Skip to content
Snippets Groups Projects
intel_pstate.c 17.4 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * intel_pstate.c: Native P state management for Intel processors
    
     *
     * (C) Copyright 2012 Intel Corporation
     * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * as published by the Free Software Foundation; version 2
     * of the License.
     */
    
    #include <linux/kernel.h>
    #include <linux/kernel_stat.h>
    #include <linux/module.h>
    #include <linux/ktime.h>
    #include <linux/hrtimer.h>
    #include <linux/tick.h>
    #include <linux/slab.h>
    #include <linux/sched.h>
    #include <linux/list.h>
    #include <linux/cpu.h>
    #include <linux/cpufreq.h>
    #include <linux/sysfs.h>
    #include <linux/types.h>
    #include <linux/fs.h>
    #include <linux/debugfs.h>
    #include <trace/events/power.h>
    
    #include <asm/div64.h>
    #include <asm/msr.h>
    #include <asm/cpu_device_id.h>
    
    #define SAMPLE_COUNT		3
    
    #define FRAC_BITS 8
    #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
    #define fp_toint(X) ((X) >> FRAC_BITS)
    
    static inline int32_t mul_fp(int32_t x, int32_t y)
    {
    	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
    }
    
    static inline int32_t div_fp(int32_t x, int32_t y)
    {
    	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
    }
    
    struct sample {
    
    	u64 aperf;
    	u64 mperf;
    	int freq;
    };
    
    struct pstate_data {
    	int	current_pstate;
    	int	min_pstate;
    	int	max_pstate;
    	int	turbo_pstate;
    };
    
    struct _pid {
    	int setpoint;
    	int32_t integral;
    	int32_t p_gain;
    	int32_t i_gain;
    	int32_t d_gain;
    	int deadband;
    
    };
    
    struct cpudata {
    	int cpu;
    
    	char name[64];
    
    	struct timer_list timer;
    
    	struct pstate_adjust_policy *pstate_policy;
    	struct pstate_data pstate;
    	struct _pid pid;
    
    	int min_pstate_count;
    
    	u64	prev_aperf;
    	u64	prev_mperf;
    	int	sample_ptr;
    	struct sample samples[SAMPLE_COUNT];
    };
    
    static struct cpudata **all_cpu_data;
    struct pstate_adjust_policy {
    	int sample_rate_ms;
    	int deadband;
    	int setpoint;
    	int p_gain_pct;
    	int d_gain_pct;
    	int i_gain_pct;
    };
    
    static struct pstate_adjust_policy default_policy = {
    	.sample_rate_ms = 10,
    	.deadband = 0,
    
    	.setpoint = 97,
    	.p_gain_pct = 20,
    
    };
    
    struct perf_limits {
    	int no_turbo;
    	int max_perf_pct;
    	int min_perf_pct;
    	int32_t max_perf;
    	int32_t min_perf;
    
    	int max_policy_pct;
    	int max_sysfs_pct;
    
    };
    
    static struct perf_limits limits = {
    	.no_turbo = 0,
    	.max_perf_pct = 100,
    	.max_perf = int_tofp(1),
    	.min_perf_pct = 0,
    	.min_perf = 0,
    
    	.max_policy_pct = 100,
    	.max_sysfs_pct = 100,
    
    };
    
    static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
    			int deadband, int integral) {
    	pid->setpoint = setpoint;
    	pid->deadband  = deadband;
    	pid->integral  = int_tofp(integral);
    	pid->last_err  = setpoint - busy;
    }
    
    static inline void pid_p_gain_set(struct _pid *pid, int percent)
    {
    	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
    }
    
    static inline void pid_i_gain_set(struct _pid *pid, int percent)
    {
    	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
    }
    
    static inline void pid_d_gain_set(struct _pid *pid, int percent)
    {
    
    	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
    }
    
    
    static signed int pid_calc(struct _pid *pid, int32_t busy)
    
    	int32_t pterm, dterm, fp_error;
    	int32_t integral_limit;
    
    
    	fp_error = int_tofp(pid->setpoint) - busy;
    
    	if (abs(fp_error) <= int_tofp(pid->deadband))
    
    		return 0;
    
    	pterm = mul_fp(pid->p_gain, fp_error);
    
    	pid->integral += fp_error;
    
    	/* limit the integral term */
    	integral_limit = int_tofp(30);
    	if (pid->integral > integral_limit)
    		pid->integral = integral_limit;
    	if (pid->integral < -integral_limit)
    		pid->integral = -integral_limit;
    
    
    	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
    	pid->last_err = fp_error;
    
    
    	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
    
    	return (signed int)fp_toint(result);
    }
    
    static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
    {
    	pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
    	pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
    	pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
    
    	pid_reset(&cpu->pid,
    		cpu->pstate_policy->setpoint,
    		100,
    		cpu->pstate_policy->deadband,
    		0);
    }
    
    static inline void intel_pstate_reset_all_pid(void)
    {
    	unsigned int cpu;
    	for_each_online_cpu(cpu) {
    		if (all_cpu_data[cpu])
    			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
    	}
    }
    
    /************************** debugfs begin ************************/
    static int pid_param_set(void *data, u64 val)
    {
    	*(u32 *)data = val;
    	intel_pstate_reset_all_pid();
    	return 0;
    }
    static int pid_param_get(void *data, u64 *val)
    {
    	*val = *(u32 *)data;
    	return 0;
    }
    DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
    			pid_param_set, "%llu\n");
    
    struct pid_param {
    	char *name;
    	void *value;
    };
    
    static struct pid_param pid_files[] = {
    	{"sample_rate_ms", &default_policy.sample_rate_ms},
    	{"d_gain_pct", &default_policy.d_gain_pct},
    	{"i_gain_pct", &default_policy.i_gain_pct},
    	{"deadband", &default_policy.deadband},
    	{"setpoint", &default_policy.setpoint},
    	{"p_gain_pct", &default_policy.p_gain_pct},
    	{NULL, NULL}
    };
    
    static struct dentry *debugfs_parent;
    static void intel_pstate_debug_expose_params(void)
    {
    	int i = 0;
    
    	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
    	if (IS_ERR_OR_NULL(debugfs_parent))
    		return;
    	while (pid_files[i].name) {
    		debugfs_create_file(pid_files[i].name, 0660,
    				debugfs_parent, pid_files[i].value,
    				&fops_pid_param);
    		i++;
    	}
    }
    
    /************************** debugfs end ************************/
    
    /************************** sysfs begin ************************/
    #define show_one(file_name, object)					\
    	static ssize_t show_##file_name					\
    	(struct kobject *kobj, struct attribute *attr, char *buf)	\
    	{								\
    		return sprintf(buf, "%u\n", limits.object);		\
    	}
    
    static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
    				const char *buf, size_t count)
    {
    	unsigned int input;
    	int ret;
    	ret = sscanf(buf, "%u", &input);
    	if (ret != 1)
    		return -EINVAL;
    	limits.no_turbo = clamp_t(int, input, 0 , 1);
    
    	return count;
    }
    
    static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
    				const char *buf, size_t count)
    {
    	unsigned int input;
    	int ret;
    	ret = sscanf(buf, "%u", &input);
    	if (ret != 1)
    		return -EINVAL;
    
    
    	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
    	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
    
    	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
    	return count;
    }
    
    static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
    				const char *buf, size_t count)
    {
    	unsigned int input;
    	int ret;
    	ret = sscanf(buf, "%u", &input);
    	if (ret != 1)
    		return -EINVAL;
    	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
    	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
    
    	return count;
    }
    
    show_one(no_turbo, no_turbo);
    show_one(max_perf_pct, max_perf_pct);
    show_one(min_perf_pct, min_perf_pct);
    
    define_one_global_rw(no_turbo);
    define_one_global_rw(max_perf_pct);
    define_one_global_rw(min_perf_pct);
    
    static struct attribute *intel_pstate_attributes[] = {
    	&no_turbo.attr,
    	&max_perf_pct.attr,
    	&min_perf_pct.attr,
    	NULL
    };
    
    static struct attribute_group intel_pstate_attr_group = {
    	.attrs = intel_pstate_attributes,
    };
    static struct kobject *intel_pstate_kobject;
    
    static void intel_pstate_sysfs_expose_params(void)
    {
    	int rc;
    
    	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
    						&cpu_subsys.dev_root->kobj);
    	BUG_ON(!intel_pstate_kobject);
    	rc = sysfs_create_group(intel_pstate_kobject,
    				&intel_pstate_attr_group);
    	BUG_ON(rc);
    }
    
    /************************** sysfs end ************************/
    
    static int intel_pstate_min_pstate(void)
    {
    	u64 value;
    
    	rdmsrl(MSR_PLATFORM_INFO, value);
    
    	return (value >> 40) & 0xFF;
    }
    
    static int intel_pstate_max_pstate(void)
    {
    	u64 value;
    
    	rdmsrl(MSR_PLATFORM_INFO, value);
    
    	return (value >> 8) & 0xFF;
    }
    
    static int intel_pstate_turbo_pstate(void)
    {
    	u64 value;
    	int nont, ret;
    
    	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
    
    	nont = intel_pstate_max_pstate();
    	ret = ((value) & 255);
    	if (ret <= nont)
    		ret = nont;
    	return ret;
    }
    
    static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
    {
    	int max_perf = cpu->pstate.turbo_pstate;
    	int min_perf;
    	if (limits.no_turbo)
    		max_perf = cpu->pstate.max_pstate;
    
    	max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
    	*max = clamp_t(int, max_perf,
    			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
    
    	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
    	*min = clamp_t(int, min_perf,
    			cpu->pstate.min_pstate, max_perf);
    }
    
    static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
    {
    	int max_perf, min_perf;
    
    
    	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
    
    	pstate = clamp_t(int, pstate, min_perf, max_perf);
    
    	if (pstate == cpu->pstate.current_pstate)
    		return;
    
    	trace_cpu_frequency(pstate * 100000, cpu->cpu);
    
    	cpu->pstate.current_pstate = pstate;
    
    	val = pstate << 8;
    
    	if (limits.no_turbo)
    
    		val |= (u64)1 << 32;
    
    	wrmsrl(MSR_IA32_PERF_CTL, val);
    
    }
    
    static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
    {
    	int target;
    	target = cpu->pstate.current_pstate + steps;
    
    	intel_pstate_set_pstate(cpu, target);
    }
    
    static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
    {
    	int target;
    	target = cpu->pstate.current_pstate - steps;
    	intel_pstate_set_pstate(cpu, target);
    }
    
    static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
    {
    	sprintf(cpu->name, "Intel 2nd generation core");
    
    	cpu->pstate.min_pstate = intel_pstate_min_pstate();
    	cpu->pstate.max_pstate = intel_pstate_max_pstate();
    	cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
    
    	/*
    	 * goto max pstate so we don't slow up boot if we are built-in if we are
    	 * a module we will take care of it during normal operation
    	 */
    	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
    }
    
    static inline void intel_pstate_calc_busy(struct cpudata *cpu,
    					struct sample *sample)
    {
    	u64 core_pct;
    
    	core_pct = div64_u64(int_tofp(sample->aperf * 100),
    			     sample->mperf);
    	sample->freq = fp_toint(cpu->pstate.max_pstate * core_pct * 1000);
    
    }
    
    static inline void intel_pstate_sample(struct cpudata *cpu)
    {
    	u64 aperf, mperf;
    
    	rdmsrl(MSR_IA32_APERF, aperf);
    	rdmsrl(MSR_IA32_MPERF, mperf);
    
    	cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
    	cpu->samples[cpu->sample_ptr].aperf = aperf;
    	cpu->samples[cpu->sample_ptr].mperf = mperf;
    	cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
    	cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
    
    	intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
    
    
    	cpu->prev_aperf = aperf;
    	cpu->prev_mperf = mperf;
    }
    
    static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
    {
    	int sample_time, delay;
    
    	sample_time = cpu->pstate_policy->sample_rate_ms;
    	delay = msecs_to_jiffies(sample_time);
    	mod_timer_pinned(&cpu->timer, jiffies + delay);
    }
    
    
    static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
    
    	int32_t core_busy, max_pstate, current_pstate;
    
    	core_busy = cpu->samples[cpu->sample_ptr].core_pct_busy;
    
    	max_pstate = int_tofp(cpu->pstate.max_pstate);
    
    	current_pstate = int_tofp(cpu->pstate.current_pstate);
    
    	return mul_fp(core_busy, div_fp(max_pstate, current_pstate));
    
    }
    
    static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
    {
    
    	struct _pid *pid;
    	signed int ctl = 0;
    	int steps;
    
    	pid = &cpu->pid;
    	busy_scaled = intel_pstate_get_scaled_busy(cpu);
    
    	ctl = pid_calc(pid, busy_scaled);
    
    	steps = abs(ctl);
    	if (ctl < 0)
    		intel_pstate_pstate_increase(cpu, steps);
    	else
    		intel_pstate_pstate_decrease(cpu, steps);
    }
    
    static void intel_pstate_timer_func(unsigned long __data)
    {
    	struct cpudata *cpu = (struct cpudata *) __data;
    
    	intel_pstate_sample(cpu);
    
    	intel_pstate_adjust_busy_pstate(cpu);
    
    
    	if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
    		cpu->min_pstate_count++;
    		if (!(cpu->min_pstate_count % 5)) {
    			intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
    		}
    	} else
    		cpu->min_pstate_count = 0;
    
    	intel_pstate_set_sample_time(cpu);
    }
    
    #define ICPU(model, policy) \
    	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
    
    static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
    	ICPU(0x2a, default_policy),
    	ICPU(0x2d, default_policy),
    
    	ICPU(0x3a, default_policy),
    
    	ICPU(0x3c, default_policy),
    	ICPU(0x3e, default_policy),
    	ICPU(0x3f, default_policy),
    	ICPU(0x45, default_policy),
    	ICPU(0x46, default_policy),
    
    	{}
    };
    MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
    
    static int intel_pstate_init_cpu(unsigned int cpunum)
    {
    
    	const struct x86_cpu_id *id;
    	struct cpudata *cpu;
    
    	id = x86_match_cpu(intel_pstate_cpu_ids);
    	if (!id)
    		return -ENODEV;
    
    	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
    	if (!all_cpu_data[cpunum])
    		return -ENOMEM;
    
    	cpu = all_cpu_data[cpunum];
    
    	intel_pstate_get_cpu_pstates(cpu);
    
    	cpu->cpu = cpunum;
    	cpu->pstate_policy =
    		(struct pstate_adjust_policy *)id->driver_data;
    	init_timer_deferrable(&cpu->timer);
    	cpu->timer.function = intel_pstate_timer_func;
    	cpu->timer.data =
    		(unsigned long)cpu;
    	cpu->timer.expires = jiffies + HZ/100;
    	intel_pstate_busy_pid_reset(cpu);
    	intel_pstate_sample(cpu);
    	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
    
    	add_timer_on(&cpu->timer, cpunum);
    
    	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
    
    	return 0;
    }
    
    static unsigned int intel_pstate_get(unsigned int cpu_num)
    {
    	struct sample *sample;
    	struct cpudata *cpu;
    
    	cpu = all_cpu_data[cpu_num];
    	if (!cpu)
    		return 0;
    	sample = &cpu->samples[cpu->sample_ptr];
    	return sample->freq;
    }
    
    static int intel_pstate_set_policy(struct cpufreq_policy *policy)
    {
    	struct cpudata *cpu;
    
    	cpu = all_cpu_data[policy->cpu];
    
    
    	if (!policy->cpuinfo.max_freq)
    		return -ENODEV;
    
    
    	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
    		limits.min_perf_pct = 100;
    		limits.min_perf = int_tofp(1);
    		limits.max_perf_pct = 100;
    		limits.max_perf = int_tofp(1);
    		limits.no_turbo = 0;
    
    	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
    	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
    	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
    
    
    	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
    	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
    	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
    
    	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
    
    
    	return 0;
    }
    
    static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
    {
    	cpufreq_verify_within_limits(policy,
    				policy->cpuinfo.min_freq,
    				policy->cpuinfo.max_freq);
    
    	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
    		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
    		return -EINVAL;
    
    	return 0;
    }
    
    
    static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
    
    {
    	int cpu = policy->cpu;
    
    	del_timer(&all_cpu_data[cpu]->timer);
    	kfree(all_cpu_data[cpu]);
    	all_cpu_data[cpu] = NULL;
    	return 0;
    }
    
    
    static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
    
    
    	rc = intel_pstate_init_cpu(policy->cpu);
    	if (rc)
    		return rc;
    
    	cpu = all_cpu_data[policy->cpu];
    
    	if (!limits.no_turbo &&
    		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
    		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
    	else
    		policy->policy = CPUFREQ_POLICY_POWERSAVE;
    
    
    	policy->min = cpu->pstate.min_pstate * 100000;
    	policy->max = cpu->pstate.turbo_pstate * 100000;
    
    
    	/* cpuinfo and default policy values */
    	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
    	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
    	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
    	cpumask_set_cpu(policy->cpu, policy->cpus);
    
    	return 0;
    }
    
    static struct cpufreq_driver intel_pstate_driver = {
    	.flags		= CPUFREQ_CONST_LOOPS,
    	.verify		= intel_pstate_verify_policy,
    	.setpolicy	= intel_pstate_set_policy,
    	.get		= intel_pstate_get,
    	.init		= intel_pstate_cpu_init,
    	.exit		= intel_pstate_cpu_exit,
    	.name		= "intel_pstate",
    };
    
    
    static int intel_pstate_msrs_not_valid(void)
    {
    	/* Check that all the msr's we are using are valid. */
    	u64 aperf, mperf, tmp;
    
    	rdmsrl(MSR_IA32_APERF, aperf);
    	rdmsrl(MSR_IA32_MPERF, mperf);
    
    	if (!intel_pstate_min_pstate() ||
    		!intel_pstate_max_pstate() ||
    		!intel_pstate_turbo_pstate())
    		return -ENODEV;
    
    	rdmsrl(MSR_IA32_APERF, tmp);
    	if (!(tmp - aperf))
    		return -ENODEV;
    
    	rdmsrl(MSR_IA32_MPERF, tmp);
    	if (!(tmp - mperf))
    		return -ENODEV;
    
    	return 0;
    }
    
    static int __init intel_pstate_init(void)
    {
    
    	const struct x86_cpu_id *id;
    
    
    	id = x86_match_cpu(intel_pstate_cpu_ids);
    	if (!id)
    		return -ENODEV;
    
    
    	if (intel_pstate_msrs_not_valid())
    		return -ENODEV;
    
    
    	pr_info("Intel P-state driver initializing.\n");
    
    
    	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
    
    	if (!all_cpu_data)
    		return -ENOMEM;
    
    	rc = cpufreq_register_driver(&intel_pstate_driver);
    	if (rc)
    		goto out;
    
    	intel_pstate_debug_expose_params();
    	intel_pstate_sysfs_expose_params();
    	return rc;
    out:
    
    	get_online_cpus();
    	for_each_online_cpu(cpu) {
    		if (all_cpu_data[cpu]) {
    			del_timer_sync(&all_cpu_data[cpu]->timer);
    			kfree(all_cpu_data[cpu]);
    		}
    	}
    
    	put_online_cpus();
    	vfree(all_cpu_data);
    
    	return -ENODEV;
    }
    device_initcall(intel_pstate_init);
    
    
    static int __init intel_pstate_setup(char *str)
    {
    	if (!str)
    		return -EINVAL;
    
    	if (!strcmp(str, "disable"))
    		no_load = 1;
    	return 0;
    }
    early_param("intel_pstate", intel_pstate_setup);
    
    
    MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
    MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
    MODULE_LICENSE("GPL");