Skip to content
Snippets Groups Projects
delayed-inode.c 51.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • 	return ret;
    }
    
    static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
    				      struct btrfs_path *path,
    				      struct btrfs_root *root,
    				      struct btrfs_delayed_node *node)
    {
    	struct btrfs_delayed_item *curr, *prev;
    	int ret = 0;
    
    do_again:
    	mutex_lock(&node->mutex);
    	curr = __btrfs_first_delayed_deletion_item(node);
    	if (!curr)
    		goto delete_fail;
    
    	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
    	if (ret < 0)
    		goto delete_fail;
    	else if (ret > 0) {
    		/*
    		 * can't find the item which the node points to, so this node
    		 * is invalid, just drop it.
    		 */
    		prev = curr;
    		curr = __btrfs_next_delayed_item(prev);
    		btrfs_release_delayed_item(prev);
    		ret = 0;
    
    		if (curr) {
    			mutex_unlock(&node->mutex);
    
    			goto do_again;
    
    			goto delete_fail;
    	}
    
    	btrfs_batch_delete_items(trans, root, path, curr);
    
    	mutex_unlock(&node->mutex);
    	goto do_again;
    
    delete_fail:
    
    	mutex_unlock(&node->mutex);
    	return ret;
    }
    
    static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
    {
    	struct btrfs_delayed_root *delayed_root;
    
    	if (delayed_node && delayed_node->inode_dirty) {
    		BUG_ON(!delayed_node->root);
    		delayed_node->inode_dirty = 0;
    		delayed_node->count--;
    
    		delayed_root = delayed_node->root->fs_info->delayed_root;
    
    		if (atomic_dec_return(&delayed_root->items) <
    
    		    BTRFS_DELAYED_BACKGROUND &&
    		    waitqueue_active(&delayed_root->wait))
    			wake_up(&delayed_root->wait);
    	}
    }
    
    
    static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
    					struct btrfs_root *root,
    					struct btrfs_path *path,
    					struct btrfs_delayed_node *node)
    
    {
    	struct btrfs_key key;
    	struct btrfs_inode_item *inode_item;
    	struct extent_buffer *leaf;
    	int ret;
    
    	key.objectid = node->inode_id;
    	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
    	key.offset = 0;
    
    	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
    	if (ret > 0) {
    
    		return -ENOENT;
    	} else if (ret < 0) {
    		return ret;
    	}
    
    	btrfs_unlock_up_safe(path, 1);
    	leaf = path->nodes[0];
    	inode_item = btrfs_item_ptr(leaf, path->slots[0],
    				    struct btrfs_inode_item);
    	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
    			    sizeof(struct btrfs_inode_item));
    	btrfs_mark_buffer_dirty(leaf);
    
    
    	btrfs_delayed_inode_release_metadata(root, node);
    	btrfs_release_delayed_inode(node);
    
    	return 0;
    }
    
    
    static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
    					     struct btrfs_root *root,
    					     struct btrfs_path *path,
    					     struct btrfs_delayed_node *node)
    {
    	int ret;
    
    	mutex_lock(&node->mutex);
    	if (!node->inode_dirty) {
    		mutex_unlock(&node->mutex);
    		return 0;
    	}
    
    	ret = __btrfs_update_delayed_inode(trans, root, path, node);
    	mutex_unlock(&node->mutex);
    	return ret;
    }
    
    
    static inline int
    __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
    				   struct btrfs_path *path,
    				   struct btrfs_delayed_node *node)
    {
    	int ret;
    
    	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
    	if (ret)
    		return ret;
    
    	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
    	if (ret)
    		return ret;
    
    	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
    	return ret;
    }
    
    
    /*
     * Called when committing the transaction.
     * Returns 0 on success.
     * Returns < 0 on error and returns with an aborted transaction with any
     * outstanding delayed items cleaned up.
     */
    
    static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
    				     struct btrfs_root *root, int nr)
    
    {
    	struct btrfs_delayed_root *delayed_root;
    	struct btrfs_delayed_node *curr_node, *prev_node;
    	struct btrfs_path *path;
    
    	struct btrfs_block_rsv *block_rsv;
    
    	bool count = (nr > 0);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    	path->leave_spinning = 1;
    
    
    	block_rsv = trans->block_rsv;
    
    	trans->block_rsv = &root->fs_info->delayed_block_rsv;
    
    	delayed_root = btrfs_get_delayed_root(root);
    
    	curr_node = btrfs_first_delayed_node(delayed_root);
    
    	while (curr_node && (!count || (count && nr--))) {
    
    		ret = __btrfs_commit_inode_delayed_items(trans, path,
    							 curr_node);
    
    		if (ret) {
    			btrfs_release_delayed_node(curr_node);
    
    			btrfs_abort_transaction(trans, root, ret);
    
    			break;
    		}
    
    		prev_node = curr_node;
    		curr_node = btrfs_next_delayed_node(curr_node);
    		btrfs_release_delayed_node(prev_node);
    	}
    
    
    	if (curr_node)
    		btrfs_release_delayed_node(curr_node);
    
    	btrfs_free_path(path);
    
    	trans->block_rsv = block_rsv;
    
    int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
    			    struct btrfs_root *root)
    {
    	return __btrfs_run_delayed_items(trans, root, -1);
    }
    
    int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
    			       struct btrfs_root *root, int nr)
    {
    	return __btrfs_run_delayed_items(trans, root, nr);
    }
    
    
    int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
    				     struct inode *inode)
    {
    	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
    
    	struct btrfs_path *path;
    	struct btrfs_block_rsv *block_rsv;
    
    	int ret;
    
    	if (!delayed_node)
    		return 0;
    
    	mutex_lock(&delayed_node->mutex);
    	if (!delayed_node->count) {
    		mutex_unlock(&delayed_node->mutex);
    		btrfs_release_delayed_node(delayed_node);
    		return 0;
    	}
    	mutex_unlock(&delayed_node->mutex);
    
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    	path->leave_spinning = 1;
    
    	block_rsv = trans->block_rsv;
    	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
    
    	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
    
    
    	btrfs_release_delayed_node(delayed_node);
    
    	btrfs_free_path(path);
    	trans->block_rsv = block_rsv;
    
    
    int btrfs_commit_inode_delayed_inode(struct inode *inode)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
    	struct btrfs_path *path;
    	struct btrfs_block_rsv *block_rsv;
    	int ret;
    
    	if (!delayed_node)
    		return 0;
    
    	mutex_lock(&delayed_node->mutex);
    	if (!delayed_node->inode_dirty) {
    		mutex_unlock(&delayed_node->mutex);
    		btrfs_release_delayed_node(delayed_node);
    		return 0;
    	}
    	mutex_unlock(&delayed_node->mutex);
    
    	trans = btrfs_join_transaction(delayed_node->root);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out;
    	}
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		ret = -ENOMEM;
    		goto trans_out;
    	}
    	path->leave_spinning = 1;
    
    	block_rsv = trans->block_rsv;
    	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
    
    	mutex_lock(&delayed_node->mutex);
    	if (delayed_node->inode_dirty)
    		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
    						   path, delayed_node);
    	else
    		ret = 0;
    	mutex_unlock(&delayed_node->mutex);
    
    	btrfs_free_path(path);
    	trans->block_rsv = block_rsv;
    trans_out:
    	btrfs_end_transaction(trans, delayed_node->root);
    	btrfs_btree_balance_dirty(delayed_node->root);
    out:
    	btrfs_release_delayed_node(delayed_node);
    
    	return ret;
    }
    
    
    void btrfs_remove_delayed_node(struct inode *inode)
    {
    	struct btrfs_delayed_node *delayed_node;
    
    	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
    	if (!delayed_node)
    		return;
    
    	BTRFS_I(inode)->delayed_node = NULL;
    	btrfs_release_delayed_node(delayed_node);
    }
    
    struct btrfs_async_delayed_node {
    	struct btrfs_root *root;
    	struct btrfs_delayed_node *delayed_node;
    	struct btrfs_work work;
    };
    
    static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
    {
    	struct btrfs_async_delayed_node *async_node;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_path *path;
    	struct btrfs_delayed_node *delayed_node = NULL;
    	struct btrfs_root *root;
    
    	struct btrfs_block_rsv *block_rsv;
    
    	int need_requeue = 0;
    
    	async_node = container_of(work, struct btrfs_async_delayed_node, work);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		goto out;
    	path->leave_spinning = 1;
    
    	delayed_node = async_node->delayed_node;
    	root = delayed_node->root;
    
    
    Chris Mason's avatar
    Chris Mason committed
    	trans = btrfs_join_transaction(root);
    
    	if (IS_ERR(trans))
    		goto free_path;
    
    
    	block_rsv = trans->block_rsv;
    
    	trans->block_rsv = &root->fs_info->delayed_block_rsv;
    
    	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
    
    	/*
    	 * Maybe new delayed items have been inserted, so we need requeue
    	 * the work. Besides that, we must dequeue the empty delayed nodes
    	 * to avoid the race between delayed items balance and the worker.
    	 * The race like this:
    	 * 	Task1				Worker thread
    	 * 					count == 0, needn't requeue
    	 * 					  also needn't insert the
    	 * 					  delayed node into prepare
    	 * 					  list again.
    	 * 	add lots of delayed items
    	 * 	queue the delayed node
    	 * 	  already in the list,
    	 * 	  and not in the prepare
    	 * 	  list, it means the delayed
    	 * 	  node is being dealt with
    	 * 	  by the worker.
    	 * 	do delayed items balance
    	 * 	  the delayed node is being
    	 * 	  dealt with by the worker
    	 * 	  now, just wait.
    	 * 	  				the worker goto idle.
    	 * Task1 will sleep until the transaction is commited.
    	 */
    	mutex_lock(&delayed_node->mutex);
    	if (delayed_node->count)
    		need_requeue = 1;
    	else
    		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
    					   delayed_node);
    	mutex_unlock(&delayed_node->mutex);
    
    
    	trans->block_rsv = block_rsv;
    
    	btrfs_end_transaction_dmeta(trans, root);
    
    	btrfs_btree_balance_dirty_nodelay(root);
    
    free_path:
    	btrfs_free_path(path);
    out:
    	if (need_requeue)
    		btrfs_requeue_work(&async_node->work);
    	else {
    		btrfs_release_prepared_delayed_node(delayed_node);
    		kfree(async_node);
    	}
    }
    
    static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
    				     struct btrfs_root *root, int all)
    {
    	struct btrfs_async_delayed_node *async_node;
    	struct btrfs_delayed_node *curr;
    	int count = 0;
    
    again:
    	curr = btrfs_first_prepared_delayed_node(delayed_root);
    	if (!curr)
    		return 0;
    
    	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
    	if (!async_node) {
    		btrfs_release_prepared_delayed_node(curr);
    		return -ENOMEM;
    	}
    
    	async_node->root = root;
    	async_node->delayed_node = curr;
    
    	async_node->work.func = btrfs_async_run_delayed_node_done;
    	async_node->work.flags = 0;
    
    	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
    	count++;
    
    	if (all || count < 4)
    		goto again;
    
    	return 0;
    }
    
    
    void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
    {
    	struct btrfs_delayed_root *delayed_root;
    	delayed_root = btrfs_get_delayed_root(root);
    	WARN_ON(btrfs_first_delayed_node(delayed_root));
    }
    
    
    void btrfs_balance_delayed_items(struct btrfs_root *root)
    {
    	struct btrfs_delayed_root *delayed_root;
    
    	delayed_root = btrfs_get_delayed_root(root);
    
    	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
    		return;
    
    	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
    		int ret;
    		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
    		if (ret)
    			return;
    
    		wait_event_interruptible_timeout(
    				delayed_root->wait,
    				(atomic_read(&delayed_root->items) <
    				 BTRFS_DELAYED_BACKGROUND),
    				HZ);
    		return;
    	}
    
    	btrfs_wq_run_delayed_node(delayed_root, root, 0);
    }
    
    
    /* Will return 0 or -ENOMEM */
    
    int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
    				   struct btrfs_root *root, const char *name,
    				   int name_len, struct inode *dir,
    				   struct btrfs_disk_key *disk_key, u8 type,
    				   u64 index)
    {
    	struct btrfs_delayed_node *delayed_node;
    	struct btrfs_delayed_item *delayed_item;
    	struct btrfs_dir_item *dir_item;
    	int ret;
    
    	delayed_node = btrfs_get_or_create_delayed_node(dir);
    	if (IS_ERR(delayed_node))
    		return PTR_ERR(delayed_node);
    
    	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
    	if (!delayed_item) {
    		ret = -ENOMEM;
    		goto release_node;
    	}
    
    
    	delayed_item->key.objectid = btrfs_ino(dir);
    
    	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
    	delayed_item->key.offset = index;
    
    	dir_item = (struct btrfs_dir_item *)delayed_item->data;
    	dir_item->location = *disk_key;
    	dir_item->transid = cpu_to_le64(trans->transid);
    	dir_item->data_len = 0;
    	dir_item->name_len = cpu_to_le16(name_len);
    	dir_item->type = type;
    	memcpy((char *)(dir_item + 1), name, name_len);
    
    
    	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
    	/*
    	 * we have reserved enough space when we start a new transaction,
    	 * so reserving metadata failure is impossible
    	 */
    	BUG_ON(ret);
    
    
    
    	mutex_lock(&delayed_node->mutex);
    	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
    	if (unlikely(ret)) {
    		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
    				"the insertion tree of the delayed node"
    				"(root id: %llu, inode id: %llu, errno: %d)\n",
    				name,
    				(unsigned long long)delayed_node->root->objectid,
    				(unsigned long long)delayed_node->inode_id,
    				ret);
    		BUG();
    	}
    	mutex_unlock(&delayed_node->mutex);
    
    release_node:
    	btrfs_release_delayed_node(delayed_node);
    	return ret;
    }
    
    static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
    					       struct btrfs_delayed_node *node,
    					       struct btrfs_key *key)
    {
    	struct btrfs_delayed_item *item;
    
    	mutex_lock(&node->mutex);
    	item = __btrfs_lookup_delayed_insertion_item(node, key);
    	if (!item) {
    		mutex_unlock(&node->mutex);
    		return 1;
    	}
    
    	btrfs_delayed_item_release_metadata(root, item);
    	btrfs_release_delayed_item(item);
    	mutex_unlock(&node->mutex);
    	return 0;
    }
    
    int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
    				   struct btrfs_root *root, struct inode *dir,
    				   u64 index)
    {
    	struct btrfs_delayed_node *node;
    	struct btrfs_delayed_item *item;
    	struct btrfs_key item_key;
    	int ret;
    
    	node = btrfs_get_or_create_delayed_node(dir);
    	if (IS_ERR(node))
    		return PTR_ERR(node);
    
    
    	item_key.objectid = btrfs_ino(dir);
    
    	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
    	item_key.offset = index;
    
    	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
    	if (!ret)
    		goto end;
    
    	item = btrfs_alloc_delayed_item(0);
    	if (!item) {
    		ret = -ENOMEM;
    		goto end;
    	}
    
    	item->key = item_key;
    
    	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
    	/*
    	 * we have reserved enough space when we start a new transaction,
    	 * so reserving metadata failure is impossible.
    	 */
    	BUG_ON(ret);
    
    	mutex_lock(&node->mutex);
    	ret = __btrfs_add_delayed_deletion_item(node, item);
    	if (unlikely(ret)) {
    		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
    				"into the deletion tree of the delayed node"
    				"(root id: %llu, inode id: %llu, errno: %d)\n",
    				(unsigned long long)index,
    				(unsigned long long)node->root->objectid,
    				(unsigned long long)node->inode_id,
    				ret);
    		BUG();
    	}
    	mutex_unlock(&node->mutex);
    end:
    	btrfs_release_delayed_node(node);
    	return ret;
    }
    
    int btrfs_inode_delayed_dir_index_count(struct inode *inode)
    {
    
    	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
    
    
    	if (!delayed_node)
    		return -ENOENT;
    
    	/*
    	 * Since we have held i_mutex of this directory, it is impossible that
    	 * a new directory index is added into the delayed node and index_cnt
    	 * is updated now. So we needn't lock the delayed node.
    	 */
    
    	if (!delayed_node->index_cnt) {
    		btrfs_release_delayed_node(delayed_node);
    
    		return -EINVAL;
    
    
    	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
    
    	btrfs_release_delayed_node(delayed_node);
    	return 0;
    
    }
    
    void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
    			     struct list_head *del_list)
    {
    	struct btrfs_delayed_node *delayed_node;
    	struct btrfs_delayed_item *item;
    
    	delayed_node = btrfs_get_delayed_node(inode);
    	if (!delayed_node)
    		return;
    
    	mutex_lock(&delayed_node->mutex);
    	item = __btrfs_first_delayed_insertion_item(delayed_node);
    	while (item) {
    		atomic_inc(&item->refs);
    		list_add_tail(&item->readdir_list, ins_list);
    		item = __btrfs_next_delayed_item(item);
    	}
    
    	item = __btrfs_first_delayed_deletion_item(delayed_node);
    	while (item) {
    		atomic_inc(&item->refs);
    		list_add_tail(&item->readdir_list, del_list);
    		item = __btrfs_next_delayed_item(item);
    	}
    	mutex_unlock(&delayed_node->mutex);
    	/*
    	 * This delayed node is still cached in the btrfs inode, so refs
    	 * must be > 1 now, and we needn't check it is going to be freed
    	 * or not.
    	 *
    	 * Besides that, this function is used to read dir, we do not
    	 * insert/delete delayed items in this period. So we also needn't
    	 * requeue or dequeue this delayed node.
    	 */
    	atomic_dec(&delayed_node->refs);
    }
    
    void btrfs_put_delayed_items(struct list_head *ins_list,
    			     struct list_head *del_list)
    {
    	struct btrfs_delayed_item *curr, *next;
    
    	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
    		list_del(&curr->readdir_list);
    		if (atomic_dec_and_test(&curr->refs))
    			kfree(curr);
    	}
    
    	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
    		list_del(&curr->readdir_list);
    		if (atomic_dec_and_test(&curr->refs))
    			kfree(curr);
    	}
    }
    
    int btrfs_should_delete_dir_index(struct list_head *del_list,
    				  u64 index)
    {
    	struct btrfs_delayed_item *curr, *next;
    	int ret;
    
    	if (list_empty(del_list))
    		return 0;
    
    	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
    		if (curr->key.offset > index)
    			break;
    
    		list_del(&curr->readdir_list);
    		ret = (curr->key.offset == index);
    
    		if (atomic_dec_and_test(&curr->refs))
    			kfree(curr);
    
    		if (ret)
    			return 1;
    		else
    			continue;
    	}
    	return 0;
    }
    
    /*
     * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
     *
     */
    int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
    				    filldir_t filldir,
    				    struct list_head *ins_list)
    {
    	struct btrfs_dir_item *di;
    	struct btrfs_delayed_item *curr, *next;
    	struct btrfs_key location;
    	char *name;
    	int name_len;
    	int over = 0;
    	unsigned char d_type;
    
    	if (list_empty(ins_list))
    		return 0;
    
    	/*
    	 * Changing the data of the delayed item is impossible. So
    	 * we needn't lock them. And we have held i_mutex of the
    	 * directory, nobody can delete any directory indexes now.
    	 */
    	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
    		list_del(&curr->readdir_list);
    
    		if (curr->key.offset < filp->f_pos) {
    			if (atomic_dec_and_test(&curr->refs))
    				kfree(curr);
    			continue;
    		}
    
    		filp->f_pos = curr->key.offset;
    
    		di = (struct btrfs_dir_item *)curr->data;
    		name = (char *)(di + 1);
    		name_len = le16_to_cpu(di->name_len);
    
    		d_type = btrfs_filetype_table[di->type];
    		btrfs_disk_key_to_cpu(&location, &di->location);
    
    		over = filldir(dirent, name, name_len, curr->key.offset,
    			       location.objectid, d_type);
    
    		if (atomic_dec_and_test(&curr->refs))
    			kfree(curr);
    
    		if (over)
    			return 1;
    	}
    	return 0;
    }
    
    BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
    			 generation, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
    			 sequence, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
    			 transid, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
    			 nbytes, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
    			 block_group, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
    
    BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
    BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
    
    static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
    				  struct btrfs_inode_item *inode_item,
    				  struct inode *inode)
    {
    
    	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
    	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
    
    	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
    	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
    	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
    	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
    	btrfs_set_stack_inode_generation(inode_item,
    					 BTRFS_I(inode)->generation);
    
    	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
    
    	btrfs_set_stack_inode_transid(inode_item, trans->transid);
    	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
    	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
    
    Chris Mason's avatar
    Chris Mason committed
    	btrfs_set_stack_inode_block_group(inode_item, 0);
    
    
    	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
    				     inode->i_atime.tv_sec);
    	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
    				      inode->i_atime.tv_nsec);
    
    	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
    				     inode->i_mtime.tv_sec);
    	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
    				      inode->i_mtime.tv_nsec);
    
    	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
    				     inode->i_ctime.tv_sec);
    	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
    				      inode->i_ctime.tv_nsec);
    }
    
    
    int btrfs_fill_inode(struct inode *inode, u32 *rdev)
    {
    	struct btrfs_delayed_node *delayed_node;
    	struct btrfs_inode_item *inode_item;
    	struct btrfs_timespec *tspec;
    
    	delayed_node = btrfs_get_delayed_node(inode);
    	if (!delayed_node)
    		return -ENOENT;
    
    	mutex_lock(&delayed_node->mutex);
    	if (!delayed_node->inode_dirty) {
    		mutex_unlock(&delayed_node->mutex);
    		btrfs_release_delayed_node(delayed_node);
    		return -ENOENT;
    	}
    
    	inode_item = &delayed_node->inode_item;
    
    
    	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
    	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
    
    	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
    	inode->i_mode = btrfs_stack_inode_mode(inode_item);
    
    	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
    
    	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
    	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
    
    	inode->i_version = btrfs_stack_inode_sequence(inode_item);
    
    	inode->i_rdev = 0;
    	*rdev = btrfs_stack_inode_rdev(inode_item);
    	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
    
    	tspec = btrfs_inode_atime(inode_item);
    	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
    	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
    
    	tspec = btrfs_inode_mtime(inode_item);
    	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
    	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
    
    	tspec = btrfs_inode_ctime(inode_item);
    	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
    	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
    
    	inode->i_generation = BTRFS_I(inode)->generation;
    	BTRFS_I(inode)->index_cnt = (u64)-1;
    
    	mutex_unlock(&delayed_node->mutex);
    	btrfs_release_delayed_node(delayed_node);
    	return 0;
    }
    
    
    int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
    			       struct btrfs_root *root, struct inode *inode)
    {
    	struct btrfs_delayed_node *delayed_node;
    
    
    	delayed_node = btrfs_get_or_create_delayed_node(inode);
    	if (IS_ERR(delayed_node))
    		return PTR_ERR(delayed_node);
    
    	mutex_lock(&delayed_node->mutex);
    	if (delayed_node->inode_dirty) {
    		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
    		goto release_node;
    	}
    
    
    	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
    						   delayed_node);
    
    	if (ret)
    		goto release_node;
    
    
    	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
    	delayed_node->inode_dirty = 1;
    	delayed_node->count++;
    	atomic_inc(&root->fs_info->delayed_root->items);
    release_node:
    	mutex_unlock(&delayed_node->mutex);
    	btrfs_release_delayed_node(delayed_node);
    	return ret;
    }
    
    static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
    {
    	struct btrfs_root *root = delayed_node->root;
    	struct btrfs_delayed_item *curr_item, *prev_item;
    
    	mutex_lock(&delayed_node->mutex);
    	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
    	while (curr_item) {
    		btrfs_delayed_item_release_metadata(root, curr_item);
    		prev_item = curr_item;
    		curr_item = __btrfs_next_delayed_item(prev_item);
    		btrfs_release_delayed_item(prev_item);
    	}
    
    	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
    	while (curr_item) {
    		btrfs_delayed_item_release_metadata(root, curr_item);
    		prev_item = curr_item;
    		curr_item = __btrfs_next_delayed_item(prev_item);
    		btrfs_release_delayed_item(prev_item);
    	}
    
    	if (delayed_node->inode_dirty) {
    		btrfs_delayed_inode_release_metadata(root, delayed_node);
    		btrfs_release_delayed_inode(delayed_node);
    	}
    	mutex_unlock(&delayed_node->mutex);
    }
    
    void btrfs_kill_delayed_inode_items(struct inode *inode)
    {
    	struct btrfs_delayed_node *delayed_node;
    
    	delayed_node = btrfs_get_delayed_node(inode);
    	if (!delayed_node)
    		return;
    
    	__btrfs_kill_delayed_node(delayed_node);
    	btrfs_release_delayed_node(delayed_node);
    }
    
    void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
    {
    	u64 inode_id = 0;
    	struct btrfs_delayed_node *delayed_nodes[8];
    	int i, n;
    
    	while (1) {
    		spin_lock(&root->inode_lock);
    		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
    					   (void **)delayed_nodes, inode_id,
    					   ARRAY_SIZE(delayed_nodes));
    		if (!n) {
    			spin_unlock(&root->inode_lock);
    			break;
    		}
    
    		inode_id = delayed_nodes[n - 1]->inode_id + 1;
    
    		for (i = 0; i < n; i++)
    			atomic_inc(&delayed_nodes[i]->refs);
    		spin_unlock(&root->inode_lock);
    
    		for (i = 0; i < n; i++) {
    			__btrfs_kill_delayed_node(delayed_nodes[i]);
    			btrfs_release_delayed_node(delayed_nodes[i]);
    		}
    	}
    }
    
    
    void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
    {
    	struct btrfs_delayed_root *delayed_root;
    	struct btrfs_delayed_node *curr_node, *prev_node;
    
    	delayed_root = btrfs_get_delayed_root(root);
    
    	curr_node = btrfs_first_delayed_node(delayed_root);
    	while (curr_node) {
    		__btrfs_kill_delayed_node(curr_node);
    
    		prev_node = curr_node;
    		curr_node = btrfs_next_delayed_node(curr_node);
    		btrfs_release_delayed_node(prev_node);
    	}
    }