Skip to content
Snippets Groups Projects
process.c 8.02 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Based on arch/arm/kernel/process.c
     *
     * Original Copyright (C) 1995  Linus Torvalds
     * Copyright (C) 1996-2000 Russell King - Converted to ARM.
     * Copyright (C) 2012 ARM Ltd.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <stdarg.h>
    
    #include <linux/export.h>
    #include <linux/sched.h>
    #include <linux/kernel.h>
    #include <linux/mm.h>
    #include <linux/stddef.h>
    #include <linux/unistd.h>
    #include <linux/user.h>
    #include <linux/delay.h>
    #include <linux/reboot.h>
    #include <linux/interrupt.h>
    #include <linux/kallsyms.h>
    #include <linux/init.h>
    #include <linux/cpu.h>
    #include <linux/elfcore.h>
    #include <linux/pm.h>
    #include <linux/tick.h>
    #include <linux/utsname.h>
    #include <linux/uaccess.h>
    #include <linux/random.h>
    #include <linux/hw_breakpoint.h>
    #include <linux/personality.h>
    #include <linux/notifier.h>
    
    #include <asm/compat.h>
    #include <asm/cacheflush.h>
    #include <asm/processor.h>
    #include <asm/stacktrace.h>
    #include <asm/fpsimd.h>
    
    static void setup_restart(void)
    {
    	/*
    	 * Tell the mm system that we are going to reboot -
    	 * we may need it to insert some 1:1 mappings so that
    	 * soft boot works.
    	 */
    	setup_mm_for_reboot();
    
    	/* Clean and invalidate caches */
    	flush_cache_all();
    
    	/* Turn D-cache off */
    	cpu_cache_off();
    
    	/* Push out any further dirty data, and ensure cache is empty */
    	flush_cache_all();
    }
    
    void soft_restart(unsigned long addr)
    {
    	setup_restart();
    	cpu_reset(addr);
    }
    
    /*
     * Function pointers to optional machine specific functions
     */
    void (*pm_power_off)(void);
    EXPORT_SYMBOL_GPL(pm_power_off);
    
    void (*pm_restart)(const char *cmd);
    EXPORT_SYMBOL_GPL(pm_restart);
    
    
    /*
     * This is our default idle handler.
     */
    static void default_idle(void)
    {
    	/*
    	 * This should do all the clock switching and wait for interrupt
    	 * tricks
    	 */
    	cpu_do_idle();
    	local_irq_enable();
    }
    
    void (*pm_idle)(void) = default_idle;
    EXPORT_SYMBOL_GPL(pm_idle);
    
    /*
     * The idle thread, has rather strange semantics for calling pm_idle,
     * but this is what x86 does and we need to do the same, so that
     * things like cpuidle get called in the same way.  The only difference
     * is that we always respect 'hlt_counter' to prevent low power idle.
     */
    void cpu_idle(void)
    {
    	local_fiq_enable();
    
    	/* endless idle loop with no priority at all */
    	while (1) {
    		tick_nohz_idle_enter();
    		rcu_idle_enter();
    		while (!need_resched()) {
    			/*
    			 * We need to disable interrupts here to ensure
    			 * we don't miss a wakeup call.
    			 */
    			local_irq_disable();
    			if (!need_resched()) {
    				stop_critical_timings();
    				pm_idle();
    				start_critical_timings();
    				/*
    				 * pm_idle functions should always return
    				 * with IRQs enabled.
    				 */
    				WARN_ON(irqs_disabled());
    			} else {
    				local_irq_enable();
    			}
    		}
    		rcu_idle_exit();
    		tick_nohz_idle_exit();
    		schedule_preempt_disabled();
    	}
    }
    
    void machine_shutdown(void)
    {
    #ifdef CONFIG_SMP
    	smp_send_stop();
    #endif
    }
    
    void machine_halt(void)
    {
    	machine_shutdown();
    	while (1);
    }
    
    void machine_power_off(void)
    {
    	machine_shutdown();
    	if (pm_power_off)
    		pm_power_off();
    }
    
    void machine_restart(char *cmd)
    {
    	machine_shutdown();
    
    	/* Disable interrupts first */
    	local_irq_disable();
    	local_fiq_disable();
    
    	/* Now call the architecture specific reboot code. */
    	if (pm_restart)
    		pm_restart(cmd);
    
    	/*
    	 * Whoops - the architecture was unable to reboot.
    	 */
    	printk("Reboot failed -- System halted\n");
    	while (1);
    }
    
    void __show_regs(struct pt_regs *regs)
    {
    	int i;
    
    	printk("CPU: %d    %s  (%s %.*s)\n",
    		raw_smp_processor_id(), print_tainted(),
    		init_utsname()->release,
    		(int)strcspn(init_utsname()->version, " "),
    		init_utsname()->version);
    	print_symbol("PC is at %s\n", instruction_pointer(regs));
    	print_symbol("LR is at %s\n", regs->regs[30]);
    	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
    	       regs->pc, regs->regs[30], regs->pstate);
    	printk("sp : %016llx\n", regs->sp);
    	for (i = 29; i >= 0; i--) {
    		printk("x%-2d: %016llx ", i, regs->regs[i]);
    		if (i % 2 == 0)
    			printk("\n");
    	}
    	printk("\n");
    }
    
    void show_regs(struct pt_regs * regs)
    {
    	printk("\n");
    	printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
    	__show_regs(regs);
    }
    
    /*
     * Free current thread data structures etc..
     */
    void exit_thread(void)
    {
    }
    
    void flush_thread(void)
    {
    	fpsimd_flush_thread();
    	flush_ptrace_hw_breakpoint(current);
    }
    
    void release_thread(struct task_struct *dead_task)
    {
    }
    
    int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
    {
    	fpsimd_save_state(&current->thread.fpsimd_state);
    	*dst = *src;
    	return 0;
    }
    
    asmlinkage void ret_from_fork(void) asm("ret_from_fork");
    
    int copy_thread(unsigned long clone_flags, unsigned long stack_start,
    		unsigned long stk_sz, struct task_struct *p,
    		struct pt_regs *regs)
    {
    	struct pt_regs *childregs = task_pt_regs(p);
    	unsigned long tls = p->thread.tp_value;
    
    
    	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
    
    	if (likely(regs)) {
    		*childregs = *regs;
    		childregs->regs[0] = 0;
    		if (is_compat_thread(task_thread_info(p))) {
    
    			if (stack_start)
    				childregs->compat_sp = stack_start;
    
    		} else {
    			/*
    			 * Read the current TLS pointer from tpidr_el0 as it may be
    			 * out-of-sync with the saved value.
    			 */
    			asm("mrs %0, tpidr_el0" : "=r" (tls));
    
    			if (stack_start) {
    				/* 16-byte aligned stack mandatory on AArch64 */
    				if (stack_start & 15)
    					return -EINVAL;
    				childregs->sp = stack_start;
    			}
    
    		 * If a TLS pointer was passed to clone (4th argument), use it
    		 * for the new thread.
    
    		if (clone_flags & CLONE_SETTLS)
    			tls = regs->regs[3];
    	} else {
    		memset(childregs, 0, sizeof(struct pt_regs));
    		childregs->pstate = PSR_MODE_EL1h;
    		p->thread.cpu_context.x19 = stack_start;
    		p->thread.cpu_context.x20 = stk_sz;
    
    	}
    	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
    
    	p->thread.cpu_context.sp = (unsigned long)childregs;
    
    	p->thread.tp_value = tls;
    
    	ptrace_hw_copy_thread(p);
    
    	return 0;
    }
    
    static void tls_thread_switch(struct task_struct *next)
    {
    	unsigned long tpidr, tpidrro;
    
    	if (!is_compat_task()) {
    		asm("mrs %0, tpidr_el0" : "=r" (tpidr));
    		current->thread.tp_value = tpidr;
    	}
    
    	if (is_compat_thread(task_thread_info(next))) {
    		tpidr = 0;
    		tpidrro = next->thread.tp_value;
    	} else {
    		tpidr = next->thread.tp_value;
    		tpidrro = 0;
    	}
    
    	asm(
    	"	msr	tpidr_el0, %0\n"
    	"	msr	tpidrro_el0, %1"
    	: : "r" (tpidr), "r" (tpidrro));
    }
    
    /*
     * Thread switching.
     */
    struct task_struct *__switch_to(struct task_struct *prev,
    				struct task_struct *next)
    {
    	struct task_struct *last;
    
    	fpsimd_thread_switch(next);
    	tls_thread_switch(next);
    	hw_breakpoint_thread_switch(next);
    
    	/* the actual thread switch */
    	last = cpu_switch_to(prev, next);
    
    	return last;
    }
    
    unsigned long get_wchan(struct task_struct *p)
    {
    	struct stackframe frame;
    	int count = 0;
    	if (!p || p == current || p->state == TASK_RUNNING)
    		return 0;
    
    	frame.fp = thread_saved_fp(p);
    	frame.sp = thread_saved_sp(p);
    	frame.pc = thread_saved_pc(p);
    	do {
    		int ret = unwind_frame(&frame);
    		if (ret < 0)
    			return 0;
    		if (!in_sched_functions(frame.pc))
    			return frame.pc;
    	} while (count ++ < 16);
    	return 0;
    }
    
    unsigned long arch_align_stack(unsigned long sp)
    {
    	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
    		sp -= get_random_int() & ~PAGE_MASK;
    	return sp & ~0xf;
    }
    
    static unsigned long randomize_base(unsigned long base)
    {
    	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
    	return randomize_range(base, range_end, 0) ? : base;
    }
    
    unsigned long arch_randomize_brk(struct mm_struct *mm)
    {
    	return randomize_base(mm->brk);
    }
    
    unsigned long randomize_et_dyn(unsigned long base)
    {
    	return randomize_base(base);
    }