Newer
Older
/*
* Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
*
* Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
* Interactivity improvements by Mike Galbraith
* (C) 2007 Mike Galbraith <efault@gmx.de>
*
* Various enhancements by Dmitry Adamushko.
* (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
*
* Group scheduling enhancements by Srivatsa Vaddagiri
* Copyright IBM Corporation, 2007
* Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
*
* Scaled math optimizations by Thomas Gleixner
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
*
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
* Targeted preemption latency for CPU-bound tasks:
* (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length
* and have no persistent notion like in traditional, time-slice
* based scheduling concepts.
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches (cs) field)
unsigned int sysctl_sched_latency = 20000000ULL;
* Minimal preemption granularity for CPU-bound tasks:
* (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
unsigned int sysctl_sched_min_granularity = 4000000ULL;
* is kept at sysctl_sched_latency / sysctl_sched_min_granularity
*/
static unsigned int sched_nr_latency = 5;
/*
* After fork, child runs first. (default) If set to 0 then
* parent will (try to) run first.
const_debug unsigned int sysctl_sched_child_runs_first = 1;
/*
* sys_sched_yield() compat mode
*
* This option switches the agressive yield implementation of the
* old scheduler back on.
*/
unsigned int __read_mostly sysctl_sched_compat_yield;
/*
* SCHED_OTHER wake-up granularity.
* (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
*
* This option delays the preemption effects of decoupled workloads
* and reduces their over-scheduling. Synchronous workloads will still
* have immediate wakeup/sleep latencies.
*/
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
/**************************************************************
* CFS operations on generic schedulable entities:
*/
static inline struct task_struct *task_of(struct sched_entity *se)
{
return container_of(se, struct task_struct, se);
}
#ifdef CONFIG_FAIR_GROUP_SCHED
/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se) (!se->my_q)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
for (; se; se = se->parent)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
return p->se.cfs_rq;
}
/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
return se->cfs_rq;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
return grp->my_q;
}
/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
* another cpu ('this_cpu')
*/
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
return cfs_rq->tg->cfs_rq[this_cpu];
}
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
if (se->cfs_rq == pse->cfs_rq)
return 1;
return 0;
}
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
return se->parent;
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return container_of(cfs_rq, struct rq, cfs);
}
#define entity_is_task(se) 1
#define for_each_sched_entity(se) \
for (; se; se = NULL)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
struct task_struct *p = task_of(se);
struct rq *rq = task_rq(p);
return &rq->cfs;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
return NULL;
}
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
return &cpu_rq(this_cpu)->cfs;
}
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
return 1;
}
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
return NULL;
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
/**************************************************************
* Scheduling class tree data structure manipulation methods:
*/
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
s64 delta = (s64)(vruntime - min_vruntime);
if (delta > 0)
min_vruntime = vruntime;
return min_vruntime;
}
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - min_vruntime);
if (delta < 0)
min_vruntime = vruntime;
return min_vruntime;
}
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)

Dmitry Adamushko
committed
return se->vruntime - cfs_rq->min_vruntime;
/*
* Enqueue an entity into the rb-tree:
*/
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
struct rb_node *parent = NULL;
struct sched_entity *entry;
s64 key = entity_key(cfs_rq, se);
int leftmost = 1;
/*
* Find the right place in the rbtree:
*/
while (*link) {
parent = *link;
entry = rb_entry(parent, struct sched_entity, run_node);
/*
* We dont care about collisions. Nodes with
* the same key stay together.
*/
if (key < entity_key(cfs_rq, entry)) {
link = &parent->rb_left;
} else {
link = &parent->rb_right;
leftmost = 0;
}
}
/*
* Maintain a cache of leftmost tree entries (it is frequently
* used):
*/
/*
* maintain cfs_rq->min_vruntime to be a monotonic increasing
* value tracking the leftmost vruntime in the tree.
*/
cfs_rq->min_vruntime =
max_vruntime(cfs_rq->min_vruntime, se->vruntime);
}
rb_link_node(&se->run_node, parent, link);
rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
if (cfs_rq->rb_leftmost == &se->run_node) {
struct rb_node *next_node;
struct sched_entity *next;
next_node = rb_next(&se->run_node);
cfs_rq->rb_leftmost = next_node;
if (next_node) {
next = rb_entry(next_node,
struct sched_entity, run_node);
cfs_rq->min_vruntime =
max_vruntime(cfs_rq->min_vruntime,
next->vruntime);
}
}
if (cfs_rq->next == se)
cfs_rq->next = NULL;
rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}
static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
return cfs_rq->rb_leftmost;
}
static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
if (!last)
return NULL;
return rb_entry(last, struct sched_entity, run_node);
/**************************************************************
* Scheduling class statistics methods:
*/
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
struct file *filp, void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
if (ret || !write)
return ret;
sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
sysctl_sched_min_granularity);
return 0;
}
#endif
/*
* The idea is to set a period in which each task runs once.
*
* When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
* this period because otherwise the slices get too small.
*
* p = (nr <= nl) ? l : l*nr/nl
*/
static u64 __sched_period(unsigned long nr_running)
{
u64 period = sysctl_sched_latency;
unsigned long nr_latency = sched_nr_latency;
if (unlikely(nr_running > nr_latency)) {
period = sysctl_sched_min_granularity;
period *= nr_running;
}
return period;
}
/*
* We calculate the wall-time slice from the period by taking a part
* proportional to the weight.
*
* s = p*w/rw
*/
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
u64 slice = __sched_period(cfs_rq->nr_running);
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
slice *= se->load.weight;
do_div(slice, cfs_rq->load.weight);
}
return slice;
* We calculate the vruntime slice of a to be inserted task
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
unsigned long nr_running = cfs_rq->nr_running;
unsigned long weight;
u64 vslice;
if (!se->on_rq)
nr_running++;
vslice = __sched_period(nr_running);
weight = cfs_rq->load.weight;
if (!se->on_rq)
weight += se->load.weight;
vslice *= NICE_0_LOAD;
do_div(vslice, weight);
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static inline void
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
unsigned long delta_exec)
unsigned long delta_exec_weighted;
schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
curr->sum_exec_runtime += delta_exec;
schedstat_add(cfs_rq, exec_clock, delta_exec);
delta_exec_weighted = delta_exec;
if (unlikely(curr->load.weight != NICE_0_LOAD)) {
delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
&curr->load);
}
static void update_curr(struct cfs_rq *cfs_rq)
struct sched_entity *curr = cfs_rq->curr;
unsigned long delta_exec;
if (unlikely(!curr))
return;
/*
* Get the amount of time the current task was running
* since the last time we changed load (this cannot
* overflow on 32 bits):
*/
delta_exec = (unsigned long)(now - curr->exec_start);
__update_curr(cfs_rq, curr, delta_exec);
curr->exec_start = now;
if (entity_is_task(curr)) {
struct task_struct *curtask = task_of(curr);
cpuacct_charge(curtask, delta_exec);
}
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
}
/*
* Task is being enqueued - update stats:
*/
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* Are we enqueueing a waiting task? (for current tasks
* a dequeue/enqueue event is a NOP)
*/
update_stats_wait_start(cfs_rq, se);
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
schedstat_set(se->wait_max, max(se->wait_max,
rq_of(cfs_rq)->clock - se->wait_start));
schedstat_set(se->wait_count, se->wait_count + 1);
schedstat_set(se->wait_sum, se->wait_sum +
rq_of(cfs_rq)->clock - se->wait_start);
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* Mark the end of the wait period if dequeueing a
* waiting task:
*/
update_stats_wait_end(cfs_rq, se);
}
/*
* We are picking a new current task - update its stats:
*/
static inline void
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* We are starting a new run period:
*/
se->exec_start = rq_of(cfs_rq)->clock;
}
/**************************************************
* Scheduling class queueing methods:
*/

Dmitry Adamushko
committed
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_add(&cfs_rq->load, se->load.weight);
cfs_rq->nr_running++;
se->on_rq = 1;
list_add(&se->group_node, &cfs_rq->tasks);

Dmitry Adamushko
committed
}
static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_sub(&cfs_rq->load, se->load.weight);
cfs_rq->nr_running--;
se->on_rq = 0;
list_del_init(&se->group_node);

Dmitry Adamushko
committed
}
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHEDSTATS
if (se->sleep_start) {
u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
if ((s64)delta < 0)
delta = 0;
if (unlikely(delta > se->sleep_max))
se->sleep_max = delta;
se->sleep_start = 0;
se->sum_sleep_runtime += delta;
account_scheduler_latency(tsk, delta >> 10, 1);
u64 delta = rq_of(cfs_rq)->clock - se->block_start;
if ((s64)delta < 0)
delta = 0;
if (unlikely(delta > se->block_max))
se->block_max = delta;
se->block_start = 0;
se->sum_sleep_runtime += delta;
/*
* Blocking time is in units of nanosecs, so shift by 20 to
* get a milliseconds-range estimation of the amount of
* time that the task spent sleeping:
*/
if (unlikely(prof_on == SLEEP_PROFILING)) {
profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
delta >> 20);
}
account_scheduler_latency(tsk, delta >> 10, 0);
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
s64 d = se->vruntime - cfs_rq->min_vruntime;
if (d < 0)
d = -d;
if (d > 3*sysctl_sched_latency)
schedstat_inc(cfs_rq, nr_spread_over);
#endif
}
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
if (first_fair(cfs_rq)) {
vruntime = min_vruntime(cfs_rq->min_vruntime,
__pick_next_entity(cfs_rq)->vruntime);
} else
vruntime = cfs_rq->min_vruntime;
/*
* The 'current' period is already promised to the current tasks,
* however the extra weight of the new task will slow them down a
* little, place the new task so that it fits in the slot that
* stays open at the end.
*/
vruntime += sched_vslice_add(cfs_rq, se);
/* sleeps upto a single latency don't count. */
if (sched_feat(NEW_FAIR_SLEEPERS))
vruntime -= sysctl_sched_latency;
/* ensure we never gain time by being placed backwards. */
vruntime = max_vruntime(se->vruntime, vruntime);
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)

Dmitry Adamushko
committed
* Update run-time statistics of the 'current'.
update_curr(cfs_rq);
enqueue_sleeper(cfs_rq, se);
update_stats_enqueue(cfs_rq, se);
if (se != cfs_rq->curr)
__enqueue_entity(cfs_rq, se);
static void update_avg(u64 *avg, u64 sample)
{
s64 diff = sample - *avg;
*avg += diff >> 3;
}
static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if (!se->last_wakeup)
return;
update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
se->last_wakeup = 0;
}
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)

Dmitry Adamushko
committed
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
update_stats_dequeue(cfs_rq, se);
if (entity_is_task(se)) {
struct task_struct *tsk = task_of(se);
if (tsk->state & TASK_INTERRUPTIBLE)
se->sleep_start = rq_of(cfs_rq)->clock;
if (tsk->state & TASK_UNINTERRUPTIBLE)
se->block_start = rq_of(cfs_rq)->clock;
if (se != cfs_rq->curr)

Dmitry Adamushko
committed
__dequeue_entity(cfs_rq, se);
account_entity_dequeue(cfs_rq, se);
}
/*
* Preempt the current task with a newly woken task if needed:
*/
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
unsigned long ideal_runtime, delta_exec;
ideal_runtime = sched_slice(cfs_rq, curr);
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
resched_task(rq_of(cfs_rq)->curr);
}
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
/* 'current' is not kept within the tree. */
if (se->on_rq) {
/*
* Any task has to be enqueued before it get to execute on
* a CPU. So account for the time it spent waiting on the
* runqueue.
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
}
update_stats_curr_start(cfs_rq, se);
#ifdef CONFIG_SCHEDSTATS
/*
* Track our maximum slice length, if the CPU's load is at
* least twice that of our own weight (i.e. dont track it
* when there are only lesser-weight tasks around):
*/
if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
se->slice_max = max(se->slice_max,
se->sum_exec_runtime - se->prev_sum_exec_runtime);
}
#endif
se->prev_sum_exec_runtime = se->sum_exec_runtime;
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if (!cfs_rq->next)
return se;
if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
return se;
return cfs_rq->next;
}
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
if (first_fair(cfs_rq)) {
se = __pick_next_entity(cfs_rq);
se = pick_next(cfs_rq, se);
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
{
/*
* If still on the runqueue then deactivate_task()
* was not called and update_curr() has to be done:
*/
if (prev->on_rq)
update_curr(cfs_rq);

Dmitry Adamushko
committed
if (prev->on_rq) {
update_stats_wait_start(cfs_rq, prev);

Dmitry Adamushko
committed
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
}
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)

Dmitry Adamushko
committed
* Update run-time statistics of the 'current'.

Dmitry Adamushko
committed
update_curr(cfs_rq);
#ifdef CONFIG_SCHED_HRTICK
/*
* queued ticks are scheduled to match the slice, so don't bother
* validating it and just reschedule.
*/
if (queued) {
resched_task(rq_of(cfs_rq)->curr);
return;
}
/*
* don't let the period tick interfere with the hrtick preemption
*/
if (!sched_feat(DOUBLE_TICK) &&
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
return;
#endif
if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
}
/**************************************************
* CFS operations on tasks:
*/
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
int requeue = rq->curr == p;
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
WARN_ON(task_rq(p) != rq);
if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
u64 slice = sched_slice(cfs_rq, se);
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
s64 delta = slice - ran;
if (delta < 0) {
if (rq->curr == p)
resched_task(p);
return;
}
/*
* Don't schedule slices shorter than 10000ns, that just
* doesn't make sense. Rely on vruntime for fairness.
*/
if (!requeue)
delta = max(10000LL, delta);
hrtick_start(rq, delta, requeue);
}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
* then put the task into the rbtree:
*/
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
struct sched_entity *se = &p->se;
enqueue_entity(cfs_rq, se, wakeup);
}
/*
* The dequeue_task method is called before nr_running is
* decreased. We remove the task from the rbtree and
* update the fair scheduling stats:
*/
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
struct sched_entity *se = &p->se;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
dequeue_entity(cfs_rq, se, sleep);
/* Don't dequeue parent if it has other entities besides us */
* sched_yield() support is very simple - we dequeue and enqueue.
*
* If compat_yield is turned on then we requeue to the end of the tree.
static void yield_task_fair(struct rq *rq)
struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *rightmost, *se = &curr->se;
* Are we the only task in the tree?
*/
if (unlikely(cfs_rq->nr_running == 1))
return;
if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
update_rq_clock(rq);

Dmitry Adamushko
committed
* Update run-time statistics of the 'current'.
return;
}
/*
* Find the rightmost entry in the rbtree:
/*
* Already in the rightmost position?
*/
if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
return;
/*
* Minimally necessary key value to be last in the tree:
* Upon rescheduling, sched_class::put_prev_task() will place
* 'current' within the tree based on its new key value.

Dmitry Adamushko
committed
se->vruntime = rightmost->vruntime + 1;
/*
* wake_idle() will wake a task on an idle cpu if task->cpu is
* not idle and an idle cpu is available. The span of cpus to
* search starts with cpus closest then further out as needed,
* so we always favor a closer, idle cpu.
*
* Returns the CPU we should wake onto.
*/
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
cpumask_t tmp;
struct sched_domain *sd;
int i;
/*
* If it is idle, then it is the best cpu to run this task.
*
* This cpu is also the best, if it has more than one task already.
* Siblings must be also busy(in most cases) as they didn't already
* pickup the extra load from this cpu and hence we need not check
* sibling runqueue info. This will avoid the checks and cache miss
* penalities associated with that.
*/
if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
return cpu;
for_each_domain(cpu, sd) {
if ((sd->flags & SD_WAKE_IDLE)
|| ((sd->flags & SD_WAKE_IDLE_FAR)
&& !task_hot(p, task_rq(p)->clock, sd))) {
cpus_and(tmp, sd->span, p->cpus_allowed);
for_each_cpu_mask(i, tmp) {
if (idle_cpu(i)) {
if (i != task_cpu(p)) {
schedstat_inc(p,
se.nr_wakeups_idle);
}
return i;
}
}
} else {
break;
}
}
return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
return cpu;
}
#endif
#ifdef CONFIG_SMP
static const struct sched_class fair_sched_class;
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
struct task_struct *p, int prev_cpu, int this_cpu, int sync,
int idx, unsigned long load, unsigned long this_load,
unsigned int imbalance)
{
unsigned long tl = this_load;
unsigned long tl_per_task;