;
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
break;
}
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
case KVM_GET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
r = -EFAULT;
if (copy_to_user(argp, &dbgregs,
sizeof(struct kvm_debugregs)))
break;
r = 0;
break;
}
case KVM_SET_DEBUGREGS: {
struct kvm_debugregs dbgregs;
r = -EFAULT;
if (copy_from_user(&dbgregs, argp,
sizeof(struct kvm_debugregs)))
break;
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
break;
}
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
if (!u.xsave)
kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
break;
r = 0;
break;
}
case KVM_SET_XSAVE: {
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
if (!u.xsave)
break;
r = -EFAULT;
if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
break;
}
case KVM_GET_XCRS: {
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
if (!u.xcrs)
kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
if (copy_to_user(argp, u.xcrs,
sizeof(struct kvm_xcrs)))
break;
r = 0;
break;
}
case KVM_SET_XCRS: {
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
if (!u.xcrs)
break;
r = -EFAULT;
if (copy_from_user(u.xcrs, argp,
sizeof(struct kvm_xcrs)))
break;
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
default:
r = -EINVAL;
}
out:
kfree(u.buffer);
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
int ret;
if (addr > (unsigned int)(-3 * PAGE_SIZE))
return -1;
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
return ret;
}
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
u64 ident_addr)
{
kvm->arch.ept_identity_map_addr = ident_addr;
return 0;
}
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
u32 kvm_nr_mmu_pages)
{
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
return -EINVAL;
spin_lock(&kvm->mmu_lock);
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
spin_unlock(&kvm->mmu_lock);
return 0;
}
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
return kvm->arch.n_alloc_mmu_pages;
}
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[0],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_PIC_SLAVE:
memcpy(&chip->chip.pic,
&pic_irqchip(kvm)->pics[1],
sizeof(struct kvm_pic_state));
break;
case KVM_IRQCHIP_IOAPIC:
r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
int r;
r = 0;
switch (chip->chip_id) {
case KVM_IRQCHIP_PIC_MASTER:
raw_spin_lock(&pic_irqchip(kvm)->lock);
memcpy(&pic_irqchip(kvm)->pics[0],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
raw_spin_unlock(&pic_irqchip(kvm)->lock);
break;
case KVM_IRQCHIP_PIC_SLAVE:
raw_spin_lock(&pic_irqchip(kvm)->lock);
memcpy(&pic_irqchip(kvm)->pics[1],
&chip->chip.pic,
sizeof(struct kvm_pic_state));
raw_spin_unlock(&pic_irqchip(kvm)->lock);
break;
case KVM_IRQCHIP_IOAPIC:
r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
break;
default:
r = -EINVAL;
break;
}
kvm_pic_update_irq(pic_irqchip(kvm));
return r;
}
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int r = 0;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
sizeof(ps->channels));
ps->flags = kvm->arch.vpit->pit_state.flags;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return r;
}
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
int r = 0, start = 0;
u32 prev_legacy, cur_legacy;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
if (!prev_legacy && cur_legacy)
start = 1;
memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
sizeof(kvm->arch.vpit->pit_state.channels));
kvm->arch.vpit->pit_state.flags = ps->flags;
kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
struct kvm_reinject_control *control)
{
if (!kvm->arch.vpit)
return -ENXIO;
mutex_lock(&kvm->arch.vpit->pit_state.lock);
kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
unsigned long n;
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = &kvm->memslots->memslots[log->slot];
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = kvm_dirty_bitmap_bytes(memslot);
for (i = 0; !is_dirty && i < n/sizeof(long); i++)
is_dirty = memslot->dirty_bitmap[i];
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
unsigned long *dirty_bitmap;
spin_lock(&kvm->mmu_lock);
kvm_mmu_slot_remove_write_access(kvm, log->slot);
spin_unlock(&kvm->mmu_lock);
r = -ENOMEM;
dirty_bitmap = vmalloc(n);
if (!dirty_bitmap)
goto out;
memset(dirty_bitmap, 0, n);
r = -ENOMEM;
slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
if (!slots) {
vfree(dirty_bitmap);
goto out;
}
memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
old_slots = kvm->memslots;
rcu_assign_pointer(kvm->memslots, slots);
synchronize_srcu_expedited(&kvm->srcu);
dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
kfree(old_slots);
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
vfree(dirty_bitmap);
goto out;
}
vfree(dirty_bitmap);
} else {
r = -EFAULT;
if (clear_user(log->dirty_bitmap, n))
goto out;
}
r = 0;
out:
return r;
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
/*
* This union makes it completely explicit to gcc-3.x
* that these two variables' stack usage should be
* combined, not added together.
*/
union {
struct kvm_pit_state ps;
struct kvm_pit_config pit_config;
switch (ioctl) {
case KVM_SET_TSS_ADDR:
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
if (r < 0)
goto out;
break;
case KVM_SET_IDENTITY_MAP_ADDR: {
u64 ident_addr;
r = -EFAULT;
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
goto out;
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
if (r < 0)
goto out;
break;
}
case KVM_SET_NR_MMU_PAGES:
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
if (r)
goto out;
break;
case KVM_GET_NR_MMU_PAGES:
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
break;
case KVM_CREATE_IRQCHIP: {
struct kvm_pic *vpic;