Skip to content
Snippets Groups Projects
compression.c 26.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2008 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/kernel.h>
    #include <linux/bio.h>
    #include <linux/buffer_head.h>
    #include <linux/file.h>
    #include <linux/fs.h>
    #include <linux/pagemap.h>
    #include <linux/highmem.h>
    #include <linux/time.h>
    #include <linux/init.h>
    #include <linux/string.h>
    #include <linux/backing-dev.h>
    #include <linux/mpage.h>
    #include <linux/swap.h>
    #include <linux/writeback.h>
    #include <linux/bit_spinlock.h>
    
    Chris Mason's avatar
    Chris Mason committed
    #include "compat.h"
    
    #include "ctree.h"
    #include "disk-io.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "volumes.h"
    #include "ordered-data.h"
    #include "compression.h"
    #include "extent_io.h"
    #include "extent_map.h"
    
    struct compressed_bio {
    	/* number of bios pending for this compressed extent */
    	atomic_t pending_bios;
    
    	/* the pages with the compressed data on them */
    	struct page **compressed_pages;
    
    	/* inode that owns this data */
    	struct inode *inode;
    
    	/* starting offset in the inode for our pages */
    	u64 start;
    
    	/* number of bytes in the inode we're working on */
    	unsigned long len;
    
    	/* number of bytes on disk */
    	unsigned long compressed_len;
    
    
    	/* the compression algorithm for this bio */
    	int compress_type;
    
    
    	/* number of compressed pages in the array */
    	unsigned long nr_pages;
    
    	/* IO errors */
    	int errors;
    
    
    	/* for reads, this is the bio we are copying the data into */
    	struct bio *orig_bio;
    
    
    	/*
    	 * the start of a variable length array of checksums only
    	 * used by reads
    	 */
    	u32 sums;
    
    static inline int compressed_bio_size(struct btrfs_root *root,
    				      unsigned long disk_size)
    {
    
    	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
    
    
    	return sizeof(struct compressed_bio) +
    		((disk_size + root->sectorsize - 1) / root->sectorsize) *
    		csum_size;
    }
    
    
    static struct bio *compressed_bio_alloc(struct block_device *bdev,
    					u64 first_byte, gfp_t gfp_flags)
    {
    	int nr_vecs;
    
    	nr_vecs = bio_get_nr_vecs(bdev);
    
    	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
    
    static int check_compressed_csum(struct inode *inode,
    				 struct compressed_bio *cb,
    				 u64 disk_start)
    {
    	int ret;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct page *page;
    	unsigned long i;
    	char *kaddr;
    	u32 csum;
    	u32 *cb_sum = &cb->sums;
    
    
    	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
    
    		return 0;
    
    	for (i = 0; i < cb->nr_pages; i++) {
    		page = cb->compressed_pages[i];
    		csum = ~(u32)0;
    
    
    		kaddr = kmap_atomic(page);
    
    		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
    		btrfs_csum_final(csum, (char *)&csum);
    
    		kunmap_atomic(kaddr);
    
    			printk(KERN_INFO "btrfs csum failed ino %llu "
    
    			       "extent %llu csum %u "
    
    			       "wanted %u mirror %d\n",
    			       (unsigned long long)btrfs_ino(inode),
    
    			       (unsigned long long)disk_start,
    			       csum, *cb_sum, cb->mirror_num);
    			ret = -EIO;
    			goto fail;
    		}
    		cb_sum++;
    
    	}
    	ret = 0;
    fail:
    	return ret;
    }
    
    
    /* when we finish reading compressed pages from the disk, we
     * decompress them and then run the bio end_io routines on the
     * decompressed pages (in the inode address space).
     *
     * This allows the checksumming and other IO error handling routines
     * to work normally
     *
     * The compressed pages are freed here, and it must be run
     * in process context
     */
    static void end_compressed_bio_read(struct bio *bio, int err)
    {
    	struct compressed_bio *cb = bio->bi_private;
    	struct inode *inode;
    	struct page *page;
    	unsigned long index;
    	int ret;
    
    	if (err)
    		cb->errors = 1;
    
    	/* if there are more bios still pending for this compressed
    	 * extent, just exit
    	 */
    	if (!atomic_dec_and_test(&cb->pending_bios))
    		goto out;
    
    
    	inode = cb->inode;
    	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
    	if (ret)
    		goto csum_failed;
    
    
    	/* ok, we're the last bio for this extent, lets start
    	 * the decompression.
    	 */
    
    	ret = btrfs_decompress_biovec(cb->compress_type,
    				      cb->compressed_pages,
    				      cb->start,
    				      cb->orig_bio->bi_io_vec,
    				      cb->orig_bio->bi_vcnt,
    				      cb->compressed_len);
    
    	if (ret)
    		cb->errors = 1;
    
    	/* release the compressed pages */
    	index = 0;
    	for (index = 0; index < cb->nr_pages; index++) {
    		page = cb->compressed_pages[index];
    		page->mapping = NULL;
    		page_cache_release(page);
    	}
    
    	/* do io completion on the original bio */
    
    	if (cb->errors) {
    
    		bio_io_error(cb->orig_bio);
    
    	} else {
    		int bio_index = 0;
    		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
    
    		/*
    		 * we have verified the checksum already, set page
    		 * checked so the end_io handlers know about it
    		 */
    
    		while (bio_index < cb->orig_bio->bi_vcnt) {
    
    			SetPageChecked(bvec->bv_page);
    			bvec++;
    			bio_index++;
    		}
    
    		bio_endio(cb->orig_bio, 0);
    
    
    	/* finally free the cb struct */
    	kfree(cb->compressed_pages);
    	kfree(cb);
    out:
    	bio_put(bio);
    }
    
    /*
     * Clear the writeback bits on all of the file
     * pages for a compressed write
     */
    
    static noinline void end_compressed_writeback(struct inode *inode, u64 start,
    					      unsigned long ram_size)
    
    {
    	unsigned long index = start >> PAGE_CACHE_SHIFT;
    	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
    	struct page *pages[16];
    	unsigned long nr_pages = end_index - index + 1;
    	int i;
    	int ret;
    
    
    	while (nr_pages > 0) {
    
    		ret = find_get_pages_contig(inode->i_mapping, index,
    
    				     min_t(unsigned long,
    				     nr_pages, ARRAY_SIZE(pages)), pages);
    
    		if (ret == 0) {
    			nr_pages -= 1;
    			index += 1;
    			continue;
    		}
    		for (i = 0; i < ret; i++) {
    			end_page_writeback(pages[i]);
    			page_cache_release(pages[i]);
    		}
    		nr_pages -= ret;
    		index += ret;
    	}
    	/* the inode may be gone now */
    }
    
    /*
     * do the cleanup once all the compressed pages hit the disk.
     * This will clear writeback on the file pages and free the compressed
     * pages.
     *
     * This also calls the writeback end hooks for the file pages so that
     * metadata and checksums can be updated in the file.
     */
    static void end_compressed_bio_write(struct bio *bio, int err)
    {
    	struct extent_io_tree *tree;
    	struct compressed_bio *cb = bio->bi_private;
    	struct inode *inode;
    	struct page *page;
    	unsigned long index;
    
    	if (err)
    		cb->errors = 1;
    
    	/* if there are more bios still pending for this compressed
    	 * extent, just exit
    	 */
    	if (!atomic_dec_and_test(&cb->pending_bios))
    		goto out;
    
    	/* ok, we're the last bio for this extent, step one is to
    	 * call back into the FS and do all the end_io operations
    	 */
    	inode = cb->inode;
    	tree = &BTRFS_I(inode)->io_tree;
    
    	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
    
    	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
    					 cb->start,
    					 cb->start + cb->len - 1,
    					 NULL, 1);
    
    	cb->compressed_pages[0]->mapping = NULL;
    
    
    	end_compressed_writeback(inode, cb->start, cb->len);
    	/* note, our inode could be gone now */
    
    	/*
    	 * release the compressed pages, these came from alloc_page and
    	 * are not attached to the inode at all
    	 */
    	index = 0;
    	for (index = 0; index < cb->nr_pages; index++) {
    		page = cb->compressed_pages[index];
    		page->mapping = NULL;
    		page_cache_release(page);
    	}
    
    	/* finally free the cb struct */
    	kfree(cb->compressed_pages);
    	kfree(cb);
    out:
    	bio_put(bio);
    }
    
    /*
     * worker function to build and submit bios for previously compressed pages.
     * The corresponding pages in the inode should be marked for writeback
     * and the compressed pages should have a reference on them for dropping
     * when the IO is complete.
     *
     * This also checksums the file bytes and gets things ready for
     * the end io hooks.
     */
    int btrfs_submit_compressed_write(struct inode *inode, u64 start,
    				 unsigned long len, u64 disk_start,
    				 unsigned long compressed_len,
    				 struct page **compressed_pages,
    				 unsigned long nr_pages)
    {
    	struct bio *bio = NULL;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct compressed_bio *cb;
    	unsigned long bytes_left;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    
    	struct page *page;
    	u64 first_byte = disk_start;
    	struct block_device *bdev;
    	int ret;
    
    	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
    
    
    	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
    
    	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
    
    	if (!cb)
    		return -ENOMEM;
    
    	atomic_set(&cb->pending_bios, 0);
    	cb->errors = 0;
    	cb->inode = inode;
    	cb->start = start;
    	cb->len = len;
    
    	cb->mirror_num = 0;
    
    	cb->compressed_pages = compressed_pages;
    	cb->compressed_len = compressed_len;
    	cb->orig_bio = NULL;
    	cb->nr_pages = nr_pages;
    
    	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
    
    	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
    
    	if(!bio) {
    		kfree(cb);
    		return -ENOMEM;
    	}
    
    	bio->bi_private = cb;
    	bio->bi_end_io = end_compressed_bio_write;
    	atomic_inc(&cb->pending_bios);
    
    	/* create and submit bios for the compressed pages */
    	bytes_left = compressed_len;
    
    	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
    		page = compressed_pages[pg_index];
    
    		page->mapping = inode->i_mapping;
    		if (bio->bi_size)
    
    			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
    
    							   PAGE_CACHE_SIZE,
    							   bio, 0);
    		else
    			ret = 0;
    
    
    		page->mapping = NULL;
    
    		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
    		    PAGE_CACHE_SIZE) {
    			bio_get(bio);
    
    
    			/*
    			 * inc the count before we submit the bio so
    			 * we know the end IO handler won't happen before
    			 * we inc the count.  Otherwise, the cb might get
    			 * freed before we're done setting it up
    			 */
    			atomic_inc(&cb->pending_bios);
    
    			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
    
    			BUG_ON(ret); /* -ENOMEM */
    
    			if (!skip_sum) {
    				ret = btrfs_csum_one_bio(root, inode, bio,
    							 start, 1);
    
    				BUG_ON(ret); /* -ENOMEM */
    
    			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
    
    			BUG_ON(ret); /* -ENOMEM */
    
    
    			bio_put(bio);
    
    			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
    
    			bio->bi_private = cb;
    			bio->bi_end_io = end_compressed_bio_write;
    			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
    		}
    
    		if (bytes_left < PAGE_CACHE_SIZE) {
    			printk("bytes left %lu compress len %lu nr %lu\n",
    			       bytes_left, cb->compressed_len, cb->nr_pages);
    		}
    
    		bytes_left -= PAGE_CACHE_SIZE;
    		first_byte += PAGE_CACHE_SIZE;
    
    	}
    	bio_get(bio);
    
    	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
    
    	BUG_ON(ret); /* -ENOMEM */
    
    	if (!skip_sum) {
    		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
    
    		BUG_ON(ret); /* -ENOMEM */
    
    	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
    
    	BUG_ON(ret); /* -ENOMEM */
    
    static noinline int add_ra_bio_pages(struct inode *inode,
    				     u64 compressed_end,
    				     struct compressed_bio *cb)
    {
    	unsigned long end_index;
    
    	u64 last_offset;
    	u64 isize = i_size_read(inode);
    	int ret;
    	struct page *page;
    	unsigned long nr_pages = 0;
    	struct extent_map *em;
    	struct address_space *mapping = inode->i_mapping;
    	struct extent_map_tree *em_tree;
    	struct extent_io_tree *tree;
    	u64 end;
    	int misses = 0;
    
    	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
    	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
    	em_tree = &BTRFS_I(inode)->extent_tree;
    	tree = &BTRFS_I(inode)->io_tree;
    
    	if (isize == 0)
    		return 0;
    
    	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
    
    
    	while (last_offset < compressed_end) {
    
    		pg_index = last_offset >> PAGE_CACHE_SHIFT;
    
    		if (pg_index > end_index)
    
    		page = radix_tree_lookup(&mapping->page_tree, pg_index);
    
    		rcu_read_unlock();
    		if (page) {
    			misses++;
    			if (misses > 4)
    				break;
    			goto next;
    		}
    
    
    		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
    								~__GFP_FS);
    
    		if (add_to_page_cache_lru(page, mapping, pg_index,
    
    			page_cache_release(page);
    			goto next;
    		}
    
    		end = last_offset + PAGE_CACHE_SIZE - 1;
    		/*
    		 * at this point, we have a locked page in the page cache
    		 * for these bytes in the file.  But, we have to make
    		 * sure they map to this compressed extent on disk.
    		 */
    		set_page_extent_mapped(page);
    
    		lock_extent(tree, last_offset, end);
    
    		read_lock(&em_tree->lock);
    
    		em = lookup_extent_mapping(em_tree, last_offset,
    					   PAGE_CACHE_SIZE);
    
    		read_unlock(&em_tree->lock);
    
    
    		if (!em || last_offset < em->start ||
    		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
    		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
    			free_extent_map(em);
    
    			unlock_extent(tree, last_offset, end);
    
    			unlock_page(page);
    			page_cache_release(page);
    			break;
    		}
    		free_extent_map(em);
    
    		if (page->index == end_index) {
    			char *userpage;
    			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
    
    			if (zero_offset) {
    				int zeros;
    				zeros = PAGE_CACHE_SIZE - zero_offset;
    
    				userpage = kmap_atomic(page);
    
    				memset(userpage + zero_offset, 0, zeros);
    				flush_dcache_page(page);
    
    				kunmap_atomic(userpage);
    
    			}
    		}
    
    		ret = bio_add_page(cb->orig_bio, page,
    				   PAGE_CACHE_SIZE, 0);
    
    		if (ret == PAGE_CACHE_SIZE) {
    			nr_pages++;
    			page_cache_release(page);
    		} else {
    
    			unlock_extent(tree, last_offset, end);
    
    			unlock_page(page);
    			page_cache_release(page);
    			break;
    		}
    next:
    		last_offset += PAGE_CACHE_SIZE;
    	}
    	return 0;
    }
    
    
    /*
     * for a compressed read, the bio we get passed has all the inode pages
     * in it.  We don't actually do IO on those pages but allocate new ones
     * to hold the compressed pages on disk.
     *
     * bio->bi_sector points to the compressed extent on disk
     * bio->bi_io_vec points to all of the inode pages
     * bio->bi_vcnt is a count of pages
     *
     * After the compressed pages are read, we copy the bytes into the
     * bio we were passed and then call the bio end_io calls
     */
    int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
    				 int mirror_num, unsigned long bio_flags)
    {
    	struct extent_io_tree *tree;
    	struct extent_map_tree *em_tree;
    	struct compressed_bio *cb;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
    	unsigned long compressed_len;
    	unsigned long nr_pages;
    
    	struct page *page;
    	struct block_device *bdev;
    	struct bio *comp_bio;
    	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
    
    	u64 em_len;
    	u64 em_start;
    
    	struct extent_map *em;
    
    
    	tree = &BTRFS_I(inode)->io_tree;
    	em_tree = &BTRFS_I(inode)->extent_tree;
    
    	/* we need the actual starting offset of this extent in the file */
    
    	read_lock(&em_tree->lock);
    
    	em = lookup_extent_mapping(em_tree,
    				   page_offset(bio->bi_io_vec->bv_page),
    				   PAGE_CACHE_SIZE);
    
    	read_unlock(&em_tree->lock);
    
    	compressed_len = em->block_len;
    	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
    
    	atomic_set(&cb->pending_bios, 0);
    	cb->errors = 0;
    	cb->inode = inode;
    
    	cb->mirror_num = mirror_num;
    	sums = &cb->sums;
    
    	cb->start = em->orig_start;
    
    	em_len = em->len;
    	em_start = em->start;
    
    	free_extent_map(em);
    
    
    	cb->len = uncompressed_len;
    	cb->compressed_len = compressed_len;
    
    	cb->compress_type = extent_compress_type(bio_flags);
    
    	cb->orig_bio = bio;
    
    	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
    				 PAGE_CACHE_SIZE;
    
    	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
    
    				       GFP_NOFS);
    
    	if (!cb->compressed_pages)
    		goto fail1;
    
    
    	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
    
    
    	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
    		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
    
    							      __GFP_HIGHMEM);
    
    		if (!cb->compressed_pages[pg_index]) {
    			faili = pg_index - 1;
    			ret = -ENOMEM;
    
    	cb->nr_pages = nr_pages;
    
    
    	add_ra_bio_pages(inode, em_start + em_len, cb);
    
    
    	/* include any pages we added in add_ra-bio_pages */
    	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
    	cb->len = uncompressed_len;
    
    
    	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
    
    	comp_bio->bi_private = cb;
    	comp_bio->bi_end_io = end_compressed_bio_read;
    	atomic_inc(&cb->pending_bios);
    
    
    	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
    		page = cb->compressed_pages[pg_index];
    
    		page->mapping = inode->i_mapping;
    
    		page->index = em_start >> PAGE_CACHE_SHIFT;
    
    
    		if (comp_bio->bi_size)
    
    			ret = tree->ops->merge_bio_hook(READ, page, 0,
    
    							PAGE_CACHE_SIZE,
    							comp_bio, 0);
    		else
    			ret = 0;
    
    
    		page->mapping = NULL;
    
    		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
    		    PAGE_CACHE_SIZE) {
    			bio_get(comp_bio);
    
    			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
    
    			BUG_ON(ret); /* -ENOMEM */
    
    			/*
    			 * inc the count before we submit the bio so
    			 * we know the end IO handler won't happen before
    			 * we inc the count.  Otherwise, the cb might get
    			 * freed before we're done setting it up
    			 */
    			atomic_inc(&cb->pending_bios);
    
    
    			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
    
    				ret = btrfs_lookup_bio_sums(root, inode,
    							comp_bio, sums);
    
    				BUG_ON(ret); /* -ENOMEM */
    
    			}
    			sums += (comp_bio->bi_size + root->sectorsize - 1) /
    				root->sectorsize;
    
    			ret = btrfs_map_bio(root, READ, comp_bio,
    					    mirror_num, 0);
    
    			if (ret)
    				bio_endio(comp_bio, ret);
    
    
    			bio_put(comp_bio);
    
    			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
    							GFP_NOFS);
    
    			comp_bio->bi_private = cb;
    			comp_bio->bi_end_io = end_compressed_bio_read;
    
    			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
    
    		}
    		cur_disk_byte += PAGE_CACHE_SIZE;
    	}
    	bio_get(comp_bio);
    
    	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
    
    	BUG_ON(ret); /* -ENOMEM */
    
    	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
    		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
    
    		BUG_ON(ret); /* -ENOMEM */
    
    
    	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
    
    	if (ret)
    		bio_endio(comp_bio, ret);
    
    
    	bio_put(comp_bio);
    	return 0;
    
    	while (faili >= 0) {
    		__free_page(cb->compressed_pages[faili]);
    		faili--;
    	}
    
    
    	kfree(cb->compressed_pages);
    fail1:
    	kfree(cb);
    out:
    	free_extent_map(em);
    	return ret;
    
    
    static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
    static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
    static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
    static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
    static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
    
    struct btrfs_compress_op *btrfs_compress_op[] = {
    	&btrfs_zlib_compress,
    
    	&btrfs_lzo_compress,
    
    void __init btrfs_init_compress(void)
    
    {
    	int i;
    
    	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
    		INIT_LIST_HEAD(&comp_idle_workspace[i]);
    		spin_lock_init(&comp_workspace_lock[i]);
    		atomic_set(&comp_alloc_workspace[i], 0);
    		init_waitqueue_head(&comp_workspace_wait[i]);
    	}
    }
    
    /*
     * this finds an available workspace or allocates a new one
     * ERR_PTR is returned if things go bad.
     */
    static struct list_head *find_workspace(int type)
    {
    	struct list_head *workspace;
    	int cpus = num_online_cpus();
    	int idx = type - 1;
    
    	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
    	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
    	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
    	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
    	int *num_workspace			= &comp_num_workspace[idx];
    again:
    	spin_lock(workspace_lock);
    	if (!list_empty(idle_workspace)) {
    		workspace = idle_workspace->next;
    		list_del(workspace);
    		(*num_workspace)--;
    		spin_unlock(workspace_lock);
    		return workspace;
    
    	}
    	if (atomic_read(alloc_workspace) > cpus) {
    		DEFINE_WAIT(wait);
    
    		spin_unlock(workspace_lock);
    		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
    		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
    			schedule();
    		finish_wait(workspace_wait, &wait);
    		goto again;
    	}
    	atomic_inc(alloc_workspace);
    	spin_unlock(workspace_lock);
    
    	workspace = btrfs_compress_op[idx]->alloc_workspace();
    	if (IS_ERR(workspace)) {
    		atomic_dec(alloc_workspace);
    		wake_up(workspace_wait);
    	}
    	return workspace;
    }
    
    /*
     * put a workspace struct back on the list or free it if we have enough
     * idle ones sitting around
     */
    static void free_workspace(int type, struct list_head *workspace)
    {
    	int idx = type - 1;
    	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
    	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
    	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
    	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
    	int *num_workspace			= &comp_num_workspace[idx];
    
    	spin_lock(workspace_lock);
    	if (*num_workspace < num_online_cpus()) {
    		list_add_tail(workspace, idle_workspace);
    		(*num_workspace)++;
    		spin_unlock(workspace_lock);
    		goto wake;
    	}
    	spin_unlock(workspace_lock);
    
    	btrfs_compress_op[idx]->free_workspace(workspace);
    	atomic_dec(alloc_workspace);
    wake:
    
    	if (waitqueue_active(workspace_wait))
    		wake_up(workspace_wait);
    }
    
    /*
     * cleanup function for module exit
     */
    static void free_workspaces(void)
    {
    	struct list_head *workspace;
    	int i;
    
    	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
    		while (!list_empty(&comp_idle_workspace[i])) {
    			workspace = comp_idle_workspace[i].next;
    			list_del(workspace);
    			btrfs_compress_op[i]->free_workspace(workspace);
    			atomic_dec(&comp_alloc_workspace[i]);
    		}
    	}
    }
    
    /*
     * given an address space and start/len, compress the bytes.
     *
     * pages are allocated to hold the compressed result and stored
     * in 'pages'
     *
     * out_pages is used to return the number of pages allocated.  There
     * may be pages allocated even if we return an error
     *
     * total_in is used to return the number of bytes actually read.  It
     * may be smaller then len if we had to exit early because we
     * ran out of room in the pages array or because we cross the
     * max_out threshold.
     *
     * total_out is used to return the total number of compressed bytes
     *
     * max_out tells us the max number of bytes that we're allowed to
     * stuff into pages
     */
    int btrfs_compress_pages(int type, struct address_space *mapping,
    			 u64 start, unsigned long len,
    			 struct page **pages,
    			 unsigned long nr_dest_pages,
    			 unsigned long *out_pages,
    			 unsigned long *total_in,
    			 unsigned long *total_out,
    			 unsigned long max_out)
    {
    	struct list_head *workspace;
    	int ret;
    
    	workspace = find_workspace(type);
    	if (IS_ERR(workspace))
    		return -1;
    
    	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
    						      start, len, pages,
    						      nr_dest_pages, out_pages,
    						      total_in, total_out,
    						      max_out);
    	free_workspace(type, workspace);
    	return ret;
    }
    
    /*
     * pages_in is an array of pages with compressed data.
     *
     * disk_start is the starting logical offset of this array in the file
     *
     * bvec is a bio_vec of pages from the file that we want to decompress into
     *
     * vcnt is the count of pages in the biovec
     *
     * srclen is the number of bytes in pages_in
     *
     * The basic idea is that we have a bio that was created by readpages.
     * The pages in the bio are for the uncompressed data, and they may not
     * be contiguous.  They all correspond to the range of bytes covered by
     * the compressed extent.
     */
    int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
    			    struct bio_vec *bvec, int vcnt, size_t srclen)
    {
    	struct list_head *workspace;
    	int ret;
    
    	workspace = find_workspace(type);
    	if (IS_ERR(workspace))
    		return -ENOMEM;
    
    	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
    							 disk_start,
    							 bvec, vcnt, srclen);
    	free_workspace(type, workspace);
    	return ret;
    }
    
    /*
     * a less complex decompression routine.  Our compressed data fits in a
     * single page, and we want to read a single page out of it.
     * start_byte tells us the offset into the compressed data we're interested in
     */
    int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
    		     unsigned long start_byte, size_t srclen, size_t destlen)
    {
    	struct list_head *workspace;
    	int ret;
    
    	workspace = find_workspace(type);
    	if (IS_ERR(workspace))
    		return -ENOMEM;
    
    	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
    						  dest_page, start_byte,
    						  srclen, destlen);
    
    	free_workspace(type, workspace);
    	return ret;
    }
    
    
    void btrfs_exit_compress(void)
    
    {
    	free_workspaces();
    }
    
    
    /*
     * Copy uncompressed data from working buffer to pages.
     *
     * buf_start is the byte offset we're of the start of our workspace buffer.
     *
     * total_out is the last byte of the buffer
     */
    int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
    			      unsigned long total_out, u64 disk_start,
    			      struct bio_vec *bvec, int vcnt,
    
    			      unsigned long *pg_offset)
    {
    	unsigned long buf_offset;
    	unsigned long current_buf_start;
    	unsigned long start_byte;
    	unsigned long working_bytes = total_out - buf_start;
    	unsigned long bytes;
    	char *kaddr;
    
    	struct page *page_out = bvec[*pg_index].bv_page;
    
    
    	/*
    	 * start byte is the first byte of the page we're currently
    	 * copying into relative to the start of the compressed data.
    	 */
    	start_byte = page_offset(page_out) - disk_start;
    
    	/* we haven't yet hit data corresponding to this page */
    	if (total_out <= start_byte)
    		return 1;
    
    	/*
    	 * the start of the data we care about is offset into
    	 * the middle of our working buffer
    	 */
    	if (total_out > start_byte && buf_start < start_byte) {
    		buf_offset = start_byte - buf_start;
    		working_bytes -= buf_offset;
    	} else {
    		buf_offset = 0;
    	}
    	current_buf_start = buf_start;