Newer
Older
* arch/sparc64/mm/init.c
*
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/kprobes.h>
#include <linux/cache.h>
#include <linux/sort.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <asm/head.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/iommu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/spitfire.h>
#include <asm/sections.h>
#include <asm/tsb.h>
#include <asm/hypervisor.h>
#include <asm/prom.h>
#include <asm/mdesc.h>
#include <asm/cpudata.h>
unsigned long kern_linear_pte_xor[4] __read_mostly;
/* A bitmap, two bits for every 256MB of physical memory. These two
* bits determine what page size we use for kernel linear
* translations. They form an index into kern_linear_pte_xor[]. The
* value in the indexed slot is XOR'd with the TLB miss virtual
* address to form the resulting TTE. The mapping is:
*
* 0 ==> 4MB
* 1 ==> 256MB
* 2 ==> 2GB
* 3 ==> 16GB
*
* All sun4v chips support 256MB pages. Only SPARC-T4 and later
* support 2GB pages, and hopefully future cpus will support the 16GB
* pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
* if these larger page sizes are not supported by the cpu.
*
* It would be nice to determine this from the machine description
* 'cpu' properties, but we need to have this table setup before the
* MDESC is initialized.
*/
unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
#ifndef CONFIG_DEBUG_PAGEALLOC
/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
* Space is allocated for this right after the trap table in
* arch/sparc64/kernel/head.S
*/
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
static unsigned long cpu_pgsz_mask;
#define MAX_BANKS 32
static struct linux_prom64_registers pavail[MAX_BANKS];
static int pavail_ents;
static int cmp_p64(const void *a, const void *b)
{
const struct linux_prom64_registers *x = a, *y = b;
if (x->phys_addr > y->phys_addr)
return 1;
if (x->phys_addr < y->phys_addr)
return -1;
return 0;
}
static void __init read_obp_memory(const char *property,
struct linux_prom64_registers *regs,
int *num_ents)
{
phandle node = prom_finddevice("/memory");
int prop_size = prom_getproplen(node, property);
int ents, ret, i;
ents = prop_size / sizeof(struct linux_prom64_registers);
if (ents > MAX_BANKS) {
prom_printf("The machine has more %s property entries than "
"this kernel can support (%d).\n",
property, MAX_BANKS);
prom_halt();
}
ret = prom_getproperty(node, property, (char *) regs, prop_size);
if (ret == -1) {
prom_printf("Couldn't get %s property from /memory.\n",
property);
prom_halt();
}
/* Sanitize what we got from the firmware, by page aligning
* everything.
*/
for (i = 0; i < ents; i++) {
unsigned long base, size;
base = regs[i].phys_addr;
size = regs[i].reg_size;
size &= PAGE_MASK;
if (base & ~PAGE_MASK) {
unsigned long new_base = PAGE_ALIGN(base);
size -= new_base - base;
if ((long) size < 0L)
size = 0UL;
base = new_base;
}
if (size == 0UL) {
/* If it is empty, simply get rid of it.
* This simplifies the logic of the other
* functions that process these arrays.
*/
memmove(®s[i], ®s[i + 1],
(ents - i - 1) * sizeof(regs[0]));
regs[i].phys_addr = base;
regs[i].reg_size = size;
}
*num_ents = ents;
sort(regs, ents, sizeof(struct linux_prom64_registers),
cmp_p64, NULL);
}
unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
sizeof(unsigned long)];
EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
/* Kernel physical address base and size in bytes. */
unsigned long kern_base __read_mostly;
unsigned long kern_size __read_mostly;
/* Initial ramdisk setup */
extern unsigned long sparc_ramdisk_image64;
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
struct page *mem_map_zero __read_mostly;
EXPORT_SYMBOL(mem_map_zero);
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
unsigned long sparc64_kern_pri_context __read_mostly;
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
unsigned long sparc64_kern_sec_context __read_mostly;
int num_kernel_image_mappings;
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_t dcpage_flushes = ATOMIC_INIT(0);
#ifdef CONFIG_SMP
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
#endif
#endif
inline void flush_dcache_page_impl(struct page *page)
BUG_ON(tlb_type == hypervisor);
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_inc(&dcpage_flushes);
#endif
#ifdef DCACHE_ALIASING_POSSIBLE
__flush_dcache_page(page_address(page),
((tlb_type == spitfire) &&
page_mapping(page) != NULL));
#else
if (page_mapping(page) != NULL &&
tlb_type == spitfire)
__flush_icache_page(__pa(page_address(page)));
#endif
}
#define PG_dcache_dirty PG_arch_1
#define PG_dcache_cpu_shift 32UL
#define PG_dcache_cpu_mask \
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
static inline void set_dcache_dirty(struct page *page, int this_cpu)
unsigned long non_cpu_bits;
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
__asm__ __volatile__("1:\n\t"
"ldx [%2], %%g7\n\t"
"and %%g7, %1, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"bne,pn %%xcc, 1b\n\t"
: /* no outputs */
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
: "g1", "g7");
}
static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
{
unsigned long mask = (1UL << PG_dcache_dirty);
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
"1:\n\t"
"ldx [%2], %%g7\n\t"
"srlx %%g7, %4, %%g1\n\t"
"and %%g1, %3, %%g1\n\t"
"cmp %%g1, %0\n\t"
"bne,pn %%icc, 2f\n\t"
" andn %%g7, %1, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"bne,pn %%xcc, 1b\n\t"
"2:"
: /* no outputs */
: "r" (cpu), "r" (mask), "r" (&page->flags),
"i" (PG_dcache_cpu_mask),
"i" (PG_dcache_cpu_shift)
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
{
unsigned long tsb_addr = (unsigned long) ent;
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
tsb_addr = __pa(tsb_addr);
__tsb_insert(tsb_addr, tag, pte);
}
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
static void flush_dcache(unsigned long pfn)
unsigned long pg_flags;
pg_flags = page->flags;
if (pg_flags & (1UL << PG_dcache_dirty)) {
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
PG_dcache_cpu_mask);
int this_cpu = get_cpu();
/* This is just to optimize away some function calls
* in the SMP case.
*/
if (cpu == this_cpu)
flush_dcache_page_impl(page);
else
smp_flush_dcache_page_impl(page, cpu);
clear_dcache_dirty_cpu(page, cpu);
put_cpu();
}
/* mm->context.lock must be held */
static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
unsigned long tsb_hash_shift, unsigned long address,
unsigned long tte)
{
struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
unsigned long tag;
if (unlikely(!tsb))
return;
tsb += ((address >> tsb_hash_shift) &
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
tag = (address >> 22UL);
tsb_insert(tsb, tag, tte);
}
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
static inline bool is_hugetlb_pte(pte_t pte)
{
if ((tlb_type == hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
(tlb_type != hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
return true;
return false;
}
#endif
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
pte_t pte = *ptep;
if (tlb_type != hypervisor) {
unsigned long pfn = pte_pfn(pte);
if (pfn_valid(pfn))
flush_dcache(pfn);
}
mm = vma->vm_mm;
spin_lock_irqsave(&mm->context.lock, flags);
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
__update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
address, pte_val(pte));
else
__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
address, pte_val(pte));
spin_unlock_irqrestore(&mm->context.lock, flags);
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
int this_cpu;
if (tlb_type == hypervisor)
return;
/* Do not bother with the expensive D-cache flush if it
* is merely the zero page. The 'bigcore' testcase in GDB
* causes this case to run millions of times.
*/
if (page == ZERO_PAGE(0))
return;
this_cpu = get_cpu();
mapping = page_mapping(page);
int dirty = test_bit(PG_dcache_dirty, &page->flags);
int dirty_cpu = dcache_dirty_cpu(page);
if (dirty_cpu == this_cpu)
goto out;
smp_flush_dcache_page_impl(page, dirty_cpu);
}
set_dcache_dirty(page, this_cpu);
} else {
/* We could delay the flush for the !page_mapping
* case too. But that case is for exec env/arg
* pages and those are %99 certainly going to get
* faulted into the tlb (and thus flushed) anyways.
*/
flush_dcache_page_impl(page);
}
out:
put_cpu();
}
EXPORT_SYMBOL(flush_dcache_page);
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
if (tlb_type == spitfire) {
unsigned long kaddr;
/* This code only runs on Spitfire cpus so this is
* why we can assume _PAGE_PADDR_4U.
*/
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
unsigned long paddr, mask = _PAGE_PADDR_4U;
if (kaddr >= PAGE_OFFSET)
paddr = kaddr & mask;
else {
pgd_t *pgdp = pgd_offset_k(kaddr);
pud_t *pudp = pud_offset(pgdp, kaddr);
pmd_t *pmdp = pmd_offset(pudp, kaddr);
pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
paddr = pte_val(*ptep) & mask;
}
__flush_icache_page(paddr);
}
EXPORT_SYMBOL(flush_icache_range);
static const char *pgsz_strings[] = {
"8K", "64K", "512K", "4MB", "32MB",
"256MB", "2GB", "16GB",
};
int i, printed;
if (tlb_type == cheetah)
seq_printf(m, "MMU Type\t: Cheetah\n");
else if (tlb_type == cheetah_plus)
seq_printf(m, "MMU Type\t: Cheetah+\n");
else if (tlb_type == spitfire)
seq_printf(m, "MMU Type\t: Spitfire\n");
else if (tlb_type == hypervisor)
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
seq_printf(m, "MMU PGSZs\t: ");
printed = 0;
for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
if (cpu_pgsz_mask & (1UL << i)) {
seq_printf(m, "%s%s",
printed ? "," : "", pgsz_strings[i]);
printed++;
}
}
seq_putc(m, '\n');
#ifdef CONFIG_DEBUG_DCFLUSH
seq_printf(m, "DCPageFlushes\t: %d\n",
atomic_read(&dcpage_flushes));
#ifdef CONFIG_SMP
seq_printf(m, "DCPageFlushesXC\t: %d\n",
atomic_read(&dcpage_flushes_xcall));
#endif /* CONFIG_SMP */
#endif /* CONFIG_DEBUG_DCFLUSH */
}
struct linux_prom_translation prom_trans[512] __read_mostly;
unsigned int prom_trans_ents __read_mostly;
/* The obp translations are saved based on 8k pagesize, since obp can
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
* HI_OBP_ADDRESS range are handled in ktlb.S.
static inline int in_obp_range(unsigned long vaddr)
{
return (vaddr >= LOW_OBP_ADDRESS &&
vaddr < HI_OBP_ADDRESS);
}
static int cmp_ptrans(const void *a, const void *b)
{
const struct linux_prom_translation *x = a, *y = b;
if (x->virt > y->virt)
return 1;
if (x->virt < y->virt)
return -1;
return 0;
}
/* Read OBP translations property into 'prom_trans[]'. */
static void __init read_obp_translations(void)
{
int n, node, ents, first, last, i;
node = prom_finddevice("/virtual-memory");
n = prom_getproplen(node, "translations");
if (unlikely(n == 0 || n == -1)) {
prom_printf("prom_mappings: Couldn't get size.\n");
if (unlikely(n > sizeof(prom_trans))) {
prom_printf("prom_mappings: Size %d is too big.\n", n);
if ((n = prom_getproperty(node, "translations",
(char *)&prom_trans[0],
sizeof(prom_trans))) == -1) {
prom_printf("prom_mappings: Couldn't get property.\n");
n = n / sizeof(struct linux_prom_translation);
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
ents = n;
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
cmp_ptrans, NULL);
/* Now kick out all the non-OBP entries. */
for (i = 0; i < ents; i++) {
if (in_obp_range(prom_trans[i].virt))
break;
}
first = i;
for (; i < ents; i++) {
if (!in_obp_range(prom_trans[i].virt))
break;
}
last = i;
for (i = 0; i < (last - first); i++) {
struct linux_prom_translation *src = &prom_trans[i + first];
struct linux_prom_translation *dest = &prom_trans[i];
*dest = *src;
}
for (; i < ents; i++) {
struct linux_prom_translation *dest = &prom_trans[i];
dest->virt = dest->size = dest->data = 0x0UL;
}
prom_trans_ents = last - first;
if (tlb_type == spitfire) {
/* Clear diag TTE bits. */
for (i = 0; i < prom_trans_ents; i++)
prom_trans[i].data &= ~0x0003fe0000000000UL;
}
/* Force execute bit on. */
for (i = 0; i < prom_trans_ents; i++)
prom_trans[i].data |= (tlb_type == hypervisor ?
_PAGE_EXEC_4V : _PAGE_EXEC_4U);
}
static void __init hypervisor_tlb_lock(unsigned long vaddr,
unsigned long pte,
unsigned long mmu)
{
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
if (ret != 0) {
prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
prom_halt();
}
static unsigned long kern_large_tte(unsigned long paddr);
static void __init remap_kernel(void)
{
unsigned long phys_page, tte_vaddr, tte_data;
int i, tlb_ent = sparc64_highest_locked_tlbent();
phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
tte_data = kern_large_tte(phys_page);
/* Now lock us into the TLBs via Hypervisor or OBP. */
if (tlb_type == hypervisor) {
for (i = 0; i < num_kernel_image_mappings; i++) {
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
tte_vaddr += 0x400000;
tte_data += 0x400000;
for (i = 0; i < num_kernel_image_mappings; i++) {
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
tte_vaddr += 0x400000;
tte_data += 0x400000;
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
if (tlb_type == cheetah_plus) {
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
CTX_CHEETAH_PLUS_NUC);
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
}
}
static void __init inherit_prom_mappings(void)
/* Now fixup OBP's idea about where we really are mapped. */
printk("Remapping the kernel... ");
remap_kernel();
printk("done.\n");
}
void prom_world(int enter)
{
if (!enter)
set_fs(get_fs());
__asm__ __volatile__("flushw");
}
void __flush_dcache_range(unsigned long start, unsigned long end)
{
unsigned long va;
if (tlb_type == spitfire) {
int n = 0;
for (va = start; va < end; va += 32) {
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
if (++n >= 512)
break;
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
start = __pa(start);
end = __pa(end);
for (va = start; va < end; va += 32)
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (va),
"i" (ASI_DCACHE_INVALIDATE));
}
}
EXPORT_SYMBOL(__flush_dcache_range);
/* get_new_mmu_context() uses "cache + 1". */
DEFINE_SPINLOCK(ctx_alloc_lock);
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
/* Caller does TLB context flushing on local CPU if necessary.
* The caller also ensures that CTX_VALID(mm->context) is false.
*
* We must be careful about boundary cases so that we never
* let the user have CTX 0 (nucleus) or we ever use a CTX
* version of zero (and thus NO_CONTEXT would not be caught
* by version mis-match tests in mmu_context.h).
*
* Always invoked with interrupts disabled.
*/
void get_new_mmu_context(struct mm_struct *mm)
{
unsigned long ctx, new_ctx;
unsigned long orig_pgsz_bits;
int new_version;
spin_lock_irqsave(&ctx_alloc_lock, flags);
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
new_version = 0;
if (new_ctx >= (1 << CTX_NR_BITS)) {
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
if (new_ctx >= ctx) {
int i;
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
CTX_FIRST_VERSION;
if (new_ctx == 1)
new_ctx = CTX_FIRST_VERSION;
/* Don't call memset, for 16 entries that's just
* plain silly...
*/
mmu_context_bmap[0] = 3;
mmu_context_bmap[1] = 0;
mmu_context_bmap[2] = 0;
mmu_context_bmap[3] = 0;
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
mmu_context_bmap[i + 0] = 0;
mmu_context_bmap[i + 1] = 0;
mmu_context_bmap[i + 2] = 0;
mmu_context_bmap[i + 3] = 0;
}
new_version = 1;
goto out;
}
}
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
out:
tlb_context_cache = new_ctx;
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
if (unlikely(new_version))
smp_new_mmu_context_version();
static int numa_enabled = 1;
static int numa_debug;
static int __init early_numa(char *p)
if (!p)
return 0;
if (strstr(p, "off"))
numa_enabled = 0;
if (strstr(p, "debug"))
numa_debug = 1;
early_param("numa", early_numa);
#define numadbg(f, a...) \
do { if (numa_debug) \
printk(KERN_INFO f, ## a); \
} while (0)
static void __init find_ramdisk(unsigned long phys_base)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
unsigned long ramdisk_image;
/* Older versions of the bootloader only supported a
* 32-bit physical address for the ramdisk image
* location, stored at sparc_ramdisk_image. Newer
* SILO versions set sparc_ramdisk_image to zero and
* provide a full 64-bit physical address at
* sparc_ramdisk_image64.
*/
ramdisk_image = sparc_ramdisk_image;
if (!ramdisk_image)
ramdisk_image = sparc_ramdisk_image64;
/* Another bootloader quirk. The bootloader normalizes
* the physical address to KERNBASE, so we have to
* factor that back out and add in the lowest valid
* physical page address to get the true physical address.
*/
ramdisk_image -= KERNBASE;
ramdisk_image += phys_base;
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
ramdisk_image, sparc_ramdisk_size);
initrd_start = ramdisk_image;
initrd_end = ramdisk_image + sparc_ramdisk_size;
memblock_reserve(initrd_start, sparc_ramdisk_size);
initrd_start += PAGE_OFFSET;
initrd_end += PAGE_OFFSET;
}
#endif
}
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
struct node_mem_mask {
unsigned long mask;
unsigned long val;
};
static struct node_mem_mask node_masks[MAX_NUMNODES];
static int num_node_masks;
int numa_cpu_lookup_table[NR_CPUS];
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct mdesc_mblock {
u64 base;
u64 size;
u64 offset; /* RA-to-PA */
};
static struct mdesc_mblock *mblocks;
static int num_mblocks;
static unsigned long ra_to_pa(unsigned long addr)
{
int i;
for (i = 0; i < num_mblocks; i++) {
struct mdesc_mblock *m = &mblocks[i];
if (addr >= m->base &&
addr < (m->base + m->size)) {
addr += m->offset;
break;
}
}
return addr;
}
static int find_node(unsigned long addr)
{
int i;
addr = ra_to_pa(addr);
for (i = 0; i < num_node_masks; i++) {
struct node_mem_mask *p = &node_masks[i];
if ((addr & p->mask) == p->val)
return i;
}
return -1;
}
static u64 memblock_nid_range(u64 start, u64 end, int *nid)
{
*nid = find_node(start);
start += PAGE_SIZE;
while (start < end) {
int n = find_node(start);
if (n != *nid)
break;
start += PAGE_SIZE;
}
if (start > end)
start = end;
return start;
}
#endif
/* This must be invoked after performing all of the necessary
* memblock_set_node() calls for 'nid'. We need to be able to get
* correct data from get_pfn_range_for_nid().
static void __init allocate_node_data(int nid)
{
struct pglist_data *p;
unsigned long start_pfn, end_pfn;
unsigned long paddr;

Benjamin Herrenschmidt
committed
paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
if (!paddr) {
prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
prom_halt();
}
NODE_DATA(nid) = __va(paddr);
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
#endif
p = NODE_DATA(nid);
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
p->node_start_pfn = start_pfn;
p->node_spanned_pages = end_pfn - start_pfn;
}
static void init_node_masks_nonnuma(void)
numadbg("Initializing tables for non-numa.\n");
node_masks[0].mask = node_masks[0].val = 0;
num_node_masks = 1;
for (i = 0; i < NR_CPUS; i++)
numa_cpu_lookup_table[i] = 0;
cpumask_setall(&numa_cpumask_lookup_table[0]);
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
}
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(node_data);
struct mdesc_mlgroup {
u64 node;
u64 latency;
u64 match;
u64 mask;
};
static struct mdesc_mlgroup *mlgroups;
static int num_mlgroups;
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
u32 cfg_handle)
{
u64 arc;
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
const u64 *val;
val = mdesc_get_property(md, target,
"cfg-handle", NULL);
if (val && *val == cfg_handle)
return 0;
}
return -ENODEV;
}
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
u32 cfg_handle)
{
u64 arc, candidate, best_latency = ~(u64)0;
candidate = MDESC_NODE_NULL;
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
const char *name = mdesc_node_name(md, target);
const u64 *val;
if (strcmp(name, "pio-latency-group"))
continue;
val = mdesc_get_property(md, target, "latency", NULL);
if (!val)
continue;
if (*val < best_latency) {
candidate = target;
best_latency = *val;
}
}
if (candidate == MDESC_NODE_NULL)
return -ENODEV;
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
}
int of_node_to_nid(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
struct mdesc_handle *md;
u32 cfg_handle;
int count, nid;
u64 grp;
/* This is the right thing to do on currently supported
* SUN4U NUMA platforms as well, as the PCI controller does
* not sit behind any particular memory controller.
*/
if (!mlgroups)
return -1;
regs = of_get_property(dp, "reg", NULL);
if (!regs)
return -1;
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
md = mdesc_grab();
count = 0;
nid = -1;
mdesc_for_each_node_by_name(md, grp, "group") {
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
nid = count;
break;
}
count++;
}
mdesc_release(md);