Skip to content
Snippets Groups Projects
memcontrol.c 178 KiB
Newer Older
  • Learn to ignore specific revisions
  • 	/*
    	 * Migration does not charge the res_counter for the
    	 * replacement page, so leave it alone when phasing out the
    	 * page that is unused after the migration.
    	 */
    	if (!end_migration && !mem_cgroup_is_root(memcg))
    
    		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
    
    	return memcg;
    
    
    unlock_out:
    	unlock_page_cgroup(pc);
    
    	return NULL;
    
    void mem_cgroup_uncharge_page(struct page *page)
    {
    
    	/* early check. */
    	if (page_mapped(page))
    		return;
    
    	VM_BUG_ON(page->mapping && !PageAnon(page));
    
    	/*
    	 * If the page is in swap cache, uncharge should be deferred
    	 * to the swap path, which also properly accounts swap usage
    	 * and handles memcg lifetime.
    	 *
    	 * Note that this check is not stable and reclaim may add the
    	 * page to swap cache at any time after this.  However, if the
    	 * page is not in swap cache by the time page->mapcount hits
    	 * 0, there won't be any page table references to the swap
    	 * slot, and reclaim will free it and not actually write the
    	 * page to disk.
    	 */
    
    	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
    
    }
    
    void mem_cgroup_uncharge_cache_page(struct page *page)
    {
    	VM_BUG_ON(page_mapped(page));
    
    	VM_BUG_ON(page->mapping);
    
    	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
    
    /*
     * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
     * In that cases, pages are freed continuously and we can expect pages
     * are in the same memcg. All these calls itself limits the number of
     * pages freed at once, then uncharge_start/end() is called properly.
     * This may be called prural(2) times in a context,
     */
    
    void mem_cgroup_uncharge_start(void)
    {
    	current->memcg_batch.do_batch++;
    	/* We can do nest. */
    	if (current->memcg_batch.do_batch == 1) {
    		current->memcg_batch.memcg = NULL;
    
    		current->memcg_batch.nr_pages = 0;
    		current->memcg_batch.memsw_nr_pages = 0;
    
    	}
    }
    
    void mem_cgroup_uncharge_end(void)
    {
    	struct memcg_batch_info *batch = &current->memcg_batch;
    
    	if (!batch->do_batch)
    		return;
    
    	batch->do_batch--;
    	if (batch->do_batch) /* If stacked, do nothing. */
    		return;
    
    	if (!batch->memcg)
    		return;
    	/*
    	 * This "batch->memcg" is valid without any css_get/put etc...
    	 * bacause we hide charges behind us.
    	 */
    
    	if (batch->nr_pages)
    		res_counter_uncharge(&batch->memcg->res,
    				     batch->nr_pages * PAGE_SIZE);
    	if (batch->memsw_nr_pages)
    		res_counter_uncharge(&batch->memcg->memsw,
    				     batch->memsw_nr_pages * PAGE_SIZE);
    
    	memcg_oom_recover(batch->memcg);
    
    	/* forget this pointer (for sanity check) */
    	batch->memcg = NULL;
    }
    
    
     * called after __delete_from_swap_cache() and drop "page" account.
    
     * memcg information is recorded to swap_cgroup of "ent"
     */
    
    void
    mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
    
    {
    	struct mem_cgroup *memcg;
    
    	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
    
    	if (!swapout) /* this was a swap cache but the swap is unused ! */
    		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
    
    
    	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
    
    	/*
    	 * record memcg information,  if swapout && memcg != NULL,
    
    	 * css_get() was called in uncharge().
    
    	 */
    	if (do_swap_account && swapout && memcg)
    
    		swap_cgroup_record(ent, css_id(&memcg->css));
    
    #ifdef CONFIG_MEMCG_SWAP
    
    /*
     * called from swap_entry_free(). remove record in swap_cgroup and
     * uncharge "memsw" account.
     */
    void mem_cgroup_uncharge_swap(swp_entry_t ent)
    
    	struct mem_cgroup *memcg;
    
    
    	if (!do_swap_account)
    		return;
    
    
    	id = swap_cgroup_record(ent, 0);
    	rcu_read_lock();
    	memcg = mem_cgroup_lookup(id);
    
    	if (memcg) {
    
    		/*
    		 * We uncharge this because swap is freed.
    		 * This memcg can be obsolete one. We avoid calling css_tryget
    		 */
    
    		if (!mem_cgroup_is_root(memcg))
    
    			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
    
    		mem_cgroup_swap_statistics(memcg, false);
    
    		css_put(&memcg->css);
    
    
    /**
     * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
     * @entry: swap entry to be moved
     * @from:  mem_cgroup which the entry is moved from
     * @to:  mem_cgroup which the entry is moved to
     *
     * It succeeds only when the swap_cgroup's record for this entry is the same
     * as the mem_cgroup's id of @from.
     *
     * Returns 0 on success, -EINVAL on failure.
     *
     * The caller must have charged to @to, IOW, called res_counter_charge() about
     * both res and memsw, and called css_get().
     */
    static int mem_cgroup_move_swap_account(swp_entry_t entry,
    
    				struct mem_cgroup *from, struct mem_cgroup *to)
    
    {
    	unsigned short old_id, new_id;
    
    	old_id = css_id(&from->css);
    	new_id = css_id(&to->css);
    
    	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
    		mem_cgroup_swap_statistics(from, false);
    
    		mem_cgroup_swap_statistics(to, true);
    
    		 * This function is only called from task migration context now.
    		 * It postpones res_counter and refcount handling till the end
    		 * of task migration(mem_cgroup_clear_mc()) for performance
    
    		 * improvement. But we cannot postpone css_get(to)  because if
    		 * the process that has been moved to @to does swap-in, the
    		 * refcount of @to might be decreased to 0.
    		 *
    		 * We are in attach() phase, so the cgroup is guaranteed to be
    		 * alive, so we can just call css_get().
    
    		css_get(&to->css);
    
    		return 0;
    	}
    	return -EINVAL;
    }
    #else
    static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
    
    				struct mem_cgroup *from, struct mem_cgroup *to)
    
     * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
     * page belongs to.
    
    void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
    				  struct mem_cgroup **memcgp)
    
    	struct mem_cgroup *memcg = NULL;
    
    	if (mem_cgroup_disabled())
    
    	if (PageTransHuge(page))
    		nr_pages <<= compound_order(page);
    
    
    	pc = lookup_page_cgroup(page);
    	lock_page_cgroup(pc);
    	if (PageCgroupUsed(pc)) {
    
    		memcg = pc->mem_cgroup;
    		css_get(&memcg->css);
    
    		/*
    		 * At migrating an anonymous page, its mapcount goes down
    		 * to 0 and uncharge() will be called. But, even if it's fully
    		 * unmapped, migration may fail and this page has to be
    		 * charged again. We set MIGRATION flag here and delay uncharge
    		 * until end_migration() is called
    		 *
    		 * Corner Case Thinking
    		 * A)
    		 * When the old page was mapped as Anon and it's unmap-and-freed
    		 * while migration was ongoing.
    		 * If unmap finds the old page, uncharge() of it will be delayed
    		 * until end_migration(). If unmap finds a new page, it's
    		 * uncharged when it make mapcount to be 1->0. If unmap code
    		 * finds swap_migration_entry, the new page will not be mapped
    		 * and end_migration() will find it(mapcount==0).
    		 *
    		 * B)
    		 * When the old page was mapped but migraion fails, the kernel
    		 * remaps it. A charge for it is kept by MIGRATION flag even
    		 * if mapcount goes down to 0. We can do remap successfully
    		 * without charging it again.
    		 *
    		 * C)
    		 * The "old" page is under lock_page() until the end of
    		 * migration, so, the old page itself will not be swapped-out.
    		 * If the new page is swapped out before end_migraton, our
    		 * hook to usual swap-out path will catch the event.
    		 */
    		if (PageAnon(page))
    			SetPageCgroupMigration(pc);
    
    	unlock_page_cgroup(pc);
    
    	/*
    	 * If the page is not charged at this point,
    	 * we return here.
    	 */
    
    	/*
    	 * We charge new page before it's used/mapped. So, even if unlock_page()
    	 * is called before end_migration, we can catch all events on this new
    	 * page. In the case new page is migrated but not remapped, new page's
    	 * mapcount will be finally 0 and we call uncharge in end_migration().
    	 */
    	if (PageAnon(page))
    
    		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
    
    	/*
    	 * The page is committed to the memcg, but it's not actually
    	 * charged to the res_counter since we plan on replacing the
    	 * old one and only one page is going to be left afterwards.
    	 */
    
    	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
    
    /* remove redundant charge if migration failed*/
    
    void mem_cgroup_end_migration(struct mem_cgroup *memcg,
    
    	struct page *oldpage, struct page *newpage, bool migration_ok)
    
    	struct page *used, *unused;
    
    	struct page_cgroup *pc;
    
    		used = oldpage;
    		unused = newpage;
    
    		unused = oldpage;
    	}
    
    	__mem_cgroup_uncharge_common(unused,
    				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
    				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
    				     true);
    
    	 * We disallowed uncharge of pages under migration because mapcount
    	 * of the page goes down to zero, temporarly.
    	 * Clear the flag and check the page should be charged.
    
    	pc = lookup_page_cgroup(oldpage);
    	lock_page_cgroup(pc);
    	ClearPageCgroupMigration(pc);
    	unlock_page_cgroup(pc);
    
    
    	 * If a page is a file cache, radix-tree replacement is very atomic
    	 * and we can skip this check. When it was an Anon page, its mapcount
    	 * goes down to 0. But because we added MIGRATION flage, it's not
    	 * uncharged yet. There are several case but page->mapcount check
    	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
    	 * check. (see prepare_charge() also)
    
    		mem_cgroup_uncharge_page(used);
    
    /*
     * At replace page cache, newpage is not under any memcg but it's on
     * LRU. So, this function doesn't touch res_counter but handles LRU
     * in correct way. Both pages are locked so we cannot race with uncharge.
     */
    void mem_cgroup_replace_page_cache(struct page *oldpage,
    				  struct page *newpage)
    {
    
    	struct mem_cgroup *memcg = NULL;
    
    	struct page_cgroup *pc;
    	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	pc = lookup_page_cgroup(oldpage);
    	/* fix accounting on old pages */
    	lock_page_cgroup(pc);
    
    	if (PageCgroupUsed(pc)) {
    		memcg = pc->mem_cgroup;
    
    		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
    
    		ClearPageCgroupUsed(pc);
    	}
    
    	/*
    	 * When called from shmem_replace_page(), in some cases the
    	 * oldpage has already been charged, and in some cases not.
    	 */
    	if (!memcg)
    		return;
    
    	/*
    	 * Even if newpage->mapping was NULL before starting replacement,
    	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
    	 * LRU while we overwrite pc->mem_cgroup.
    	 */
    
    	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
    
    #ifdef CONFIG_DEBUG_VM
    static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
    {
    	struct page_cgroup *pc;
    
    	pc = lookup_page_cgroup(page);
    
    	/*
    	 * Can be NULL while feeding pages into the page allocator for
    	 * the first time, i.e. during boot or memory hotplug;
    	 * or when mem_cgroup_disabled().
    	 */
    
    	if (likely(pc) && PageCgroupUsed(pc))
    		return pc;
    	return NULL;
    }
    
    bool mem_cgroup_bad_page_check(struct page *page)
    {
    	if (mem_cgroup_disabled())
    		return false;
    
    	return lookup_page_cgroup_used(page) != NULL;
    }
    
    void mem_cgroup_print_bad_page(struct page *page)
    {
    	struct page_cgroup *pc;
    
    	pc = lookup_page_cgroup_used(page);
    	if (pc) {
    
    		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
    			 pc, pc->flags, pc->mem_cgroup);
    
    static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
    
    				unsigned long long val)
    
    	u64 memswlimit, memlimit;
    
    	int ret = 0;
    
    	int children = mem_cgroup_count_children(memcg);
    	u64 curusage, oldusage;
    
    
    	/*
    	 * For keeping hierarchical_reclaim simple, how long we should retry
    	 * is depends on callers. We set our retry-count to be function
    	 * of # of children which we should visit in this loop.
    	 */
    	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
    
    	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
    
    	while (retry_count) {
    
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    
    		/*
    		 * Rather than hide all in some function, I do this in
    		 * open coded manner. You see what this really does.
    
    		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
    
    		 */
    		mutex_lock(&set_limit_mutex);
    		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		if (memswlimit < val) {
    			ret = -EINVAL;
    			mutex_unlock(&set_limit_mutex);
    
    
    		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		if (memlimit < val)
    			enlarge = 1;
    
    
    		ret = res_counter_set_limit(&memcg->res, val);
    
    		if (!ret) {
    			if (memswlimit == val)
    				memcg->memsw_is_minimum = true;
    			else
    				memcg->memsw_is_minimum = false;
    		}
    
    		mutex_unlock(&set_limit_mutex);
    
    		if (!ret)
    			break;
    
    
    		mem_cgroup_reclaim(memcg, GFP_KERNEL,
    				   MEM_CGROUP_RECLAIM_SHRINK);
    
    		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
    		/* Usage is reduced ? */
    
    Andrew Morton's avatar
    Andrew Morton committed
    		if (curusage >= oldusage)
    
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    
    static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
    					unsigned long long val)
    
    	u64 memlimit, memswlimit, oldusage, curusage;
    
    	int children = mem_cgroup_count_children(memcg);
    	int ret = -EBUSY;
    
    	int enlarge = 0;
    
    	/* see mem_cgroup_resize_res_limit */
    
    Andrew Morton's avatar
    Andrew Morton committed
    	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
    
    	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
    
    	while (retry_count) {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    		/*
    		 * Rather than hide all in some function, I do this in
    		 * open coded manner. You see what this really does.
    
    		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
    
    		 */
    		mutex_lock(&set_limit_mutex);
    		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		if (memlimit > val) {
    			ret = -EINVAL;
    			mutex_unlock(&set_limit_mutex);
    			break;
    		}
    
    		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		if (memswlimit < val)
    			enlarge = 1;
    
    		ret = res_counter_set_limit(&memcg->memsw, val);
    
    		if (!ret) {
    			if (memlimit == val)
    				memcg->memsw_is_minimum = true;
    			else
    				memcg->memsw_is_minimum = false;
    		}
    
    		mutex_unlock(&set_limit_mutex);
    
    		if (!ret)
    			break;
    
    
    		mem_cgroup_reclaim(memcg, GFP_KERNEL,
    				   MEM_CGROUP_RECLAIM_NOSWAP |
    				   MEM_CGROUP_RECLAIM_SHRINK);
    
    		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
    
    		if (curusage >= oldusage)
    
    			retry_count--;
    
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    
    /**
     * mem_cgroup_force_empty_list - clears LRU of a group
     * @memcg: group to clear
     * @node: NUMA node
     * @zid: zone id
     * @lru: lru to to clear
     *
    
     * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
    
     * reclaim the pages page themselves - pages are moved to the parent (or root)
     * group.
    
    static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
    
    				int node, int zid, enum lru_list lru)
    
    	struct lruvec *lruvec;
    
    	struct page *busy;
    	struct zone *zone;
    
    	zone = &NODE_DATA(node)->node_zones[zid];
    
    	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
    	list = &lruvec->lists[lru];
    
    		struct page_cgroup *pc;
    
    		spin_lock_irqsave(&zone->lru_lock, flags);
    
    		if (list_empty(list)) {
    
    			spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    		page = list_entry(list->prev, struct page, lru);
    		if (busy == page) {
    			list_move(&page->lru, list);
    
    			spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    		spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    		pc = lookup_page_cgroup(page);
    
    		if (mem_cgroup_move_parent(page, pc, memcg)) {
    
    			/* found lock contention or "pc" is obsolete. */
    
    			cond_resched();
    		} else
    			busy = NULL;
    
    	} while (!list_empty(list));
    
     * make mem_cgroup's charge to be 0 if there is no task by moving
     * all the charges and pages to the parent.
    
     *
     * Caller is responsible for holding css reference on the memcg.
    
    static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
    
    		/* This is for making all *used* pages to be on LRU. */
    		lru_add_drain_all();
    
    		drain_all_stock_sync(memcg);
    		mem_cgroup_start_move(memcg);
    
    		for_each_node_state(node, N_MEMORY) {
    
    			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    
    Hugh Dickins's avatar
    Hugh Dickins committed
    				enum lru_list lru;
    				for_each_lru(lru) {
    
    					mem_cgroup_force_empty_list(memcg,
    
    Hugh Dickins's avatar
    Hugh Dickins committed
    							node, zid, lru);
    
    		mem_cgroup_end_move(memcg);
    		memcg_oom_recover(memcg);
    
    		 * Kernel memory may not necessarily be trackable to a specific
    		 * process. So they are not migrated, and therefore we can't
    		 * expect their value to drop to 0 here.
    		 * Having res filled up with kmem only is enough.
    		 *
    
    		 * This is a safety check because mem_cgroup_force_empty_list
    		 * could have raced with mem_cgroup_replace_page_cache callers
    		 * so the lru seemed empty but the page could have been added
    		 * right after the check. RES_USAGE should be safe as we always
    		 * charge before adding to the LRU.
    		 */
    
    		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
    			res_counter_read_u64(&memcg->kmem, RES_USAGE);
    	} while (usage > 0);
    
    /*
     * This mainly exists for tests during the setting of set of use_hierarchy.
     * Since this is the very setting we are changing, the current hierarchy value
     * is meaningless
     */
    static inline bool __memcg_has_children(struct mem_cgroup *memcg)
    {
    
    
    	/* bounce at first found */
    
     * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
     * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
    
     * from mem_cgroup_count_children(), in the sense that we don't really care how
     * many children we have; we only need to know if we have any.  It also counts
     * any memcg without hierarchy as infertile.
     */
    static inline bool memcg_has_children(struct mem_cgroup *memcg)
    {
    	return memcg->use_hierarchy && __memcg_has_children(memcg);
    }
    
    
    /*
     * Reclaims as many pages from the given memcg as possible and moves
     * the rest to the parent.
     *
     * Caller is responsible for holding css reference for memcg.
     */
    static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
    {
    	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
    	struct cgroup *cgrp = memcg->css.cgroup;
    
    	/* returns EBUSY if there is a task or if we come here twice. */
    
    	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
    		return -EBUSY;
    
    
    	/* we call try-to-free pages for make this cgroup empty */
    	lru_add_drain_all();
    
    	/* try to free all pages in this cgroup */
    
    	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
    
    		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
    
    			/* maybe some writeback is necessary */
    
    			congestion_wait(BLK_RW_ASYNC, HZ/10);
    
    	lru_add_drain();
    
    	mem_cgroup_reparent_charges(memcg);
    
    	return 0;
    
    static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
    					unsigned int event)
    
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	if (mem_cgroup_is_root(memcg))
    		return -EINVAL;
    
    	return mem_cgroup_force_empty(memcg);
    
    static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
    				     struct cftype *cft)
    
    	return mem_cgroup_from_css(css)->use_hierarchy;
    
    static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
    				      struct cftype *cft, u64 val)
    
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    Tejun Heo's avatar
    Tejun Heo committed
    	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
    
    	mutex_lock(&memcg_create_mutex);
    
    
    	if (memcg->use_hierarchy == val)
    		goto out;
    
    
    	 * If parent's use_hierarchy is set, we can't make any modifications
    
    	 * in the child subtrees. If it is unset, then the change can
    	 * occur, provided the current cgroup has no children.
    	 *
    	 * For the root cgroup, parent_mem is NULL, we allow value to be
    	 * set if there are no children.
    	 */
    
    	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
    
    				(val == 1 || val == 0)) {
    
    		if (!__memcg_has_children(memcg))
    
    			memcg->use_hierarchy = val;
    
    		else
    			retval = -EBUSY;
    	} else
    		retval = -EINVAL;
    
    	mutex_unlock(&memcg_create_mutex);
    
    static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
    
    					       enum mem_cgroup_stat_index idx)
    
    	struct mem_cgroup *iter;
    
    	/* Per-cpu values can be negative, use a signed accumulator */
    
    	for_each_mem_cgroup_tree(iter, memcg)
    
    		val += mem_cgroup_read_stat(iter, idx);
    
    	if (val < 0) /* race ? */
    		val = 0;
    	return val;
    
    static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
    
    	if (!mem_cgroup_is_root(memcg)) {
    
    			return res_counter_read_u64(&memcg->res, RES_USAGE);
    
    			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
    
    	/*
    	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
    	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
    	 */
    
    	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
    	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
    
    		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
    
    static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
    			       struct cftype *cft, struct file *file,
    			       char __user *buf, size_t nbytes, loff_t *ppos)
    
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	int name, len;
    	enum res_type type;
    
    
    	type = MEMFILE_TYPE(cft->private);
    	name = MEMFILE_ATTR(cft->private);
    
    	switch (type) {
    	case _MEM:
    
    			val = mem_cgroup_usage(memcg, false);
    
    			val = res_counter_read_u64(&memcg->res, name);
    
    		break;
    	case _MEMSWAP:
    
    			val = mem_cgroup_usage(memcg, true);
    
    			val = res_counter_read_u64(&memcg->memsw, name);
    
    	case _KMEM:
    		val = res_counter_read_u64(&memcg->kmem, name);
    		break;
    
    
    	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
    	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
    
    static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
    
    {
    	int ret = -EINVAL;
    #ifdef CONFIG_MEMCG_KMEM
    
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	/*
    	 * For simplicity, we won't allow this to be disabled.  It also can't
    	 * be changed if the cgroup has children already, or if tasks had
    	 * already joined.
    	 *
    	 * If tasks join before we set the limit, a person looking at
    	 * kmem.usage_in_bytes will have no way to determine when it took
    	 * place, which makes the value quite meaningless.
    	 *
    	 * After it first became limited, changes in the value of the limit are
    	 * of course permitted.
    	 */
    
    	mutex_lock(&memcg_create_mutex);
    
    	mutex_lock(&set_limit_mutex);
    
    	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
    
    		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
    
    			ret = -EBUSY;
    			goto out;
    		}
    		ret = res_counter_set_limit(&memcg->kmem, val);
    		VM_BUG_ON(ret);
    
    
    		ret = memcg_update_cache_sizes(memcg);
    		if (ret) {
    
    			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
    
    		static_key_slow_inc(&memcg_kmem_enabled_key);
    		/*
    		 * setting the active bit after the inc will guarantee no one
    		 * starts accounting before all call sites are patched
    		 */
    		memcg_kmem_set_active(memcg);
    
    	} else
    		ret = res_counter_set_limit(&memcg->kmem, val);
    out:
    	mutex_unlock(&set_limit_mutex);
    
    	mutex_unlock(&memcg_create_mutex);
    
    #ifdef CONFIG_MEMCG_KMEM
    
    static int memcg_propagate_kmem(struct mem_cgroup *memcg)
    
    	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
    	if (!parent)
    
    	memcg->kmem_account_flags = parent->kmem_account_flags;
    
    	/*
    	 * When that happen, we need to disable the static branch only on those
    	 * memcgs that enabled it. To achieve this, we would be forced to
    	 * complicate the code by keeping track of which memcgs were the ones
    	 * that actually enabled limits, and which ones got it from its
    	 * parents.
    	 *
    	 * It is a lot simpler just to do static_key_slow_inc() on every child
    	 * that is accounted.
    	 */
    
    	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
    	 * memcg is active already. If the later initialization fails then the
    	 * cgroup core triggers the cleanup so we do not have to do it here.
    
    	 */
    	static_key_slow_inc(&memcg_kmem_enabled_key);
    
    	mutex_lock(&set_limit_mutex);
    
    	memcg_stop_kmem_account();
    
    	ret = memcg_update_cache_sizes(memcg);
    
    	memcg_resume_kmem_account();
    
    	mutex_unlock(&set_limit_mutex);
    out:
    	return ret;
    
    #endif /* CONFIG_MEMCG_KMEM */
    
    /*
     * The user of this function is...
     * RES_LIMIT.
     */
    
    static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
    
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	enum res_type type;
    	int name;
    
    	unsigned long long val;
    	int ret;
    
    
    	type = MEMFILE_TYPE(cft->private);
    	name = MEMFILE_ATTR(cft->private);
    
    	switch (name) {
    
    	case RES_LIMIT:
    
    		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
    			ret = -EINVAL;
    			break;
    		}
    
    		/* This function does all necessary parse...reuse it */
    		ret = res_counter_memparse_write_strategy(buffer, &val);
    
    		if (ret)
    			break;
    		if (type == _MEM)
    
    			ret = mem_cgroup_resize_limit(memcg, val);
    
    		else if (type == _MEMSWAP)
    
    			ret = mem_cgroup_resize_memsw_limit(memcg, val);
    
    		else if (type == _KMEM)
    
    			ret = memcg_update_kmem_limit(css, val);
    
    	case RES_SOFT_LIMIT:
    		ret = res_counter_memparse_write_strategy(buffer, &val);
    		if (ret)
    			break;
    		/*
    		 * For memsw, soft limits are hard to implement in terms
    		 * of semantics, for now, we support soft limits for
    		 * control without swap
    		 */
    		if (type == _MEM)
    			ret = res_counter_set_soft_limit(&memcg->res, val);
    		else
    			ret = -EINVAL;
    		break;
    
    	default:
    		ret = -EINVAL; /* should be BUG() ? */
    		break;
    	}
    	return ret;
    
    static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
    		unsigned long long *mem_limit, unsigned long long *memsw_limit)
    {
    	unsigned long long min_limit, min_memsw_limit, tmp;
    
    	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
    	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    	if (!memcg->use_hierarchy)
    		goto out;
    
    
    Tejun Heo's avatar
    Tejun Heo committed
    	while (css_parent(&memcg->css)) {
    		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
    
    		if (!memcg->use_hierarchy)
    			break;
    		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
    		min_limit = min(min_limit, tmp);
    		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
    		min_memsw_limit = min(min_memsw_limit, tmp);
    	}
    out:
    	*mem_limit = min_limit;
    	*memsw_limit = min_memsw_limit;
    }
    
    
    static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
    
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	int name;
    	enum res_type type;
    
    	type = MEMFILE_TYPE(event);
    	name = MEMFILE_ATTR(event);
    
    	switch (name) {