Skip to content
Snippets Groups Projects
init.c 9.99 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include <linux/initrd.h>
    
    #include <linux/ioport.h>
    
    #include <linux/swap.h>
    
    #include <linux/memblock.h>
    
    #include <asm/cacheflush.h>
    
    #include <asm/e820.h>
    
    #include <asm/page.h>
    
    #include <asm/page_types.h>
    
    #include <asm/sections.h>
    
    #include <asm/setup.h>
    
    #include <asm/system.h>
    
    #include <asm/tlbflush.h>
    
    #include <asm/tlb.h>
    
    #include <asm/proto.h>
    
    
    DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
    
    unsigned long __initdata pgt_buf_start;
    unsigned long __meminitdata pgt_buf_end;
    unsigned long __meminitdata pgt_buf_top;
    
    
    int after_bootmem;
    
    int direct_gbpages
    #ifdef CONFIG_DIRECT_GBPAGES
    				= 1
    #endif
    ;
    
    static void __init find_early_table_space(unsigned long end, int use_pse,
    					  int use_gbpages)
    {
    
    	unsigned long puds, pmds, ptes, tables, start = 0, good_end = end;
    
    
    	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
    	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
    
    	if (use_gbpages) {
    		unsigned long extra;
    
    		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
    		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
    	} else
    		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
    
    	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
    
    	if (use_pse) {
    		unsigned long extra;
    
    		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
    #ifdef CONFIG_X86_32
    		extra += PMD_SIZE;
    #endif
    		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
    	} else
    		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
    
    	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
    
    #ifdef CONFIG_X86_32
    	/* for fixmap */
    	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
    
    
    	good_end = max_pfn_mapped << PAGE_SHIFT;
    
    	base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
    
    	if (base == MEMBLOCK_ERROR)
    
    		panic("Cannot find space for the kernel page tables");
    
    
    	pgt_buf_start = base >> PAGE_SHIFT;
    	pgt_buf_end = pgt_buf_start;
    	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
    
    
    	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
    
    		end, pgt_buf_start << PAGE_SHIFT, pgt_buf_top << PAGE_SHIFT);
    
    }
    
    struct map_range {
    	unsigned long start;
    	unsigned long end;
    	unsigned page_size_mask;
    };
    
    #ifdef CONFIG_X86_32
    #define NR_RANGE_MR 3
    #else /* CONFIG_X86_64 */
    #define NR_RANGE_MR 5
    #endif
    
    
    static int __meminit save_mr(struct map_range *mr, int nr_range,
    			     unsigned long start_pfn, unsigned long end_pfn,
    			     unsigned long page_size_mask)
    
    {
    	if (start_pfn < end_pfn) {
    		if (nr_range >= NR_RANGE_MR)
    			panic("run out of range for init_memory_mapping\n");
    		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
    		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
    		mr[nr_range].page_size_mask = page_size_mask;
    		nr_range++;
    	}
    
    	return nr_range;
    }
    
    /*
     * Setup the direct mapping of the physical memory at PAGE_OFFSET.
     * This runs before bootmem is initialized and gets pages directly from
     * the physical memory. To access them they are temporarily mapped.
     */
    unsigned long __init_refok init_memory_mapping(unsigned long start,
    					       unsigned long end)
    {
    	unsigned long page_size_mask = 0;
    	unsigned long start_pfn, end_pfn;
    
    	unsigned long pos;
    
    	struct map_range mr[NR_RANGE_MR];
    	int nr_range, i;
    	int use_pse, use_gbpages;
    
    	printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
    
    
    #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
    
    	/*
    	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
    	 * This will simplify cpa(), which otherwise needs to support splitting
    	 * large pages into small in interrupt context, etc.
    	 */
    	use_pse = use_gbpages = 0;
    #else
    	use_pse = cpu_has_pse;
    	use_gbpages = direct_gbpages;
    #endif
    
    	/* Enable PSE if available */
    	if (cpu_has_pse)
    		set_in_cr4(X86_CR4_PSE);
    
    	/* Enable PGE if available */
    	if (cpu_has_pge) {
    		set_in_cr4(X86_CR4_PGE);
    		__supported_pte_mask |= _PAGE_GLOBAL;
    	}
    
    	if (use_gbpages)
    		page_size_mask |= 1 << PG_LEVEL_1G;
    	if (use_pse)
    		page_size_mask |= 1 << PG_LEVEL_2M;
    
    	memset(mr, 0, sizeof(mr));
    	nr_range = 0;
    
    	/* head if not big page alignment ? */
    	start_pfn = start >> PAGE_SHIFT;
    	pos = start_pfn << PAGE_SHIFT;
    #ifdef CONFIG_X86_32
    	/*
    	 * Don't use a large page for the first 2/4MB of memory
    	 * because there are often fixed size MTRRs in there
    	 * and overlapping MTRRs into large pages can cause
    	 * slowdowns.
    	 */
    	if (pos == 0)
    		end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
    	else
    		end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
    				 << (PMD_SHIFT - PAGE_SHIFT);
    #else /* CONFIG_X86_64 */
    	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
    			<< (PMD_SHIFT - PAGE_SHIFT);
    #endif
    	if (end_pfn > (end >> PAGE_SHIFT))
    		end_pfn = end >> PAGE_SHIFT;
    	if (start_pfn < end_pfn) {
    		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
    		pos = end_pfn << PAGE_SHIFT;
    	}
    
    	/* big page (2M) range */
    	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
    			 << (PMD_SHIFT - PAGE_SHIFT);
    #ifdef CONFIG_X86_32
    	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
    #else /* CONFIG_X86_64 */
    	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
    			 << (PUD_SHIFT - PAGE_SHIFT);
    	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
    		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
    #endif
    
    	if (start_pfn < end_pfn) {
    		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
    				page_size_mask & (1<<PG_LEVEL_2M));
    		pos = end_pfn << PAGE_SHIFT;
    	}
    
    #ifdef CONFIG_X86_64
    	/* big page (1G) range */
    	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
    			 << (PUD_SHIFT - PAGE_SHIFT);
    	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
    	if (start_pfn < end_pfn) {
    		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
    				page_size_mask &
    				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
    		pos = end_pfn << PAGE_SHIFT;
    	}
    
    	/* tail is not big page (1G) alignment */
    	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
    			 << (PMD_SHIFT - PAGE_SHIFT);
    	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
    	if (start_pfn < end_pfn) {
    		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
    				page_size_mask & (1<<PG_LEVEL_2M));
    		pos = end_pfn << PAGE_SHIFT;
    	}
    #endif
    
    	/* tail is not big page (2M) alignment */
    	start_pfn = pos>>PAGE_SHIFT;
    	end_pfn = end>>PAGE_SHIFT;
    	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
    
    	/* try to merge same page size and continuous */
    	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
    		unsigned long old_start;
    		if (mr[i].end != mr[i+1].start ||
    		    mr[i].page_size_mask != mr[i+1].page_size_mask)
    			continue;
    		/* move it */
    		old_start = mr[i].start;
    		memmove(&mr[i], &mr[i+1],
    			(nr_range - 1 - i) * sizeof(struct map_range));
    		mr[i--].start = old_start;
    		nr_range--;
    	}
    
    	for (i = 0; i < nr_range; i++)
    		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
    				mr[i].start, mr[i].end,
    			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
    			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
    
    	/*
    	 * Find space for the kernel direct mapping tables.
    	 *
    	 * Later we should allocate these tables in the local node of the
    	 * memory mapped. Unfortunately this is done currently before the
    	 * nodes are discovered.
    	 */
    	if (!after_bootmem)
    		find_early_table_space(end, use_pse, use_gbpages);
    
    	for (i = 0; i < nr_range; i++)
    		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
    						   mr[i].page_size_mask);
    
    #ifdef CONFIG_X86_32
    	early_ioremap_page_table_range_init();
    
    	load_cr3(swapper_pg_dir);
    #endif
    
    	__flush_tlb_all();
    
    
    	if (!after_bootmem && pgt_buf_end > pgt_buf_start)
    		memblock_x86_reserve_range(pgt_buf_start << PAGE_SHIFT,
    				 pgt_buf_end << PAGE_SHIFT, "PGTABLE");
    
    
    	if (!after_bootmem)
    		early_memtest(start, end);
    
    	return ret >> PAGE_SHIFT;
    }
    
    
    /*
     * devmem_is_allowed() checks to see if /dev/mem access to a certain address
     * is valid. The argument is a physical page number.
     *
     *
     * On x86, access has to be given to the first megabyte of ram because that area
     * contains bios code and data regions used by X and dosemu and similar apps.
     * Access has to be given to non-kernel-ram areas as well, these contain the PCI
     * mmio resources as well as potential bios/acpi data regions.
     */
    int devmem_is_allowed(unsigned long pagenr)
    {
    	if (pagenr <= 256)
    		return 1;
    	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
    		return 0;
    	if (!page_is_ram(pagenr))
    		return 1;
    	return 0;
    }
    
    
    void free_init_pages(char *what, unsigned long begin, unsigned long end)
    {
    
    	unsigned long addr;
    	unsigned long begin_aligned, end_aligned;
    
    	/* Make sure boundaries are page aligned */
    	begin_aligned = PAGE_ALIGN(begin);
    	end_aligned   = end & PAGE_MASK;
    
    	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
    		begin = begin_aligned;
    		end   = end_aligned;
    	}
    
    	if (begin >= end)
    
    	/*
    	 * If debugging page accesses then do not free this memory but
    	 * mark them not present - any buggy init-section access will
    	 * create a kernel page fault:
    	 */
    #ifdef CONFIG_DEBUG_PAGEALLOC
    	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
    
    	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
    #else
    	/*
    	 * We just marked the kernel text read only above, now that
    	 * we are going to free part of that, we need to make that
    
    	 * writeable and non-executable first.
    
    	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
    
    	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
    
    	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
    
    	for (; addr < end; addr += PAGE_SIZE) {
    		ClearPageReserved(virt_to_page(addr));
    		init_page_count(virt_to_page(addr));
    
    		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
    
    		free_page(addr);
    		totalram_pages++;
    	}
    #endif
    }
    
    void free_initmem(void)
    {
    	free_init_pages("unused kernel memory",
    			(unsigned long)(&__init_begin),
    			(unsigned long)(&__init_end));
    }
    
    
    #ifdef CONFIG_BLK_DEV_INITRD
    void free_initrd_mem(unsigned long start, unsigned long end)
    {
    
    	/*
    	 * end could be not aligned, and We can not align that,
    	 * decompresser could be confused by aligned initrd_end
    	 * We already reserve the end partial page before in
    	 *   - i386_start_kernel()
    	 *   - x86_64_start_kernel()
    	 *   - relocate_initrd()
    	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
    	 */
    	free_init_pages("initrd memory", start, PAGE_ALIGN(end));