Skip to content
Snippets Groups Projects
spi-atmel.c 27.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Driver for Atmel AT32 and AT91 SPI Controllers
     *
     * Copyright (C) 2006 Atmel Corporation
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    
    #include <linux/kernel.h>
    #include <linux/init.h>
    #include <linux/clk.h>
    #include <linux/module.h>
    #include <linux/platform_device.h>
    #include <linux/delay.h>
    #include <linux/dma-mapping.h>
    #include <linux/err.h>
    #include <linux/interrupt.h>
    #include <linux/spi/spi.h>
    
    
    #include <asm/io.h>
    
    Grant Likely's avatar
    Grant Likely committed
    /* SPI register offsets */
    #define SPI_CR					0x0000
    #define SPI_MR					0x0004
    #define SPI_RDR					0x0008
    #define SPI_TDR					0x000c
    #define SPI_SR					0x0010
    #define SPI_IER					0x0014
    #define SPI_IDR					0x0018
    #define SPI_IMR					0x001c
    #define SPI_CSR0				0x0030
    #define SPI_CSR1				0x0034
    #define SPI_CSR2				0x0038
    #define SPI_CSR3				0x003c
    #define SPI_RPR					0x0100
    #define SPI_RCR					0x0104
    #define SPI_TPR					0x0108
    #define SPI_TCR					0x010c
    #define SPI_RNPR				0x0110
    #define SPI_RNCR				0x0114
    #define SPI_TNPR				0x0118
    #define SPI_TNCR				0x011c
    #define SPI_PTCR				0x0120
    #define SPI_PTSR				0x0124
    
    /* Bitfields in CR */
    #define SPI_SPIEN_OFFSET			0
    #define SPI_SPIEN_SIZE				1
    #define SPI_SPIDIS_OFFSET			1
    #define SPI_SPIDIS_SIZE				1
    #define SPI_SWRST_OFFSET			7
    #define SPI_SWRST_SIZE				1
    #define SPI_LASTXFER_OFFSET			24
    #define SPI_LASTXFER_SIZE			1
    
    /* Bitfields in MR */
    #define SPI_MSTR_OFFSET				0
    #define SPI_MSTR_SIZE				1
    #define SPI_PS_OFFSET				1
    #define SPI_PS_SIZE				1
    #define SPI_PCSDEC_OFFSET			2
    #define SPI_PCSDEC_SIZE				1
    #define SPI_FDIV_OFFSET				3
    #define SPI_FDIV_SIZE				1
    #define SPI_MODFDIS_OFFSET			4
    #define SPI_MODFDIS_SIZE			1
    #define SPI_LLB_OFFSET				7
    #define SPI_LLB_SIZE				1
    #define SPI_PCS_OFFSET				16
    #define SPI_PCS_SIZE				4
    #define SPI_DLYBCS_OFFSET			24
    #define SPI_DLYBCS_SIZE				8
    
    /* Bitfields in RDR */
    #define SPI_RD_OFFSET				0
    #define SPI_RD_SIZE				16
    
    /* Bitfields in TDR */
    #define SPI_TD_OFFSET				0
    #define SPI_TD_SIZE				16
    
    /* Bitfields in SR */
    #define SPI_RDRF_OFFSET				0
    #define SPI_RDRF_SIZE				1
    #define SPI_TDRE_OFFSET				1
    #define SPI_TDRE_SIZE				1
    #define SPI_MODF_OFFSET				2
    #define SPI_MODF_SIZE				1
    #define SPI_OVRES_OFFSET			3
    #define SPI_OVRES_SIZE				1
    #define SPI_ENDRX_OFFSET			4
    #define SPI_ENDRX_SIZE				1
    #define SPI_ENDTX_OFFSET			5
    #define SPI_ENDTX_SIZE				1
    #define SPI_RXBUFF_OFFSET			6
    #define SPI_RXBUFF_SIZE				1
    #define SPI_TXBUFE_OFFSET			7
    #define SPI_TXBUFE_SIZE				1
    #define SPI_NSSR_OFFSET				8
    #define SPI_NSSR_SIZE				1
    #define SPI_TXEMPTY_OFFSET			9
    #define SPI_TXEMPTY_SIZE			1
    #define SPI_SPIENS_OFFSET			16
    #define SPI_SPIENS_SIZE				1
    
    /* Bitfields in CSR0 */
    #define SPI_CPOL_OFFSET				0
    #define SPI_CPOL_SIZE				1
    #define SPI_NCPHA_OFFSET			1
    #define SPI_NCPHA_SIZE				1
    #define SPI_CSAAT_OFFSET			3
    #define SPI_CSAAT_SIZE				1
    #define SPI_BITS_OFFSET				4
    #define SPI_BITS_SIZE				4
    #define SPI_SCBR_OFFSET				8
    #define SPI_SCBR_SIZE				8
    #define SPI_DLYBS_OFFSET			16
    #define SPI_DLYBS_SIZE				8
    #define SPI_DLYBCT_OFFSET			24
    #define SPI_DLYBCT_SIZE				8
    
    /* Bitfields in RCR */
    #define SPI_RXCTR_OFFSET			0
    #define SPI_RXCTR_SIZE				16
    
    /* Bitfields in TCR */
    #define SPI_TXCTR_OFFSET			0
    #define SPI_TXCTR_SIZE				16
    
    /* Bitfields in RNCR */
    #define SPI_RXNCR_OFFSET			0
    #define SPI_RXNCR_SIZE				16
    
    /* Bitfields in TNCR */
    #define SPI_TXNCR_OFFSET			0
    #define SPI_TXNCR_SIZE				16
    
    /* Bitfields in PTCR */
    #define SPI_RXTEN_OFFSET			0
    #define SPI_RXTEN_SIZE				1
    #define SPI_RXTDIS_OFFSET			1
    #define SPI_RXTDIS_SIZE				1
    #define SPI_TXTEN_OFFSET			8
    #define SPI_TXTEN_SIZE				1
    #define SPI_TXTDIS_OFFSET			9
    #define SPI_TXTDIS_SIZE				1
    
    /* Constants for BITS */
    #define SPI_BITS_8_BPT				0
    #define SPI_BITS_9_BPT				1
    #define SPI_BITS_10_BPT				2
    #define SPI_BITS_11_BPT				3
    #define SPI_BITS_12_BPT				4
    #define SPI_BITS_13_BPT				5
    #define SPI_BITS_14_BPT				6
    #define SPI_BITS_15_BPT				7
    #define SPI_BITS_16_BPT				8
    
    /* Bit manipulation macros */
    #define SPI_BIT(name) \
    	(1 << SPI_##name##_OFFSET)
    #define SPI_BF(name,value) \
    	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
    #define SPI_BFEXT(name,value) \
    	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
    #define SPI_BFINS(name,value,old) \
    	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
    	  | SPI_BF(name,value))
    
    /* Register access macros */
    #define spi_readl(port,reg) \
    	__raw_readl((port)->regs + SPI_##reg)
    #define spi_writel(port,reg,value) \
    	__raw_writel((value), (port)->regs + SPI_##reg)
    
    
    
    /*
     * The core SPI transfer engine just talks to a register bank to set up
     * DMA transfers; transfer queue progress is driven by IRQs.  The clock
     * framework provides the base clock, subdivided for each spi_device.
     */
    struct atmel_spi {
    	spinlock_t		lock;
    
    	void __iomem		*regs;
    	int			irq;
    	struct clk		*clk;
    	struct platform_device	*pdev;
    
    	struct spi_device	*stay;
    
    
    	u8			stopping;
    	struct list_head	queue;
    	struct spi_transfer	*current_transfer;
    
    	unsigned long		current_remaining_bytes;
    	struct spi_transfer	*next_transfer;
    	unsigned long		next_remaining_bytes;
    
    
    	void			*buffer;
    	dma_addr_t		buffer_dma;
    };
    
    
    /* Controller-specific per-slave state */
    struct atmel_spi_device {
    	unsigned int		npcs_pin;
    	u32			csr;
    };
    
    
    #define BUFFER_SIZE		PAGE_SIZE
    #define INVALID_DMA_ADDRESS	0xffffffff
    
    
    /*
     * Version 2 of the SPI controller has
     *  - CR.LASTXFER
     *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
     *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
     *  - SPI_CSRx.CSAAT
     *  - SPI_CSRx.SBCR allows faster clocking
     *
     * We can determine the controller version by reading the VERSION
     * register, but I haven't checked that it exists on all chips, and
     * this is cheaper anyway.
     */
    static bool atmel_spi_is_v2(void)
    {
    	return !cpu_is_at91rm9200();
    }
    
    
    /*
     * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
     * they assume that spi slave device state will not change on deselect, so
    
     * that automagic deselection is OK.  ("NPCSx rises if no data is to be
     * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
     * controllers have CSAAT and friends.
    
     * Since the CSAAT functionality is a bit weird on newer controllers as
     * well, we use GPIO to control nCSx pins on all controllers, updating
     * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
     * support active-high chipselects despite the controller's belief that
     * only active-low devices/systems exists.
     *
     * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
     * right when driven with GPIO.  ("Mode Fault does not allow more than one
     * Master on Chip Select 0.")  No workaround exists for that ... so for
     * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
     * and (c) will trigger that first erratum in some cases.
    
     *
     * TODO: Test if the atmel_spi_is_v2() branch below works on
     * AT91RM9200 if we use some other register than CSR0. However, don't
     * do this unconditionally since AP7000 has an errata where the BITS
     * field in CSR0 overrides all other CSRs.
    
    static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
    
    	struct atmel_spi_device *asd = spi->controller_state;
    
    	unsigned active = spi->mode & SPI_CS_HIGH;
    
    	if (atmel_spi_is_v2()) {
    		/*
    		 * Always use CSR0. This ensures that the clock
    		 * switches to the correct idle polarity before we
    		 * toggle the CS.
    		 */
    		spi_writel(as, CSR0, asd->csr);
    		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
    				| SPI_BIT(MSTR));
    		mr = spi_readl(as, MR);
    		gpio_set_value(asd->npcs_pin, active);
    	} else {
    		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
    		int i;
    		u32 csr;
    
    		/* Make sure clock polarity is correct */
    		for (i = 0; i < spi->master->num_chipselect; i++) {
    			csr = spi_readl(as, CSR0 + 4 * i);
    			if ((csr ^ cpol) & SPI_BIT(CPOL))
    				spi_writel(as, CSR0 + 4 * i,
    						csr ^ SPI_BIT(CPOL));
    		}
    
    		mr = spi_readl(as, MR);
    		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
    		if (spi->chip_select != 0)
    			gpio_set_value(asd->npcs_pin, active);
    		spi_writel(as, MR, mr);
    	}
    
    
    	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
    
    			asd->npcs_pin, active ? " (high)" : "",
    
    static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
    
    	struct atmel_spi_device *asd = spi->controller_state;
    
    	unsigned active = spi->mode & SPI_CS_HIGH;
    
    	u32 mr;
    
    	/* only deactivate *this* device; sometimes transfers to
    	 * another device may be active when this routine is called.
    	 */
    	mr = spi_readl(as, MR);
    	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
    		mr = SPI_BFINS(PCS, 0xf, mr);
    		spi_writel(as, MR, mr);
    	}
    
    	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
    
    			asd->npcs_pin, active ? " (low)" : "",
    
    	if (atmel_spi_is_v2() || spi->chip_select != 0)
    
    		gpio_set_value(asd->npcs_pin, !active);
    
    static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
    					struct spi_transfer *xfer)
    {
    	return msg->transfers.prev == &xfer->transfer_list;
    }
    
    static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
    {
    	return xfer->delay_usecs == 0 && !xfer->cs_change;
    }
    
    static void atmel_spi_next_xfer_data(struct spi_master *master,
    				struct spi_transfer *xfer,
    				dma_addr_t *tx_dma,
    				dma_addr_t *rx_dma,
    				u32 *plen)
    {
    	struct atmel_spi	*as = spi_master_get_devdata(master);
    	u32			len = *plen;
    
    	/* use scratch buffer only when rx or tx data is unspecified */
    	if (xfer->rx_buf)
    
    		*rx_dma = xfer->rx_dma + xfer->len - *plen;
    
    	else {
    		*rx_dma = as->buffer_dma;
    		if (len > BUFFER_SIZE)
    			len = BUFFER_SIZE;
    	}
    	if (xfer->tx_buf)
    
    		*tx_dma = xfer->tx_dma + xfer->len - *plen;
    
    	else {
    		*tx_dma = as->buffer_dma;
    		if (len > BUFFER_SIZE)
    			len = BUFFER_SIZE;
    		memset(as->buffer, 0, len);
    		dma_sync_single_for_device(&as->pdev->dev,
    				as->buffer_dma, len, DMA_TO_DEVICE);
    	}
    
    	*plen = len;
    }
    
    
    /*
     * Submit next transfer for DMA.
     * lock is held, spi irq is blocked
     */
    static void atmel_spi_next_xfer(struct spi_master *master,
    				struct spi_message *msg)
    {
    	struct atmel_spi	*as = spi_master_get_devdata(master);
    	struct spi_transfer	*xfer;
    
    	u32			len, remaining;
    	u32			ieval;
    
    	dma_addr_t		tx_dma, rx_dma;
    
    
    	if (!as->current_transfer)
    		xfer = list_entry(msg->transfers.next,
    				struct spi_transfer, transfer_list);
    	else if (!as->next_transfer)
    		xfer = list_entry(as->current_transfer->transfer_list.next,
    				struct spi_transfer, transfer_list);
    	else
    		xfer = NULL;
    
    	if (xfer) {
    
    		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
    
    
    		len = xfer->len;
    		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
    		remaining = xfer->len - len;
    
    		spi_writel(as, RPR, rx_dma);
    		spi_writel(as, TPR, tx_dma);
    
    		if (msg->spi->bits_per_word > 8)
    			len >>= 1;
    		spi_writel(as, RCR, len);
    		spi_writel(as, TCR, len);
    
    
    		dev_dbg(&msg->spi->dev,
    			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
    			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
    			xfer->rx_buf, xfer->rx_dma);
    
    	} else {
    		xfer = as->next_transfer;
    		remaining = as->next_remaining_bytes;
    
    	as->current_transfer = xfer;
    	as->current_remaining_bytes = remaining;
    
    	if (remaining > 0)
    		len = remaining;
    
    	else if (!atmel_spi_xfer_is_last(msg, xfer)
    			&& atmel_spi_xfer_can_be_chained(xfer)) {
    
    		xfer = list_entry(xfer->transfer_list.next,
    				struct spi_transfer, transfer_list);
    		len = xfer->len;
    	} else
    		xfer = NULL;
    
    	as->next_transfer = xfer;
    
    	if (xfer) {
    
    		total = len;
    		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
    		as->next_remaining_bytes = total - len;
    
    		spi_writel(as, RNPR, rx_dma);
    		spi_writel(as, TNPR, tx_dma);
    
    		if (msg->spi->bits_per_word > 8)
    			len >>= 1;
    		spi_writel(as, RNCR, len);
    		spi_writel(as, TNCR, len);
    
    
    		dev_dbg(&msg->spi->dev,
    			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
    			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
    			xfer->rx_buf, xfer->rx_dma);
    
    		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
    
    	} else {
    		spi_writel(as, RNCR, 0);
    		spi_writel(as, TNCR, 0);
    
    		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
    
    	}
    
    	/* REVISIT: We're waiting for ENDRX before we start the next
    
    	 * transfer because we need to handle some difficult timing
    	 * issues otherwise. If we wait for ENDTX in one transfer and
    	 * then starts waiting for ENDRX in the next, it's difficult
    	 * to tell the difference between the ENDRX interrupt we're
    	 * actually waiting for and the ENDRX interrupt of the
    	 * previous transfer.
    	 *
    	 * It should be doable, though. Just not now...
    	 */
    
    	spi_writel(as, IER, ieval);
    
    	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
    }
    
    static void atmel_spi_next_message(struct spi_master *master)
    {
    	struct atmel_spi	*as = spi_master_get_devdata(master);
    	struct spi_message	*msg;
    
    	struct spi_device	*spi;
    
    
    	BUG_ON(as->current_transfer);
    
    	msg = list_entry(as->queue.next, struct spi_message, queue);
    
    	dev_dbg(master->dev.parent, "start message %p for %s\n",
    
    
    	/* select chip if it's not still active */
    	if (as->stay) {
    		if (as->stay != spi) {
    			cs_deactivate(as, as->stay);
    			cs_activate(as, spi);
    		}
    		as->stay = NULL;
    	} else
    		cs_activate(as, spi);
    
    
    	atmel_spi_next_xfer(master, msg);
    }
    
    
    David Brownell's avatar
    David Brownell committed
    /*
     * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
     *  - The buffer is either valid for CPU access, else NULL
    
     *  - If the buffer is valid, so is its DMA address
    
     * This driver manages the dma address unless message->is_dma_mapped.
    
    David Brownell's avatar
    David Brownell committed
     */
    static int
    
    atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
    {
    
    David Brownell's avatar
    David Brownell committed
    	struct device	*dev = &as->pdev->dev;
    
    
    	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
    
    David Brownell's avatar
    David Brownell committed
    	if (xfer->tx_buf) {
    
    		/* tx_buf is a const void* where we need a void * for the dma
    		 * mapping */
    		void *nonconst_tx = (void *)xfer->tx_buf;
    
    
    David Brownell's avatar
    David Brownell committed
    		xfer->tx_dma = dma_map_single(dev,
    
    				DMA_TO_DEVICE);
    
    		if (dma_mapping_error(dev, xfer->tx_dma))
    
    David Brownell's avatar
    David Brownell committed
    			return -ENOMEM;
    	}
    	if (xfer->rx_buf) {
    		xfer->rx_dma = dma_map_single(dev,
    
    				xfer->rx_buf, xfer->len,
    				DMA_FROM_DEVICE);
    
    		if (dma_mapping_error(dev, xfer->rx_dma)) {
    
    David Brownell's avatar
    David Brownell committed
    			if (xfer->tx_buf)
    				dma_unmap_single(dev,
    						xfer->tx_dma, xfer->len,
    						DMA_TO_DEVICE);
    			return -ENOMEM;
    		}
    	}
    	return 0;
    
    }
    
    static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
    				     struct spi_transfer *xfer)
    {
    	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
    
    		dma_unmap_single(master->dev.parent, xfer->tx_dma,
    
    				 xfer->len, DMA_TO_DEVICE);
    	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
    
    		dma_unmap_single(master->dev.parent, xfer->rx_dma,
    
    				 xfer->len, DMA_FROM_DEVICE);
    }
    
    static void
    atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
    
    		struct spi_message *msg, int status, int stay)
    
    	if (!stay || status < 0)
    		cs_deactivate(as, msg->spi);
    	else
    		as->stay = msg->spi;
    
    
    	list_del(&msg->queue);
    	msg->status = status;
    
    
    	dev_dbg(master->dev.parent,
    
    		"xfer complete: %u bytes transferred\n",
    		msg->actual_length);
    
    	spin_unlock(&as->lock);
    	msg->complete(msg->context);
    	spin_lock(&as->lock);
    
    	as->current_transfer = NULL;
    
    	as->next_transfer = NULL;
    
    
    	/* continue if needed */
    	if (list_empty(&as->queue) || as->stopping)
    		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
    	else
    		atmel_spi_next_message(master);
    }
    
    static irqreturn_t
    atmel_spi_interrupt(int irq, void *dev_id)
    {
    	struct spi_master	*master = dev_id;
    	struct atmel_spi	*as = spi_master_get_devdata(master);
    	struct spi_message	*msg;
    	struct spi_transfer	*xfer;
    	u32			status, pending, imr;
    	int			ret = IRQ_NONE;
    
    	spin_lock(&as->lock);
    
    	xfer = as->current_transfer;
    	msg = list_entry(as->queue.next, struct spi_message, queue);
    
    	imr = spi_readl(as, IMR);
    	status = spi_readl(as, SR);
    	pending = status & imr;
    
    	if (pending & SPI_BIT(OVRES)) {
    		int timeout;
    
    		ret = IRQ_HANDLED;
    
    
    		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
    
    				     | SPI_BIT(OVRES)));
    
    		/*
    		 * When we get an overrun, we disregard the current
    		 * transfer. Data will not be copied back from any
    		 * bounce buffer and msg->actual_len will not be
    		 * updated with the last xfer.
    		 *
    		 * We will also not process any remaning transfers in
    		 * the message.
    		 *
    		 * First, stop the transfer and unmap the DMA buffers.
    		 */
    		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
    		if (!msg->is_dma_mapped)
    			atmel_spi_dma_unmap_xfer(master, xfer);
    
    		/* REVISIT: udelay in irq is unfriendly */
    		if (xfer->delay_usecs)
    			udelay(xfer->delay_usecs);
    
    
    		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
    
    			 spi_readl(as, TCR), spi_readl(as, RCR));
    
    		/*
    		 * Clean up DMA registers and make sure the data
    		 * registers are empty.
    		 */
    		spi_writel(as, RNCR, 0);
    		spi_writel(as, TNCR, 0);
    		spi_writel(as, RCR, 0);
    		spi_writel(as, TCR, 0);
    		for (timeout = 1000; timeout; timeout--)
    			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
    				break;
    		if (!timeout)
    
    			dev_warn(master->dev.parent,
    
    				 "timeout waiting for TXEMPTY");
    		while (spi_readl(as, SR) & SPI_BIT(RDRF))
    			spi_readl(as, RDR);
    
    		/* Clear any overrun happening while cleaning up */
    		spi_readl(as, SR);
    
    
    		atmel_spi_msg_done(master, as, msg, -EIO, 0);
    
    	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
    
    		ret = IRQ_HANDLED;
    
    		spi_writel(as, IDR, pending);
    
    
    		if (as->current_remaining_bytes == 0) {
    
    			msg->actual_length += xfer->len;
    
    			if (!msg->is_dma_mapped)
    				atmel_spi_dma_unmap_xfer(master, xfer);
    
    			/* REVISIT: udelay in irq is unfriendly */
    			if (xfer->delay_usecs)
    				udelay(xfer->delay_usecs);
    
    
    			if (atmel_spi_xfer_is_last(msg, xfer)) {
    
    				/* report completed message */
    
    				atmel_spi_msg_done(master, as, msg, 0,
    						xfer->cs_change);
    
    			} else {
    				if (xfer->cs_change) {
    
    					cs_deactivate(as, msg->spi);
    
    					udelay(1);
    
    					cs_activate(as, msg->spi);
    
    				}
    
    				/*
    				 * Not done yet. Submit the next transfer.
    				 *
    				 * FIXME handle protocol options for xfer
    				 */
    				atmel_spi_next_xfer(master, msg);
    			}
    		} else {
    			/*
    			 * Keep going, we still have data to send in
    			 * the current transfer.
    			 */
    			atmel_spi_next_xfer(master, msg);
    		}
    	}
    
    	spin_unlock(&as->lock);
    
    	return ret;
    }
    
    static int atmel_spi_setup(struct spi_device *spi)
    {
    	struct atmel_spi	*as;
    
    	struct atmel_spi_device	*asd;
    
    	u32			scbr, csr;
    	unsigned int		bits = spi->bits_per_word;
    
    	unsigned int		npcs_pin;
    	int			ret;
    
    	as = spi_master_get_devdata(spi->master);
    
    	if (as->stopping)
    		return -ESHUTDOWN;
    
    	if (spi->chip_select > spi->master->num_chipselect) {
    		dev_dbg(&spi->dev,
    				"setup: invalid chipselect %u (%u defined)\n",
    				spi->chip_select, spi->master->num_chipselect);
    		return -EINVAL;
    	}
    
    	if (bits < 8 || bits > 16) {
    		dev_dbg(&spi->dev,
    				"setup: invalid bits_per_word %u (8 to 16)\n",
    				bits);
    		return -EINVAL;
    	}
    
    
    	/* see notes above re chipselect */
    
    	if (!atmel_spi_is_v2()
    
    			&& spi->chip_select == 0
    			&& (spi->mode & SPI_CS_HIGH)) {
    		dev_dbg(&spi->dev, "setup: can't be active-high\n");
    		return -EINVAL;
    	}
    
    
    	/* v1 chips start out at half the peripheral bus speed. */
    
    	bus_hz = clk_get_rate(as->clk);
    
    	if (!atmel_spi_is_v2())
    
    	if (spi->max_speed_hz) {
    
    		/*
    		 * Calculate the lowest divider that satisfies the
    		 * constraint, assuming div32/fdiv/mbz == 0.
    		 */
    		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
    
    		/*
    		 * If the resulting divider doesn't fit into the
    		 * register bitfield, we can't satisfy the constraint.
    		 */
    
    		if (scbr >= (1 << SPI_SCBR_SIZE)) {
    
    David Brownell's avatar
    David Brownell committed
    			dev_dbg(&spi->dev,
    				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
    				spi->max_speed_hz, scbr, bus_hz/255);
    
    			return -EINVAL;
    		}
    	} else
    
    		/* speed zero means "as slow as possible" */
    
    		scbr = 0xff;
    
    	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
    	if (spi->mode & SPI_CPOL)
    		csr |= SPI_BIT(CPOL);
    	if (!(spi->mode & SPI_CPHA))
    		csr |= SPI_BIT(NCPHA);
    
    
    	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
    	 *
    	 * DLYBCT would add delays between words, slowing down transfers.
    	 * It could potentially be useful to cope with DMA bottlenecks, but
    	 * in those cases it's probably best to just use a lower bitrate.
    	 */
    	csr |= SPI_BF(DLYBS, 0);
    	csr |= SPI_BF(DLYBCT, 0);
    
    
    	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
    	npcs_pin = (unsigned int)spi->controller_data;
    
    	asd = spi->controller_state;
    	if (!asd) {
    		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
    		if (!asd)
    			return -ENOMEM;
    
    
    		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
    
    		if (ret) {
    			kfree(asd);
    
    			return ret;
    
    		}
    
    		asd->npcs_pin = npcs_pin;
    		spi->controller_state = asd;
    
    		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
    
    	} else {
    		unsigned long		flags;
    
    		spin_lock_irqsave(&as->lock, flags);
    		if (as->stay == spi)
    			as->stay = NULL;
    		cs_deactivate(as, spi);
    		spin_unlock_irqrestore(&as->lock, flags);
    
    	dev_dbg(&spi->dev,
    		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
    
    		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
    
    	if (!atmel_spi_is_v2())
    		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
    
    
    	return 0;
    }
    
    static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
    {
    	struct atmel_spi	*as;
    	struct spi_transfer	*xfer;
    	unsigned long		flags;
    
    	struct device		*controller = spi->master->dev.parent;
    
    	u8			bits;
    	struct atmel_spi_device	*asd;
    
    
    	as = spi_master_get_devdata(spi->master);
    
    	dev_dbg(controller, "new message %p submitted for %s\n",
    
    	if (unlikely(list_empty(&msg->transfers)))
    
    		return -EINVAL;
    
    	if (as->stopping)
    		return -ESHUTDOWN;
    
    	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    
    		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
    
    			dev_dbg(&spi->dev, "missing rx or tx buf\n");
    			return -EINVAL;
    		}
    
    
    		if (xfer->bits_per_word) {
    			asd = spi->controller_state;
    			bits = (asd->csr >> 4) & 0xf;
    			if (bits != xfer->bits_per_word - 8) {
    				dev_dbg(&spi->dev, "you can't yet change "
    
    					 "bits_per_word in transfers\n");
    
    		/* FIXME implement these protocol options!! */
    
    			dev_dbg(&spi->dev, "no protocol options yet\n");
    			return -ENOPROTOOPT;
    		}
    
    
    David Brownell's avatar
    David Brownell committed
    		/*
    		 * DMA map early, for performance (empties dcache ASAP) and
    		 * better fault reporting.  This is a DMA-only driver.
    		 *
    		 * NOTE that if dma_unmap_single() ever starts to do work on
    		 * platforms supported by this driver, we would need to clean
    		 * up mappings for previously-mapped transfers.
    		 */
    		if (!msg->is_dma_mapped) {
    			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
    				return -ENOMEM;
    		}
    
    	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    		dev_dbg(controller,
    			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
    			xfer, xfer->len,
    			xfer->tx_buf, xfer->tx_dma,
    			xfer->rx_buf, xfer->rx_dma);
    	}
    
    
    	msg->status = -EINPROGRESS;
    	msg->actual_length = 0;
    
    	spin_lock_irqsave(&as->lock, flags);
    	list_add_tail(&msg->queue, &as->queue);
    	if (!as->current_transfer)
    		atmel_spi_next_message(spi->master);
    	spin_unlock_irqrestore(&as->lock, flags);
    
    	return 0;
    }
    
    
    static void atmel_spi_cleanup(struct spi_device *spi)
    
    	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
    
    	struct atmel_spi_device	*asd = spi->controller_state;
    
    	unsigned		gpio = (unsigned) spi->controller_data;
    	unsigned long		flags;
    
    
    		return;
    
    	spin_lock_irqsave(&as->lock, flags);
    	if (as->stay == spi) {
    		as->stay = NULL;
    		cs_deactivate(as, spi);
    	}
    	spin_unlock_irqrestore(&as->lock, flags);
    
    
    	spi->controller_state = NULL;
    
    }
    
    /*-------------------------------------------------------------------------*/
    
    
    static int atmel_spi_probe(struct platform_device *pdev)
    
    {
    	struct resource		*regs;
    	int			irq;
    	struct clk		*clk;
    	int			ret;
    	struct spi_master	*master;
    	struct atmel_spi	*as;
    
    	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	if (!regs)
    		return -ENXIO;
    
    	irq = platform_get_irq(pdev, 0);
    	if (irq < 0)
    		return irq;
    
    	clk = clk_get(&pdev->dev, "spi_clk");
    	if (IS_ERR(clk))
    		return PTR_ERR(clk);
    
    	/* setup spi core then atmel-specific driver state */
    	ret = -ENOMEM;
    	master = spi_alloc_master(&pdev->dev, sizeof *as);
    	if (!master)
    		goto out_free;
    
    
    	/* the spi->mode bits understood by this driver: */
    	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
    
    
    	master->bus_num = pdev->id;
    	master->num_chipselect = 4;
    	master->setup = atmel_spi_setup;
    	master->transfer = atmel_spi_transfer;
    	master->cleanup = atmel_spi_cleanup;
    	platform_set_drvdata(pdev, master);
    
    	as = spi_master_get_devdata(master);
    
    
    David Brownell's avatar
    David Brownell committed
    	/*
    	 * Scratch buffer is used for throwaway rx and tx data.
    	 * It's coherent to minimize dcache pollution.
    	 */
    
    	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
    					&as->buffer_dma, GFP_KERNEL);
    	if (!as->buffer)
    		goto out_free;
    
    	spin_lock_init(&as->lock);
    	INIT_LIST_HEAD(&as->queue);
    	as->pdev = pdev;
    
    	as->regs = ioremap(regs->start, resource_size(regs));
    
    	if (!as->regs)
    		goto out_free_buffer;
    	as->irq = irq;
    	as->clk = clk;
    
    	ret = request_irq(irq, atmel_spi_interrupt, 0,
    
    			dev_name(&pdev->dev), master);
    
    	if (ret)
    		goto out_unmap_regs;
    
    	/* Initialize the hardware */
    	clk_enable(clk);
    	spi_writel(as, CR, SPI_BIT(SWRST));
    
    	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
    
    	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
    	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
    	spi_writel(as, CR, SPI_BIT(SPIEN));
    
    	/* go! */
    	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
    			(unsigned long)regs->start, irq);
    
    	ret = spi_register_master(master);
    	if (ret)
    		goto out_reset_hw;
    
    	return 0;
    
    out_reset_hw:
    	spi_writel(as, CR, SPI_BIT(SWRST));
    
    	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
    
    	clk_disable(clk);
    	free_irq(irq, master);
    out_unmap_regs:
    	iounmap(as->regs);
    out_free_buffer:
    	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
    			as->buffer_dma);
    out_free: