Skip to content
Snippets Groups Projects
memcontrol.c 129 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* memcontrol.c - Memory Controller
     *
     * Copyright IBM Corporation, 2007
     * Author Balbir Singh <balbir@linux.vnet.ibm.com>
     *
    
     * Copyright 2007 OpenVZ SWsoft Inc
     * Author: Pavel Emelianov <xemul@openvz.org>
     *
    
     * Memory thresholds
     * Copyright (C) 2009 Nokia Corporation
     * Author: Kirill A. Shutemov
     *
    
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     */
    
    #include <linux/res_counter.h>
    #include <linux/memcontrol.h>
    #include <linux/cgroup.h>
    
    #include <linux/mm.h>
    
    #include <linux/hugetlb.h>
    
    #include <linux/pagemap.h>
    
    #include <linux/page-flags.h>
    
    #include <linux/backing-dev.h>
    
    #include <linux/bit_spinlock.h>
    #include <linux/rcupdate.h>
    
    #include <linux/limits.h>
    
    #include <linux/mutex.h>
    
    #include <linux/rbtree.h>
    
    #include <linux/swap.h>
    
    #include <linux/swapops.h>
    
    #include <linux/spinlock.h>
    
    #include <linux/eventfd.h>
    #include <linux/sort.h>
    
    #include <linux/fs.h>
    
    #include <linux/seq_file.h>
    
    #include <linux/vmalloc.h>
    
    #include <linux/mm_inline.h>
    
    #include <linux/page_cgroup.h>
    
    #include <linux/cpu.h>
    
    #include "internal.h"
    
    #include <trace/events/vmscan.h>
    
    
    struct cgroup_subsys mem_cgroup_subsys __read_mostly;
    #define MEM_CGROUP_RECLAIM_RETRIES	5
    
    struct mem_cgroup *root_mem_cgroup __read_mostly;
    
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
    
    /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
    
    int do_swap_account __read_mostly;
    
    
    /* for remember boot option*/
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
    static int really_do_swap_account __initdata = 1;
    #else
    static int really_do_swap_account __initdata = 0;
    #endif
    
    
    #else
    #define do_swap_account		(0)
    #endif
    
    
    /*
     * Per memcg event counter is incremented at every pagein/pageout. This counter
     * is used for trigger some periodic events. This is straightforward and better
     * than using jiffies etc. to handle periodic memcg event.
     *
     * These values will be used as !((event) & ((1 <<(thresh)) - 1))
     */
    #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
    #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
    
    /*
     * Statistics for memory cgroup.
     */
    enum mem_cgroup_stat_index {
    	/*
    	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
    	 */
    	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
    
    	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
    
    	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
    
    	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
    	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
    
    	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
    
    	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
    	/* incremented at every  pagein/pageout */
    	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
    
    	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
    
    
    	MEM_CGROUP_STAT_NSTATS,
    };
    
    struct mem_cgroup_stat_cpu {
    	s64 count[MEM_CGROUP_STAT_NSTATS];
    };
    
    
    /*
     * per-zone information in memory controller.
     */
    struct mem_cgroup_per_zone {
    
    	struct list_head	lists[NR_LRU_LISTS];
    	unsigned long		count[NR_LRU_LISTS];
    
    
    	struct zone_reclaim_stat reclaim_stat;
    
    	struct rb_node		tree_node;	/* RB tree node */
    	unsigned long long	usage_in_excess;/* Set to the value by which */
    						/* the soft limit is exceeded*/
    	bool			on_tree;
    
    	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
    						/* use container_of	   */
    
    };
    /* Macro for accessing counter */
    #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
    
    struct mem_cgroup_per_node {
    	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
    };
    
    struct mem_cgroup_lru_info {
    	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
    };
    
    
    /*
     * Cgroups above their limits are maintained in a RB-Tree, independent of
     * their hierarchy representation
     */
    
    struct mem_cgroup_tree_per_zone {
    	struct rb_root rb_root;
    	spinlock_t lock;
    };
    
    struct mem_cgroup_tree_per_node {
    	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
    };
    
    struct mem_cgroup_tree {
    	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
    };
    
    static struct mem_cgroup_tree soft_limit_tree __read_mostly;
    
    
    struct mem_cgroup_threshold {
    	struct eventfd_ctx *eventfd;
    	u64 threshold;
    };
    
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    /* For threshold */
    
    struct mem_cgroup_threshold_ary {
    	/* An array index points to threshold just below usage. */
    
    	int current_threshold;
    
    	/* Size of entries[] */
    	unsigned int size;
    	/* Array of thresholds */
    	struct mem_cgroup_threshold entries[0];
    };
    
    
    struct mem_cgroup_thresholds {
    	/* Primary thresholds array */
    	struct mem_cgroup_threshold_ary *primary;
    	/*
    	 * Spare threshold array.
    	 * This is needed to make mem_cgroup_unregister_event() "never fail".
    	 * It must be able to store at least primary->size - 1 entries.
    	 */
    	struct mem_cgroup_threshold_ary *spare;
    };
    
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    /* for OOM */
    struct mem_cgroup_eventfd_list {
    	struct list_head list;
    	struct eventfd_ctx *eventfd;
    };
    
    
    static void mem_cgroup_threshold(struct mem_cgroup *mem);
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
    
    /*
     * The memory controller data structure. The memory controller controls both
     * page cache and RSS per cgroup. We would eventually like to provide
     * statistics based on the statistics developed by Rik Van Riel for clock-pro,
     * to help the administrator determine what knobs to tune.
     *
     * TODO: Add a water mark for the memory controller. Reclaim will begin when
    
     * we hit the water mark. May be even add a low water mark, such that
     * no reclaim occurs from a cgroup at it's low water mark, this is
     * a feature that will be implemented much later in the future.
    
     */
    struct mem_cgroup {
    	struct cgroup_subsys_state css;
    	/*
    	 * the counter to account for memory usage
    	 */
    	struct res_counter res;
    
    	/*
    	 * the counter to account for mem+swap usage.
    	 */
    	struct res_counter memsw;
    
    	/*
    	 * Per cgroup active and inactive list, similar to the
    	 * per zone LRU lists.
    	 */
    
    	/*
    	  protect against reclaim related member.
    	*/
    	spinlock_t reclaim_param_lock;
    
    
    	 * While reclaiming in a hierarchy, we cache the last child we
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	 * reclaimed from.
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	int last_scanned_child;
    
    	/*
    	 * Should the accounting and control be hierarchical, per subtree?
    	 */
    	bool use_hierarchy;
    
    	atomic_t	oom_lock;
    
    	atomic_t	refcnt;
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    	unsigned int	swappiness;
    
    	/* OOM-Killer disable */
    	int		oom_kill_disable;
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    
    
    	/* set when res.limit == memsw.limit */
    	bool		memsw_is_minimum;
    
    
    	/* protect arrays of thresholds */
    	struct mutex thresholds_lock;
    
    	/* thresholds for memory usage. RCU-protected */
    
    	struct mem_cgroup_thresholds thresholds;
    
    	/* thresholds for mem+swap usage. RCU-protected */
    
    	struct mem_cgroup_thresholds memsw_thresholds;
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	/* For oom notifier event fd */
    	struct list_head oom_notify;
    
    
    	/*
    	 * Should we move charges of a task when a task is moved into this
    	 * mem_cgroup ? And what type of charges should we move ?
    	 */
    	unsigned long 	move_charge_at_immigrate;
    
    	struct mem_cgroup_stat_cpu *stat;
    
    	/*
    	 * used when a cpu is offlined or other synchronizations
    	 * See mem_cgroup_read_stat().
    	 */
    	struct mem_cgroup_stat_cpu nocpu_base;
    	spinlock_t pcp_counter_lock;
    
    /* Stuffs for move charges at task migration. */
    /*
     * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
     * left-shifted bitmap of these types.
     */
    enum move_type {
    
    	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
    
    	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
    
    /* "mc" and its members are protected by cgroup_mutex */
    static struct move_charge_struct {
    
    	spinlock_t	  lock; /* for from, to */
    
    	struct mem_cgroup *from;
    	struct mem_cgroup *to;
    	unsigned long precharge;
    
    	unsigned long moved_charge;
    
    	unsigned long moved_swap;
    
    	struct task_struct *moving_task;	/* a task moving charges */
    	wait_queue_head_t waitq;		/* a waitq for other context */
    } mc = {
    
    	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
    
    	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
    };
    
    static bool move_anon(void)
    {
    	return test_bit(MOVE_CHARGE_TYPE_ANON,
    					&mc.to->move_charge_at_immigrate);
    }
    
    
    static bool move_file(void)
    {
    	return test_bit(MOVE_CHARGE_TYPE_FILE,
    					&mc.to->move_charge_at_immigrate);
    }
    
    
    /*
     * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
     * limit reclaim to prevent infinite loops, if they ever occur.
     */
    #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
    #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
    
    
    enum charge_type {
    	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
    	MEM_CGROUP_CHARGE_TYPE_MAPPED,
    
    	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
    
    	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
    
    	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
    
    	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
    
    /* only for here (for easy reading.) */
    #define PCGF_CACHE	(1UL << PCG_CACHE)
    #define PCGF_USED	(1UL << PCG_USED)
    #define PCGF_LOCK	(1UL << PCG_LOCK)
    
    /* Not used, but added here for completeness */
    #define PCGF_ACCT	(1UL << PCG_ACCT)
    
    /* for encoding cft->private value on file */
    #define _MEM			(0)
    #define _MEMSWAP		(1)
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    #define _OOM_TYPE		(2)
    
    #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
    #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
    #define MEMFILE_ATTR(val)	((val) & 0xffff)
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    /* Used for OOM nofiier */
    #define OOM_CONTROL		(0)
    
    /*
     * Reclaim flags for mem_cgroup_hierarchical_reclaim
     */
    #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
    #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
    #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
    #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
    
    #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
    #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
    
    static void mem_cgroup_get(struct mem_cgroup *mem);
    static void mem_cgroup_put(struct mem_cgroup *mem);
    
    static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
    
    static void drain_all_stock_async(void);
    
    static struct mem_cgroup_per_zone *
    mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
    {
    	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
    }
    
    
    struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
    {
    	return &mem->css;
    }
    
    
    static struct mem_cgroup_per_zone *
    page_cgroup_zoneinfo(struct page_cgroup *pc)
    {
    	struct mem_cgroup *mem = pc->mem_cgroup;
    	int nid = page_cgroup_nid(pc);
    	int zid = page_cgroup_zid(pc);
    
    	if (!mem)
    		return NULL;
    
    	return mem_cgroup_zoneinfo(mem, nid, zid);
    }
    
    static struct mem_cgroup_tree_per_zone *
    soft_limit_tree_node_zone(int nid, int zid)
    {
    	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
    }
    
    static struct mem_cgroup_tree_per_zone *
    soft_limit_tree_from_page(struct page *page)
    {
    	int nid = page_to_nid(page);
    	int zid = page_zonenum(page);
    
    	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
    }
    
    static void
    
    __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
    
    				struct mem_cgroup_per_zone *mz,
    
    				struct mem_cgroup_tree_per_zone *mctz,
    				unsigned long long new_usage_in_excess)
    
    {
    	struct rb_node **p = &mctz->rb_root.rb_node;
    	struct rb_node *parent = NULL;
    	struct mem_cgroup_per_zone *mz_node;
    
    	if (mz->on_tree)
    		return;
    
    
    	mz->usage_in_excess = new_usage_in_excess;
    	if (!mz->usage_in_excess)
    		return;
    
    	while (*p) {
    		parent = *p;
    		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
    					tree_node);
    		if (mz->usage_in_excess < mz_node->usage_in_excess)
    			p = &(*p)->rb_left;
    		/*
    		 * We can't avoid mem cgroups that are over their soft
    		 * limit by the same amount
    		 */
    		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
    			p = &(*p)->rb_right;
    	}
    	rb_link_node(&mz->tree_node, parent, p);
    	rb_insert_color(&mz->tree_node, &mctz->rb_root);
    	mz->on_tree = true;
    
    }
    
    static void
    __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
    				struct mem_cgroup_per_zone *mz,
    				struct mem_cgroup_tree_per_zone *mctz)
    {
    	if (!mz->on_tree)
    		return;
    	rb_erase(&mz->tree_node, &mctz->rb_root);
    	mz->on_tree = false;
    }
    
    
    static void
    mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
    				struct mem_cgroup_per_zone *mz,
    				struct mem_cgroup_tree_per_zone *mctz)
    {
    	spin_lock(&mctz->lock);
    
    	__mem_cgroup_remove_exceeded(mem, mz, mctz);
    
    	spin_unlock(&mctz->lock);
    }
    
    
    static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
    {
    
    	unsigned long long excess;
    
    	struct mem_cgroup_per_zone *mz;
    	struct mem_cgroup_tree_per_zone *mctz;
    
    	int nid = page_to_nid(page);
    	int zid = page_zonenum(page);
    
    	mctz = soft_limit_tree_from_page(page);
    
    	/*
    
    	 * Necessary to update all ancestors when hierarchy is used.
    	 * because their event counter is not touched.
    
    	for (; mem; mem = parent_mem_cgroup(mem)) {
    		mz = mem_cgroup_zoneinfo(mem, nid, zid);
    
    		excess = res_counter_soft_limit_excess(&mem->res);
    
    		/*
    		 * We have to update the tree if mz is on RB-tree or
    		 * mem is over its softlimit.
    		 */
    
    		if (excess || mz->on_tree) {
    
    			spin_lock(&mctz->lock);
    			/* if on-tree, remove it */
    			if (mz->on_tree)
    				__mem_cgroup_remove_exceeded(mem, mz, mctz);
    			/*
    
    			 * Insert again. mz->usage_in_excess will be updated.
    			 * If excess is 0, no tree ops.
    
    			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
    
    	}
    }
    
    static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
    {
    	int node, zone;
    	struct mem_cgroup_per_zone *mz;
    	struct mem_cgroup_tree_per_zone *mctz;
    
    	for_each_node_state(node, N_POSSIBLE) {
    		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    			mz = mem_cgroup_zoneinfo(mem, node, zone);
    			mctz = soft_limit_tree_node_zone(node, zone);
    			mem_cgroup_remove_exceeded(mem, mz, mctz);
    		}
    	}
    }
    
    
    static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
    {
    	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
    }
    
    static struct mem_cgroup_per_zone *
    __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
    {
    	struct rb_node *rightmost = NULL;
    
    	struct mem_cgroup_per_zone *mz;
    
    	rightmost = rb_last(&mctz->rb_root);
    	if (!rightmost)
    		goto done;		/* Nothing to reclaim from */
    
    	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
    	/*
    	 * Remove the node now but someone else can add it back,
    	 * we will to add it back at the end of reclaim to its correct
    	 * position in the tree.
    	 */
    	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
    	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
    		!css_tryget(&mz->mem->css))
    		goto retry;
    done:
    	return mz;
    }
    
    static struct mem_cgroup_per_zone *
    mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
    {
    	struct mem_cgroup_per_zone *mz;
    
    	spin_lock(&mctz->lock);
    	mz = __mem_cgroup_largest_soft_limit_node(mctz);
    	spin_unlock(&mctz->lock);
    	return mz;
    }
    
    
    /*
     * Implementation Note: reading percpu statistics for memcg.
     *
     * Both of vmstat[] and percpu_counter has threshold and do periodic
     * synchronization to implement "quick" read. There are trade-off between
     * reading cost and precision of value. Then, we may have a chance to implement
     * a periodic synchronizion of counter in memcg's counter.
     *
     * But this _read() function is used for user interface now. The user accounts
     * memory usage by memory cgroup and he _always_ requires exact value because
     * he accounts memory. Even if we provide quick-and-fuzzy read, we always
     * have to visit all online cpus and make sum. So, for now, unnecessary
     * synchronization is not implemented. (just implemented for cpu hotplug)
     *
     * If there are kernel internal actions which can make use of some not-exact
     * value, and reading all cpu value can be performance bottleneck in some
     * common workload, threashold and synchonization as vmstat[] should be
     * implemented.
     */
    
    static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
    		enum mem_cgroup_stat_index idx)
    {
    	int cpu;
    	s64 val = 0;
    
    
    	get_online_cpus();
    	for_each_online_cpu(cpu)
    
    		val += per_cpu(mem->stat->count[idx], cpu);
    
    #ifdef CONFIG_HOTPLUG_CPU
    	spin_lock(&mem->pcp_counter_lock);
    	val += mem->nocpu_base.count[idx];
    	spin_unlock(&mem->pcp_counter_lock);
    #endif
    	put_online_cpus();
    
    	return val;
    }
    
    static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
    {
    	s64 ret;
    
    	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
    	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
    	return ret;
    }
    
    
    static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
    					 bool charge)
    {
    	int val = (charge) ? 1 : -1;
    
    	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
    
    static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
    
    	if (file)
    		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
    
    		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
    
    	/* pagein of a big page is an event. So, ignore page size */
    	if (nr_pages > 0)
    
    		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
    
    		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
    
    
    	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
    
    static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
    
    {
    	int nid, zid;
    	struct mem_cgroup_per_zone *mz;
    	u64 total = 0;
    
    	for_each_online_node(nid)
    		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    			mz = mem_cgroup_zoneinfo(mem, nid, zid);
    			total += MEM_CGROUP_ZSTAT(mz, idx);
    		}
    	return total;
    
    static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
    {
    	s64 val;
    
    	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
    
    	return !(val & ((1 << event_mask_shift) - 1));
    }
    
    /*
     * Check events in order.
     *
     */
    static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
    {
    	/* threshold event is triggered in finer grain than soft limit */
    	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
    		mem_cgroup_threshold(mem);
    		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
    			mem_cgroup_update_tree(mem, page);
    	}
    }
    
    
    static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
    
    {
    	return container_of(cgroup_subsys_state(cont,
    				mem_cgroup_subsys_id), struct mem_cgroup,
    				css);
    }
    
    
    struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
    
    	/*
    	 * mm_update_next_owner() may clear mm->owner to NULL
    	 * if it races with swapoff, page migration, etc.
    	 * So this can be called with p == NULL.
    	 */
    	if (unlikely(!p))
    		return NULL;
    
    
    	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
    				struct mem_cgroup, css);
    }
    
    
    static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
    {
    	struct mem_cgroup *mem = NULL;
    
    
    	if (!mm)
    		return NULL;
    
    	/*
    	 * Because we have no locks, mm->owner's may be being moved to other
    	 * cgroup. We use css_tryget() here even if this looks
    	 * pessimistic (rather than adding locks here).
    	 */
    	rcu_read_lock();
    	do {
    		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
    		if (unlikely(!mem))
    			break;
    	} while (!css_tryget(&mem->css));
    	rcu_read_unlock();
    	return mem;
    }
    
    
    /* The caller has to guarantee "mem" exists before calling this */
    static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
    
    	struct cgroup_subsys_state *css;
    	int found;
    
    	if (!mem) /* ROOT cgroup has the smallest ID */
    		return root_mem_cgroup; /*css_put/get against root is ignored*/
    	if (!mem->use_hierarchy) {
    		if (css_tryget(&mem->css))
    			return mem;
    		return NULL;
    	}
    	rcu_read_lock();
    	/*
    	 * searching a memory cgroup which has the smallest ID under given
    	 * ROOT cgroup. (ID >= 1)
    	 */
    	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
    	if (css && css_tryget(css))
    		mem = container_of(css, struct mem_cgroup, css);
    	else
    		mem = NULL;
    	rcu_read_unlock();
    	return mem;
    
    }
    
    static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
    					struct mem_cgroup *root,
    					bool cond)
    {
    	int nextid = css_id(&iter->css) + 1;
    	int found;
    	int hierarchy_used;
    
    	struct cgroup_subsys_state *css;
    
    
    	hierarchy_used = iter->use_hierarchy;
    
    	css_put(&iter->css);
    
    	/* If no ROOT, walk all, ignore hierarchy */
    	if (!cond || (root && !hierarchy_used))
    
    		return NULL;
    
    	if (!root)
    		root = root_mem_cgroup;
    
    
    	do {
    		iter = NULL;
    
    		rcu_read_lock();
    
    
    		css = css_get_next(&mem_cgroup_subsys, nextid,
    				&root->css, &found);
    
    		if (css && css_tryget(css))
    
    			iter = container_of(css, struct mem_cgroup, css);
    
    		rcu_read_unlock();
    
    		/* If css is NULL, no more cgroups will be found */
    
    		nextid = found + 1;
    
    	} while (css && !iter);
    
    	return iter;
    
    /*
     * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
     * be careful that "break" loop is not allowed. We have reference count.
     * Instead of that modify "cond" to be false and "continue" to exit the loop.
     */
    #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
    	for (iter = mem_cgroup_start_loop(root);\
    	     iter != NULL;\
    	     iter = mem_cgroup_get_next(iter, root, cond))
    
    #define for_each_mem_cgroup_tree(iter, root) \
    	for_each_mem_cgroup_tree_cond(iter, root, true)
    
    
    #define for_each_mem_cgroup_all(iter) \
    	for_each_mem_cgroup_tree_cond(iter, NULL, true)
    
    
    static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
    {
    	return (mem == root_mem_cgroup);
    }
    
    
    /*
     * Following LRU functions are allowed to be used without PCG_LOCK.
     * Operations are called by routine of global LRU independently from memcg.
     * What we have to take care of here is validness of pc->mem_cgroup.
     *
     * Changes to pc->mem_cgroup happens when
     * 1. charge
     * 2. moving account
     * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
     * It is added to LRU before charge.
     * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
     * When moving account, the page is not on LRU. It's isolated.
     */
    
    void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
    {
    	struct page_cgroup *pc;
    	struct mem_cgroup_per_zone *mz;
    
    	if (mem_cgroup_disabled())
    
    		return;
    	pc = lookup_page_cgroup(page);
    	/* can happen while we handle swapcache. */
    
    	if (!TestClearPageCgroupAcctLRU(pc))
    
    		return;
    
    	VM_BUG_ON(!pc->mem_cgroup);
    
    	/*
    	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
    	 * removed from global LRU.
    	 */
    
    	mz = page_cgroup_zoneinfo(pc);
    
    	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
    
    	if (mem_cgroup_is_root(pc->mem_cgroup))
    		return;
    	VM_BUG_ON(list_empty(&pc->lru));
    
    	list_del_init(&pc->lru);
    
    void mem_cgroup_del_lru(struct page *page)
    
    	mem_cgroup_del_lru_list(page, page_lru(page));
    }
    
    void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
    {
    	struct mem_cgroup_per_zone *mz;
    	struct page_cgroup *pc;
    
    	if (mem_cgroup_disabled())
    
    		return;
    
    	pc = lookup_page_cgroup(page);
    
    	/*
    	 * Used bit is set without atomic ops but after smp_wmb().
    	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
    	 */
    
    	smp_rmb();
    
    	/* unused or root page is not rotated. */
    	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
    
    		return;
    	mz = page_cgroup_zoneinfo(pc);
    	list_move(&pc->lru, &mz->lists[lru]);
    
    void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
    
    	struct page_cgroup *pc;
    	struct mem_cgroup_per_zone *mz;
    
    	if (mem_cgroup_disabled())
    
    		return;
    	pc = lookup_page_cgroup(page);
    
    	VM_BUG_ON(PageCgroupAcctLRU(pc));
    
    	/*
    	 * Used bit is set without atomic ops but after smp_wmb().
    	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
    	 */
    
    	smp_rmb();
    	if (!PageCgroupUsed(pc))
    
    	mz = page_cgroup_zoneinfo(pc);
    
    	MEM_CGROUP_ZSTAT(mz, lru) += 1;
    
    	SetPageCgroupAcctLRU(pc);
    	if (mem_cgroup_is_root(pc->mem_cgroup))
    		return;
    
    	list_add(&pc->lru, &mz->lists[lru]);
    }
    
     * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
     * lru because the page may.be reused after it's fully uncharged (because of
     * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
     * it again. This function is only used to charge SwapCache. It's done under
     * lock_page and expected that zone->lru_lock is never held.
    
    static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
    
    	unsigned long flags;
    	struct zone *zone = page_zone(page);
    	struct page_cgroup *pc = lookup_page_cgroup(page);
    
    	spin_lock_irqsave(&zone->lru_lock, flags);
    	/*
    	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
    	 * is guarded by lock_page() because the page is SwapCache.
    	 */
    	if (!PageCgroupUsed(pc))
    		mem_cgroup_del_lru_list(page, page_lru(page));
    	spin_unlock_irqrestore(&zone->lru_lock, flags);
    
    static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
    {
    	unsigned long flags;
    	struct zone *zone = page_zone(page);
    	struct page_cgroup *pc = lookup_page_cgroup(page);
    
    	spin_lock_irqsave(&zone->lru_lock, flags);
    	/* link when the page is linked to LRU but page_cgroup isn't */
    
    	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
    
    		mem_cgroup_add_lru_list(page, page_lru(page));
    	spin_unlock_irqrestore(&zone->lru_lock, flags);
    }
    
    
    
    void mem_cgroup_move_lists(struct page *page,
    			   enum lru_list from, enum lru_list to)
    {
    
    	if (mem_cgroup_disabled())
    
    		return;
    	mem_cgroup_del_lru_list(page, from);
    	mem_cgroup_add_lru_list(page, to);
    
    int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
    {
    	int ret;
    
    	struct mem_cgroup *curr = NULL;
    
    	p = find_lock_task_mm(task);
    	if (!p)
    		return 0;
    	curr = try_get_mem_cgroup_from_mm(p->mm);
    	task_unlock(p);
    
    	if (!curr)
    		return 0;
    
    	/*
    	 * We should check use_hierarchy of "mem" not "curr". Because checking
    	 * use_hierarchy of "curr" here make this function true if hierarchy is
    	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
    	 * hierarchy(even if use_hierarchy is disabled in "mem").
    	 */
    	if (mem->use_hierarchy)
    
    		ret = css_is_ancestor(&curr->css, &mem->css);
    	else
    		ret = (curr == mem);
    	css_put(&curr->css);
    
    static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
    
    {
    	unsigned long active;
    	unsigned long inactive;
    
    	unsigned long gb;
    	unsigned long inactive_ratio;
    
    	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
    	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
    
    	gb = (inactive + active) >> (30 - PAGE_SHIFT);
    	if (gb)
    		inactive_ratio = int_sqrt(10 * gb);
    	else
    		inactive_ratio = 1;
    
    	if (present_pages) {
    		present_pages[0] = inactive;
    		present_pages[1] = active;
    	}
    
    	return inactive_ratio;
    }
    
    int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
    {
    	unsigned long active;
    	unsigned long inactive;
    	unsigned long present_pages[2];
    	unsigned long inactive_ratio;
    
    	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
    
    	inactive = present_pages[0];
    	active = present_pages[1];
    
    	if (inactive * inactive_ratio < active)
    
    int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
    {
    	unsigned long active;
    	unsigned long inactive;
    
    	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
    	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
    
    	return (active > inactive);
    }