Newer
Older
* Special case: close write to TSC within 5 seconds of
* another CPU is interpreted as an attempt to synchronize
* The 5 seconds is to accomodate host load / swapping as
* well as any reset of TSC during the boot process.
*
* In that case, for a reliable TSC, we can match TSC offsets,
* or make a best guest using elapsed value.
if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
elapsed < 5ULL * NSEC_PER_SEC) {
if (!check_tsc_unstable()) {
offset = kvm->arch.last_tsc_offset;
pr_debug("kvm: matched tsc offset for %llu\n", data);
} else {
u64 delta = nsec_to_cycles(elapsed);
offset += delta;
pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
}
ns = kvm->arch.last_tsc_nsec;
}
kvm->arch.last_tsc_nsec = ns;
kvm->arch.last_tsc_write = data;
kvm->arch.last_tsc_offset = offset;
kvm_x86_ops->write_tsc_offset(vcpu, offset);
spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
/* Reset of TSC must disable overshoot protection below */
vcpu->arch.hv_clock.tsc_timestamp = 0;
}
EXPORT_SYMBOL_GPL(kvm_write_tsc);
static int kvm_write_guest_time(struct kvm_vcpu *v)
{
unsigned long flags;
struct kvm_vcpu_arch *vcpu = &v->arch;
void *shared_kaddr;
unsigned long this_tsc_khz;
s64 kernel_ns, max_kernel_ns;
u64 tsc_timestamp;
if ((!vcpu->time_page))
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
kernel_ns = get_kernel_ns();
this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
local_irq_restore(flags);
if (unlikely(this_tsc_khz == 0)) {
kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
return 1;
}
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
/*
* Time as measured by the TSC may go backwards when resetting the base
* tsc_timestamp. The reason for this is that the TSC resolution is
* higher than the resolution of the other clock scales. Thus, many
* possible measurments of the TSC correspond to one measurement of any
* other clock, and so a spread of values is possible. This is not a
* problem for the computation of the nanosecond clock; with TSC rates
* around 1GHZ, there can only be a few cycles which correspond to one
* nanosecond value, and any path through this code will inevitably
* take longer than that. However, with the kernel_ns value itself,
* the precision may be much lower, down to HZ granularity. If the
* first sampling of TSC against kernel_ns ends in the low part of the
* range, and the second in the high end of the range, we can get:
*
* (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
*
* As the sampling errors potentially range in the thousands of cycles,
* it is possible such a time value has already been observed by the
* guest. To protect against this, we must compute the system time as
* observed by the guest and ensure the new system time is greater.
*/
max_kernel_ns = 0;
if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
max_kernel_ns = vcpu->last_guest_tsc -
vcpu->hv_clock.tsc_timestamp;
max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
vcpu->hv_clock.tsc_to_system_mul,
vcpu->hv_clock.tsc_shift);
max_kernel_ns += vcpu->last_kernel_ns;
}
if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
if (max_kernel_ns > kernel_ns)
kernel_ns = max_kernel_ns;
/* With all the info we got, fill in the values */
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
vcpu->last_kernel_ns = kernel_ns;
vcpu->hv_clock.flags = 0;
/*
* The interface expects us to write an even number signaling that the
* update is finished. Since the guest won't see the intermediate
* state, we just increase by 2 at the end.
vcpu->hv_clock.version += 2;
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
sizeof(vcpu->hv_clock));
kunmap_atomic(shared_kaddr, KM_USER0);
mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
static int kvm_request_guest_time_update(struct kvm_vcpu *v)
{
struct kvm_vcpu_arch *vcpu = &v->arch;
if (!vcpu->time_page)
return 0;
kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
static bool msr_mtrr_valid(unsigned msr)
{
switch (msr) {
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
case MSR_MTRRfix64K_00000:
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
case MSR_MTRRdefType:
case MSR_IA32_CR_PAT:
return true;
case 0x2f8:
return true;
}
return false;
}
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
static bool valid_pat_type(unsigned t)
{
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
}
static bool valid_mtrr_type(unsigned t)
{
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
}
static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
int i;
if (!msr_mtrr_valid(msr))
return false;
if (msr == MSR_IA32_CR_PAT) {
for (i = 0; i < 8; i++)
if (!valid_pat_type((data >> (i * 8)) & 0xff))
return false;
return true;
} else if (msr == MSR_MTRRdefType) {
if (data & ~0xcff)
return false;
return valid_mtrr_type(data & 0xff);
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
for (i = 0; i < 8 ; i++)
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
return false;
return true;
}
/* variable MTRRs */
return valid_mtrr_type(data & 0xff);
}
static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
if (msr == MSR_MTRRdefType) {
vcpu->arch.mtrr_state.def_type = data;
vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
} else if (msr == MSR_MTRRfix64K_00000)
p[0] = data;
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
p[1 + msr - MSR_MTRRfix16K_80000] = data;
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
p[3 + msr - MSR_MTRRfix4K_C0000] = data;
else if (msr == MSR_IA32_CR_PAT)
vcpu->arch.pat = data;
else { /* Variable MTRRs */
int idx, is_mtrr_mask;
u64 *pt;
idx = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * idx;
if (!is_mtrr_mask)
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
else
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
*pt = data;
}
kvm_mmu_reset_context(vcpu);
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_MCG_STATUS:
if (!(mcg_cap & MCG_CTL_P))
return 1;
if (data != 0 && data != ~(u64)0)
return -1;
vcpu->arch.mcg_ctl = data;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
u32 offset = msr - MSR_IA32_MC0_CTL;
/* only 0 or all 1s can be written to IA32_MCi_CTL
* some Linux kernels though clear bit 10 in bank 4 to
* workaround a BIOS/GART TBL issue on AMD K8s, ignore
* this to avoid an uncatched #GP in the guest
*/
data != 0 && (data | (1 << 10)) != ~(u64)0)
return -1;
vcpu->arch.mce_banks[offset] = data;
break;
}
return 1;
}
return 0;
}
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
{
struct kvm *kvm = vcpu->kvm;
int lm = is_long_mode(vcpu);
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
: kvm->arch.xen_hvm_config.blob_size_32;
u32 page_num = data & ~PAGE_MASK;
u64 page_addr = data & PAGE_MASK;
u8 *page;
int r;
r = -E2BIG;
if (page_num >= blob_size)
goto out;
r = -ENOMEM;
page = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!page)
goto out;
r = -EFAULT;
if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
goto out_free;
if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
goto out_free;
r = 0;
out_free:
kfree(page);
out:
return r;
}
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
}
static bool kvm_hv_msr_partition_wide(u32 msr)
{
bool r = false;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
case HV_X64_MSR_HYPERCALL:
r = true;
break;
}
return r;
}
static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
struct kvm *kvm = vcpu->kvm;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
kvm->arch.hv_guest_os_id = data;
/* setting guest os id to zero disables hypercall page */
if (!kvm->arch.hv_guest_os_id)
kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
break;
case HV_X64_MSR_HYPERCALL: {
u64 gfn;
unsigned long addr;
u8 instructions[4];
/* if guest os id is not set hypercall should remain disabled */
if (!kvm->arch.hv_guest_os_id)
break;
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
kvm->arch.hv_hypercall = data;
break;
}
gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return 1;
kvm_x86_ops->patch_hypercall(vcpu, instructions);
((unsigned char *)instructions)[3] = 0xc3; /* ret */
if (copy_to_user((void __user *)addr, instructions, 4))
return 1;
kvm->arch.hv_hypercall = data;
break;
}
default:
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
"data 0x%llx\n", msr, data);
return 1;
}
return 0;
}
static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
case HV_X64_MSR_APIC_ASSIST_PAGE: {
unsigned long addr;
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
vcpu->arch.hv_vapic = data;
break;
}
addr = gfn_to_hva(vcpu->kvm, data >>
HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
if (kvm_is_error_hva(addr))
return 1;
if (clear_user((void __user *)addr, PAGE_SIZE))
return 1;
vcpu->arch.hv_vapic = data;
break;
}
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
default:
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
"data 0x%llx\n", msr, data);
return 1;
}
return 0;
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
case MSR_EFER:
return set_efer(vcpu, data);
case MSR_K7_HWCR:
data &= ~(u64)0x40; /* ignore flush filter disable */
data &= ~(u64)0x100; /* ignore ignne emulation enable */
if (data != 0) {
pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
data);
return 1;
}
case MSR_FAM10H_MMIO_CONF_BASE:
if (data != 0) {
pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
"0x%llx\n", data);
return 1;
}
case MSR_IA32_DEBUGCTLMSR:
if (!data) {
/* We support the non-activated case already */
break;
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
/* Values other than LBR and BTF are vendor-specific,
thus reserved and should throw a #GP */
return 1;
}
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
__func__, data);
break;
case MSR_IA32_UCODE_REV:
case MSR_IA32_UCODE_WRITE:
case 0x200 ... 0x2ff:
return set_msr_mtrr(vcpu, msr, data);
case MSR_IA32_APICBASE:
kvm_set_apic_base(vcpu, data);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_write(vcpu, msr, data);
case MSR_IA32_MISC_ENABLE:
vcpu->arch.ia32_misc_enable_msr = data;
case MSR_KVM_WALL_CLOCK:
vcpu->kvm->arch.wall_clock = data;
kvm_write_wall_clock(vcpu->kvm, data);
break;
case MSR_KVM_SYSTEM_TIME_NEW:
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
case MSR_KVM_SYSTEM_TIME: {
if (vcpu->arch.time_page) {
kvm_release_page_dirty(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
vcpu->arch.time = data;
/* we verify if the enable bit is set... */
if (!(data & 1))
break;
/* ...but clean it before doing the actual write */
vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
vcpu->arch.time_page =
gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
if (is_error_page(vcpu->arch.time_page)) {
kvm_release_page_clean(vcpu->arch.time_page);
vcpu->arch.time_page = NULL;
}
kvm_request_guest_time_update(vcpu);
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
return set_msr_mce(vcpu, msr, data);
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
/* Performance counters are not protected by a CPUID bit,
* so we should check all of them in the generic path for the sake of
* cross vendor migration.
* Writing a zero into the event select MSRs disables them,
* which we perfectly emulate ;-). Any other value should be at least
* reported, some guests depend on them.
*/
case MSR_P6_EVNTSEL0:
case MSR_P6_EVNTSEL1:
case MSR_K7_EVNTSEL0:
case MSR_K7_EVNTSEL1:
case MSR_K7_EVNTSEL2:
case MSR_K7_EVNTSEL3:
if (data != 0)
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
"0x%x data 0x%llx\n", msr, data);
break;
/* at least RHEL 4 unconditionally writes to the perfctr registers,
* so we ignore writes to make it happy.
*/
case MSR_P6_PERFCTR0:
case MSR_P6_PERFCTR1:
case MSR_K7_PERFCTR0:
case MSR_K7_PERFCTR1:
case MSR_K7_PERFCTR2:
case MSR_K7_PERFCTR3:
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
"0x%x data 0x%llx\n", msr, data);
break;
case MSR_K7_CLK_CTL:
/*
* Ignore all writes to this no longer documented MSR.
* Writes are only relevant for old K7 processors,
* all pre-dating SVM, but a recommended workaround from
* AMD for these chips. It is possible to speicify the
* affected processor models on the command line, hence
* the need to ignore the workaround.
*/
break;
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&vcpu->kvm->lock);
r = set_msr_hyperv_pw(vcpu, msr, data);
mutex_unlock(&vcpu->kvm->lock);
return r;
} else
return set_msr_hyperv(vcpu, msr, data);
break;
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
return xen_hvm_config(vcpu, data);
if (!ignore_msrs) {
pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
msr, data);
return 1;
} else {
pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
msr, data);
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
if (msr == MSR_MTRRdefType)
*pdata = vcpu->arch.mtrr_state.def_type +
(vcpu->arch.mtrr_state.enabled << 10);
else if (msr == MSR_MTRRfix64K_00000)
*pdata = p[0];
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
else if (msr == MSR_IA32_CR_PAT)
*pdata = vcpu->arch.pat;
else { /* Variable MTRRs */
int idx, is_mtrr_mask;
u64 *pt;
idx = (msr - 0x200) / 2;
is_mtrr_mask = msr - 0x200 - 2 * idx;
if (!is_mtrr_mask)
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
else
pt =
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
*pdata = *pt;
}
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
u64 mcg_cap = vcpu->arch.mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
switch (msr) {
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MCG_CAP:
if (!(mcg_cap & MCG_CTL_P))
return 1;
data = vcpu->arch.mcg_ctl;
break;
case MSR_IA32_MCG_STATUS:
data = vcpu->arch.mcg_status;
break;
default:
if (msr >= MSR_IA32_MC0_CTL &&
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
u32 offset = msr - MSR_IA32_MC0_CTL;
data = vcpu->arch.mce_banks[offset];
break;
}
return 1;
}
*pdata = data;
return 0;
}
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data = 0;
struct kvm *kvm = vcpu->kvm;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
data = kvm->arch.hv_guest_os_id;
break;
case HV_X64_MSR_HYPERCALL:
data = kvm->arch.hv_hypercall;
break;
default:
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data = 0;
switch (msr) {
case HV_X64_MSR_VP_INDEX: {
int r;
struct kvm_vcpu *v;
kvm_for_each_vcpu(r, v, vcpu->kvm)
if (v == vcpu)
data = r;
break;
}
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
default:
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
switch (msr) {
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_UCODE_REV:
case MSR_IA32_EBL_CR_POWERON:
case MSR_IA32_DEBUGCTLMSR:
case MSR_IA32_LASTBRANCHFROMIP:
case MSR_IA32_LASTBRANCHTOIP:
case MSR_IA32_LASTINTFROMIP:
case MSR_IA32_LASTINTTOIP:
case MSR_K8_SYSCFG:
case MSR_K7_HWCR:
case MSR_P6_PERFCTR0:
case MSR_P6_PERFCTR1:
case MSR_P6_EVNTSEL0:
case MSR_P6_EVNTSEL1:
case MSR_K8_INT_PENDING_MSG:
data = 0;
break;
case MSR_MTRRcap:
data = 0x500 | KVM_NR_VAR_MTRR;
break;
case 0x200 ... 0x2ff:
return get_msr_mtrr(vcpu, msr, pdata);
case 0xcd: /* fsb frequency */
data = 3;
break;
/*
* MSR_EBC_FREQUENCY_ID
* Conservative value valid for even the basic CPU models.
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
* and 266MHz for model 3, or 4. Set Core Clock
* Frequency to System Bus Frequency Ratio to 1 (bits
* 31:24) even though these are only valid for CPU
* models > 2, however guests may end up dividing or
* multiplying by zero otherwise.
*/
case MSR_EBC_FREQUENCY_ID:
data = 1 << 24;
break;
case MSR_IA32_APICBASE:
data = kvm_get_apic_base(vcpu);
break;
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
return kvm_x2apic_msr_read(vcpu, msr, pdata);
break;
case MSR_IA32_MISC_ENABLE:
data = vcpu->arch.ia32_misc_enable_msr;
case MSR_IA32_PERF_STATUS:
/* TSC increment by tick */
data = 1000ULL;
/* CPU multiplier */
data |= (((uint64_t)4ULL) << 40);
break;
case MSR_KVM_WALL_CLOCK:
data = vcpu->kvm->arch.wall_clock;
break;
case MSR_KVM_SYSTEM_TIME:
case MSR_KVM_SYSTEM_TIME_NEW:
data = vcpu->arch.time;
break;
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MCG_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
return get_msr_mce(vcpu, msr, pdata);
case MSR_K7_CLK_CTL:
/*
* Provide expected ramp-up count for K7. All other
* are set to zero, indicating minimum divisors for
* every field.
*
* This prevents guest kernels on AMD host with CPU
* type 6, model 8 and higher from exploding due to
* the rdmsr failing.
*/
data = 0x20000000;
break;
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&vcpu->kvm->lock);
r = get_msr_hyperv_pw(vcpu, msr, pdata);
mutex_unlock(&vcpu->kvm->lock);
return r;
} else
return get_msr_hyperv(vcpu, msr, pdata);
break;
if (!ignore_msrs) {
pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
return 1;
} else {
pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
data = 0;
}
break;
}
*pdata = data;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
idx = srcu_read_lock(&vcpu->kvm->srcu);
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
srcu_read_unlock(&vcpu->kvm->srcu, idx);
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
int r, n;
unsigned size;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
r = -ENOMEM;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = kmalloc(size, GFP_KERNEL);
if (!entries)
goto out;
r = -EFAULT;
if (copy_from_user(entries, user_msrs->entries, size))
goto out_free;
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
if (r < 0)
goto out_free;
r = -EFAULT;
if (writeback && copy_to_user(user_msrs->entries, entries, size))
goto out_free;
r = n;
out_free:
kfree(entries);
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
case KVM_CAP_IRQCHIP:
case KVM_CAP_HLT:
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
case KVM_CAP_SET_TSS_ADDR:
case KVM_CAP_SYNC_MMU:
case KVM_CAP_REINJECT_CONTROL:
case KVM_CAP_IRQ_INJECT_STATUS:
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
case KVM_CAP_ADJUST_CLOCK:
case KVM_CAP_HYPERV_SPIN:
case KVM_CAP_PCI_SEGMENT:
case KVM_CAP_DEBUGREGS:
case KVM_CAP_X86_ROBUST_SINGLESTEP:
case KVM_CAP_COALESCED_MMIO:
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
break;
case KVM_CAP_VAPIC:
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
break;
case KVM_CAP_NR_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_NR_MEMSLOTS:
r = KVM_MEMORY_SLOTS;
break;
case KVM_CAP_PV_MMU: /* obsolete */
r = 0;
case KVM_CAP_MCE:
r = KVM_MAX_MCE_BANKS;
break;
case KVM_CAP_XCRS:
r = cpu_has_xsave;
break;
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
goto out;
r = -E2BIG;
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
&emulated_msrs,
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_GET_SUPPORTED_CPUID: {
struct kvm_cpuid2 __user *cpuid_arg = argp;
struct kvm_cpuid2 cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
goto out;
r = 0;
break;
}
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
u64 mce_cap;
mce_cap = KVM_MCE_CAP_SUPPORTED;
r = -EFAULT;
if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
goto out;
r = 0;
break;
}
default:
r = -EINVAL;
}
out:
return r;
}
static void wbinvd_ipi(void *garbage)
{
wbinvd();