Skip to content
Snippets Groups Projects
perf_event.c 15.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • #undef DEBUG
    
    /*
     * ARM performance counter support.
     *
     * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
    
     * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
    
     * This code is based on the sparc64 perf event code, which is in turn based
     * on the x86 code. Callchain code is based on the ARM OProfile backtrace
     * code.
     */
    #define pr_fmt(fmt) "hw perfevents: " fmt
    
    #include <linux/kernel.h>
    
    #include <linux/platform_device.h>
    
    #include <linux/pm_runtime.h>
    
    
    #include <asm/irq_regs.h>
    #include <asm/pmu.h>
    #include <asm/stacktrace.h>
    
    static int
    
    armpmu_map_cache_event(const unsigned (*cache_map)
    				      [PERF_COUNT_HW_CACHE_MAX]
    				      [PERF_COUNT_HW_CACHE_OP_MAX]
    				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
    		       u64 config)
    
    {
    	unsigned int cache_type, cache_op, cache_result, ret;
    
    	cache_type = (config >>  0) & 0xff;
    	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
    		return -EINVAL;
    
    	cache_op = (config >>  8) & 0xff;
    	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
    		return -EINVAL;
    
    	cache_result = (config >> 16) & 0xff;
    	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
    		return -EINVAL;
    
    
    	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
    
    
    	if (ret == CACHE_OP_UNSUPPORTED)
    		return -ENOENT;
    
    	return ret;
    }
    
    
    armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
    
    	int mapping;
    
    	if (config >= PERF_COUNT_HW_MAX)
    		return -ENOENT;
    
    	mapping = (*event_map)[config];
    
    	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
    
    armpmu_map_raw_event(u32 raw_event_mask, u64 config)
    
    	return (int)(config & raw_event_mask);
    }
    
    
    int
    armpmu_map_event(struct perf_event *event,
    		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
    		 const unsigned (*cache_map)
    				[PERF_COUNT_HW_CACHE_MAX]
    				[PERF_COUNT_HW_CACHE_OP_MAX]
    				[PERF_COUNT_HW_CACHE_RESULT_MAX],
    		 u32 raw_event_mask)
    
    {
    	u64 config = event->attr.config;
    
    	switch (event->attr.type) {
    	case PERF_TYPE_HARDWARE:
    
    		return armpmu_map_hw_event(event_map, config);
    
    	case PERF_TYPE_HW_CACHE:
    		return armpmu_map_cache_event(cache_map, config);
    	case PERF_TYPE_RAW:
    		return armpmu_map_raw_event(raw_event_mask, config);
    	}
    
    	return -ENOENT;
    
    int armpmu_event_set_period(struct perf_event *event)
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct hw_perf_event *hwc = &event->hw;
    
    	s64 left = local64_read(&hwc->period_left);
    
    	s64 period = hwc->sample_period;
    	int ret = 0;
    
    
    	/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
    	if (unlikely(period != hwc->last_period))
    		left = period - (hwc->last_period - left);
    
    
    	if (unlikely(left <= -period)) {
    		left = period;
    
    		local64_set(&hwc->period_left, left);
    
    		hwc->last_period = period;
    		ret = 1;
    	}
    
    	if (unlikely(left <= 0)) {
    		left += period;
    
    		local64_set(&hwc->period_left, left);
    
    		hwc->last_period = period;
    		ret = 1;
    	}
    
    	if (left > (s64)armpmu->max_period)
    		left = armpmu->max_period;
    
    
    	local64_set(&hwc->prev_count, (u64)-left);
    
    	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
    
    u64 armpmu_event_update(struct perf_event *event)
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct hw_perf_event *hwc = &event->hw;
    
    	u64 delta, prev_raw_count, new_raw_count;
    
    	prev_raw_count = local64_read(&hwc->prev_count);
    
    	new_raw_count = armpmu->read_counter(event);
    
    	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
    
    			     new_raw_count) != prev_raw_count)
    		goto again;
    
    
    	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
    
    	local64_add(delta, &event->count);
    	local64_sub(delta, &hwc->period_left);
    
    armpmu_read(struct perf_event *event)
    
    armpmu_stop(struct perf_event *event, int flags)
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct hw_perf_event *hwc = &event->hw;
    
    
    	/*
    	 * ARM pmu always has to update the counter, so ignore
    	 * PERF_EF_UPDATE, see comments in armpmu_start().
    	 */
    	if (!(hwc->state & PERF_HES_STOPPED)) {
    
    		armpmu->disable(event);
    		armpmu_event_update(event);
    
    		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
    	}
    
    static void armpmu_start(struct perf_event *event, int flags)
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct hw_perf_event *hwc = &event->hw;
    
    
    	/*
    	 * ARM pmu always has to reprogram the period, so ignore
    	 * PERF_EF_RELOAD, see the comment below.
    	 */
    	if (flags & PERF_EF_RELOAD)
    		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
    
    	hwc->state = 0;
    
    	/*
    	 * Set the period again. Some counters can't be stopped, so when we
    
    	 * were stopped we simply disabled the IRQ source and the counter
    
    	 * may have been left counting. If we don't do this step then we may
    	 * get an interrupt too soon or *way* too late if the overflow has
    	 * happened since disabling.
    	 */
    
    	armpmu_event_set_period(event);
    	armpmu->enable(event);
    
    static void
    armpmu_del(struct perf_event *event, int flags)
    {
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
    
    	struct hw_perf_event *hwc = &event->hw;
    	int idx = hwc->idx;
    
    	armpmu_stop(event, PERF_EF_UPDATE);
    
    	hw_events->events[idx] = NULL;
    	clear_bit(idx, hw_events->used_mask);
    
    
    	perf_event_update_userpage(event);
    }
    
    
    armpmu_add(struct perf_event *event, int flags)
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
    
    	struct hw_perf_event *hwc = &event->hw;
    	int idx;
    	int err = 0;
    
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    	perf_pmu_disable(event->pmu);
    
    	/* If we don't have a space for the counter then finish early. */
    
    	idx = armpmu->get_event_idx(hw_events, event);
    
    	if (idx < 0) {
    		err = idx;
    		goto out;
    	}
    
    	/*
    	 * If there is an event in the counter we are going to use then make
    	 * sure it is disabled.
    	 */
    	event->hw.idx = idx;
    
    	hw_events->events[idx] = event;
    
    	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
    	if (flags & PERF_EF_START)
    		armpmu_start(event, PERF_EF_RELOAD);
    
    
    	/* Propagate our changes to the userspace mapping. */
    	perf_event_update_userpage(event);
    
    out:
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    	perf_pmu_enable(event->pmu);
    
    validate_event(struct pmu_hw_events *hw_events,
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct pmu *leader_pmu = event->group_leader->pmu;
    
    	if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
    		return 1;
    
    	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
    
    	return armpmu->get_event_idx(hw_events, event) >= 0;
    
    }
    
    static int
    validate_group(struct perf_event *event)
    {
    	struct perf_event *sibling, *leader = event->group_leader;
    
    	struct pmu_hw_events fake_pmu;
    
    	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
    
    	/*
    	 * Initialise the fake PMU. We only need to populate the
    	 * used_mask for the purposes of validation.
    	 */
    	memset(fake_used_mask, 0, sizeof(fake_used_mask));
    	fake_pmu.used_mask = fake_used_mask;
    
    
    	if (!validate_event(&fake_pmu, leader))
    
    
    	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
    		if (!validate_event(&fake_pmu, sibling))
    
    	}
    
    	if (!validate_event(&fake_pmu, event))
    
    static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
    
    	struct arm_pmu *armpmu = (struct arm_pmu *) dev;
    
    	struct platform_device *plat_device = armpmu->plat_device;
    	struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
    
    	if (plat && plat->handle_irq)
    		return plat->handle_irq(irq, dev, armpmu->handle_irq);
    	else
    		return armpmu->handle_irq(irq, dev);
    
    armpmu_release_hardware(struct arm_pmu *armpmu)
    
    	pm_runtime_put_sync(&armpmu->plat_device->dev);
    
    armpmu_reserve_hardware(struct arm_pmu *armpmu)
    
    	struct platform_device *pmu_device = armpmu->plat_device;
    
    	pm_runtime_get_sync(&pmu_device->dev);
    
    	err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
    
    	if (err) {
    		armpmu_release_hardware(armpmu);
    		return err;
    
    }
    
    static void
    hw_perf_event_destroy(struct perf_event *event)
    {
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	atomic_t *active_events	 = &armpmu->active_events;
    	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
    
    	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
    
    		armpmu_release_hardware(armpmu);
    
    		mutex_unlock(pmu_reserve_mutex);
    
    static int
    event_requires_mode_exclusion(struct perf_event_attr *attr)
    {
    	return attr->exclude_idle || attr->exclude_user ||
    	       attr->exclude_kernel || attr->exclude_hv;
    }
    
    
    static int
    __hw_perf_event_init(struct perf_event *event)
    {
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	struct hw_perf_event *hwc = &event->hw;
    
    	mapping = armpmu->map_event(event);
    
    
    	if (mapping < 0) {
    		pr_debug("event %x:%llx not supported\n", event->attr.type,
    			 event->attr.config);
    		return mapping;
    	}
    
    
    	/*
    	 * We don't assign an index until we actually place the event onto
    	 * hardware. Use -1 to signify that we haven't decided where to put it
    	 * yet. For SMP systems, each core has it's own PMU so we can't do any
    	 * clever allocation or constraints checking at this point.
    	 */
    	hwc->idx		= -1;
    	hwc->config_base	= 0;
    	hwc->config		= 0;
    	hwc->event_base		= 0;
    
    
    	/*
    	 * Check whether we need to exclude the counter from certain modes.
    	 */
    
    	if ((!armpmu->set_event_filter ||
    	     armpmu->set_event_filter(hwc, &event->attr)) &&
    	     event_requires_mode_exclusion(&event->attr)) {
    
    		pr_debug("ARM performance counters do not support "
    			 "mode exclusion\n");
    
    	 * Store the event encoding into the config_base field.
    
    	hwc->config_base	    |= (unsigned long)mapping;
    
    		/*
    		 * For non-sampling runs, limit the sample_period to half
    		 * of the counter width. That way, the new counter value
    		 * is far less likely to overtake the previous one unless
    		 * you have some serious IRQ latency issues.
    		 */
    		hwc->sample_period  = armpmu->max_period >> 1;
    
    		hwc->last_period    = hwc->sample_period;
    
    		local64_set(&hwc->period_left, hwc->sample_period);
    
    		if (validate_group(event) != 0)
    
    static int armpmu_event_init(struct perf_event *event)
    
    	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    
    	atomic_t *active_events = &armpmu->active_events;
    
    	/* does not support taken branch sampling */
    	if (has_branch_stack(event))
    		return -EOPNOTSUPP;
    
    
    	if (armpmu->map_event(event) == -ENOENT)
    
    		return -ENOENT;
    
    
    	event->destroy = hw_perf_event_destroy;
    
    
    	if (!atomic_inc_not_zero(active_events)) {
    		mutex_lock(&armpmu->reserve_mutex);
    		if (atomic_read(active_events) == 0)
    
    			err = armpmu_reserve_hardware(armpmu);
    
    			atomic_inc(active_events);
    		mutex_unlock(&armpmu->reserve_mutex);
    
    		return err;
    
    
    	err = __hw_perf_event_init(event);
    	if (err)
    		hw_perf_event_destroy(event);
    
    
    	return err;
    
    static void armpmu_enable(struct pmu *pmu)
    
    	struct arm_pmu *armpmu = to_arm_pmu(pmu);
    	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
    
    	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
    
    static void armpmu_disable(struct pmu *pmu)
    
    	struct arm_pmu *armpmu = to_arm_pmu(pmu);
    
    #ifdef CONFIG_PM_RUNTIME
    static int armpmu_runtime_resume(struct device *dev)
    {
    	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
    
    	if (plat && plat->runtime_resume)
    		return plat->runtime_resume(dev);
    
    	return 0;
    }
    
    static int armpmu_runtime_suspend(struct device *dev)
    {
    	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
    
    	if (plat && plat->runtime_suspend)
    		return plat->runtime_suspend(dev);
    
    	return 0;
    }
    #endif
    
    
    const struct dev_pm_ops armpmu_dev_pm_ops = {
    	SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
    };
    
    
    static void armpmu_init(struct arm_pmu *armpmu)
    
    {
    	atomic_set(&armpmu->active_events, 0);
    	mutex_init(&armpmu->reserve_mutex);
    
    
    	armpmu->pmu = (struct pmu) {
    		.pmu_enable	= armpmu_enable,
    		.pmu_disable	= armpmu_disable,
    		.event_init	= armpmu_event_init,
    		.add		= armpmu_add,
    		.del		= armpmu_del,
    		.start		= armpmu_start,
    		.stop		= armpmu_stop,
    		.read		= armpmu_read,
    	};
    }
    
    
    int armpmu_register(struct arm_pmu *armpmu, int type)
    
    {
    	armpmu_init(armpmu);
    
    	pm_runtime_enable(&armpmu->plat_device->dev);
    
    	pr_info("enabled with %s PMU driver, %d counters available\n",
    			armpmu->name, armpmu->num_events);
    
    	return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
    
    /*
     * Callchain handling code.
     */
    
    /*
     * The registers we're interested in are at the end of the variable
     * length saved register structure. The fp points at the end of this
     * structure so the address of this struct is:
     * (struct frame_tail *)(xxx->fp)-1
     *
     * This code has been adapted from the ARM OProfile support.
     */
    struct frame_tail {
    
    	struct frame_tail __user *fp;
    	unsigned long sp;
    	unsigned long lr;
    
    } __attribute__((packed));
    
    /*
     * Get the return address for a single stackframe and return a pointer to the
     * next frame tail.
     */
    
    static struct frame_tail __user *
    user_backtrace(struct frame_tail __user *tail,
    
    	       struct perf_callchain_entry *entry)
    {
    	struct frame_tail buftail;
    
    	/* Also check accessibility of one struct frame_tail beyond */
    	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
    		return NULL;
    	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
    		return NULL;
    
    
    	perf_callchain_store(entry, buftail.lr);
    
    
    	/*
    	 * Frame pointers should strictly progress back up the stack
    	 * (towards higher addresses).
    	 */
    
    	if (tail + 1 >= buftail.fp)
    
    void
    perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
    
    	struct frame_tail __user *tail;
    
    	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
    		/* We don't support guest os callchain now */
    		return;
    	}
    
    	perf_callchain_store(entry, regs->ARM_pc);
    
    	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
    
    	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
    	       tail && !((unsigned long)tail & 0x3))
    
    		tail = user_backtrace(tail, entry);
    }
    
    /*
     * Gets called by walk_stackframe() for every stackframe. This will be called
     * whist unwinding the stackframe and is like a subroutine return so we use
     * the PC.
     */
    static int
    callchain_trace(struct stackframe *fr,
    		void *data)
    {
    	struct perf_callchain_entry *entry = data;
    
    	perf_callchain_store(entry, fr->pc);
    
    void
    perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
    
    	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
    		/* We don't support guest os callchain now */
    		return;
    	}
    
    
    	fr.fp = regs->ARM_fp;
    	fr.sp = regs->ARM_sp;
    	fr.lr = regs->ARM_lr;
    	fr.pc = regs->ARM_pc;
    	walk_stackframe(&fr, callchain_trace, entry);
    }
    
    
    unsigned long perf_instruction_pointer(struct pt_regs *regs)
    {
    	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
    		return perf_guest_cbs->get_guest_ip();
    
    	return instruction_pointer(regs);
    }
    
    unsigned long perf_misc_flags(struct pt_regs *regs)
    {
    	int misc = 0;
    
    	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
    		if (perf_guest_cbs->is_user_mode())
    			misc |= PERF_RECORD_MISC_GUEST_USER;
    		else
    			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
    	} else {
    		if (user_mode(regs))
    			misc |= PERF_RECORD_MISC_USER;
    		else
    			misc |= PERF_RECORD_MISC_KERNEL;
    	}
    
    	return misc;
    }