Skip to content
Snippets Groups Projects
time.c 18 KiB
Newer Older
  • Learn to ignore specific revisions
  • Linus Torvalds's avatar
    Linus Torvalds committed
    /*
     *  linux/kernel/time.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     *
     *  This file contains the interface functions for the various
     *  time related system calls: time, stime, gettimeofday, settimeofday,
     *			       adjtime
     */
    /*
     * Modification history kernel/time.c
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * 1993-09-02    Philip Gladstone
    
     *      Created file with time related functions from sched.c and adjtimex()
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * 1993-10-08    Torsten Duwe
     *      adjtime interface update and CMOS clock write code
     * 1995-08-13    Torsten Duwe
     *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
     * 1999-01-16    Ulrich Windl
     *	Introduced error checking for many cases in adjtimex().
     *	Updated NTP code according to technical memorandum Jan '96
     *	"A Kernel Model for Precision Timekeeping" by Dave Mills
     *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
     *	(Even though the technical memorandum forbids it)
     * 2004-07-14	 Christoph Lameter
     *	Added getnstimeofday to allow the posix timer functions to return
     *	with nanosecond accuracy
     */
    
    #include <linux/module.h>
    #include <linux/timex.h>
    
    #include <linux/capability.h>
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #include <linux/errno.h>
    #include <linux/syscalls.h>
    #include <linux/security.h>
    #include <linux/fs.h>
    
    Roman Zippel's avatar
    Roman Zippel committed
    #include <linux/math64.h>
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    #include <asm/uaccess.h>
    #include <asm/unistd.h>
    
    
    #include "timeconst.h"
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * The timezone where the local system is located.  Used as a default by some
     * programs who obtain this value by using gettimeofday.
     */
    struct timezone sys_tz;
    
    EXPORT_SYMBOL(sys_tz);
    
    #ifdef __ARCH_WANT_SYS_TIME
    
    /*
     * sys_time() can be implemented in user-level using
     * sys_gettimeofday().  Is this for backwards compatibility?  If so,
     * why not move it into the appropriate arch directory (for those
     * architectures that need it).
     */
    
    SYSCALL_DEFINE1(time, time_t __user *, tloc)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	time_t i = get_seconds();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    	if (tloc) {
    
    		if (put_user(i,tloc))
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	}
    
    	force_successful_syscall_return();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	return i;
    }
    
    /*
     * sys_stime() can be implemented in user-level using
     * sys_settimeofday().  Is this for backwards compatibility?  If so,
     * why not move it into the appropriate arch directory (for those
     * architectures that need it).
     */
    
    SYSCALL_DEFINE1(stime, time_t __user *, tptr)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	struct timespec tv;
    	int err;
    
    	if (get_user(tv.tv_sec, tptr))
    		return -EFAULT;
    
    	tv.tv_nsec = 0;
    
    	err = security_settime(&tv, NULL);
    	if (err)
    		return err;
    
    	do_settimeofday(&tv);
    	return 0;
    }
    
    #endif /* __ARCH_WANT_SYS_TIME */
    
    
    SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
    		struct timezone __user *, tz)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	if (likely(tv != NULL)) {
    		struct timeval ktv;
    		do_gettimeofday(&ktv);
    		if (copy_to_user(tv, &ktv, sizeof(ktv)))
    			return -EFAULT;
    	}
    	if (unlikely(tz != NULL)) {
    		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
    			return -EFAULT;
    	}
    	return 0;
    }
    
    /*
     * Adjust the time obtained from the CMOS to be UTC time instead of
     * local time.
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * This is ugly, but preferable to the alternatives.  Otherwise we
     * would either need to write a program to do it in /etc/rc (and risk
    
     * confusion if the program gets run more than once; it would also be
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * hard to make the program warp the clock precisely n hours)  or
     * compile in the timezone information into the kernel.  Bad, bad....
     *
    
     *						- TYT, 1992-01-01
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     *
     * The best thing to do is to keep the CMOS clock in universal time (UTC)
     * as real UNIX machines always do it. This avoids all headaches about
     * daylight saving times and warping kernel clocks.
     */
    
    static inline void warp_clock(void)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	write_seqlock_irq(&xtime_lock);
    	wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
    	xtime.tv_sec += sys_tz.tz_minuteswest * 60;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	write_sequnlock_irq(&xtime_lock);
    	clock_was_set();
    }
    
    /*
     * In case for some reason the CMOS clock has not already been running
     * in UTC, but in some local time: The first time we set the timezone,
     * we will warp the clock so that it is ticking UTC time instead of
     * local time. Presumably, if someone is setting the timezone then we
     * are running in an environment where the programs understand about
     * timezones. This should be done at boot time in the /etc/rc script,
     * as soon as possible, so that the clock can be set right. Otherwise,
     * various programs will get confused when the clock gets warped.
     */
    
    int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
    {
    	static int firsttime = 1;
    	int error = 0;
    
    
    	if (tv && !timespec_valid(tv))
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	error = security_settime(tv, tz);
    	if (error)
    		return error;
    
    	if (tz) {
    		/* SMP safe, global irq locking makes it work. */
    		sys_tz = *tz;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		if (firsttime) {
    			firsttime = 0;
    			if (!tv)
    				warp_clock();
    		}
    	}
    	if (tv)
    	{
    		/* SMP safe, again the code in arch/foo/time.c should
    		 * globally block out interrupts when it runs.
    		 */
    		return do_settimeofday(tv);
    	}
    	return 0;
    }
    
    
    SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
    		struct timezone __user *, tz)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	struct timeval user_tv;
    	struct timespec	new_ts;
    	struct timezone new_tz;
    
    	if (tv) {
    		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
    			return -EFAULT;
    		new_ts.tv_sec = user_tv.tv_sec;
    		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
    	}
    	if (tz) {
    		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
    			return -EFAULT;
    	}
    
    	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
    }
    
    
    SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	struct timex txc;		/* Local copy of parameter */
    	int ret;
    
    	/* Copy the user data space into the kernel copy
    	 * structure. But bear in mind that the structures
    	 * may change
    	 */
    	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
    		return -EFAULT;
    	ret = do_adjtimex(&txc);
    	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
    }
    
    /**
     * current_fs_time - Return FS time
     * @sb: Superblock.
     *
    
     * Return the current time truncated to the time granularity supported by
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * the fs.
     */
    struct timespec current_fs_time(struct super_block *sb)
    {
    	struct timespec now = current_kernel_time();
    	return timespec_trunc(now, sb->s_time_gran);
    }
    EXPORT_SYMBOL(current_fs_time);
    
    
    Eric Dumazet's avatar
    Eric Dumazet committed
    /*
     * Convert jiffies to milliseconds and back.
     *
     * Avoid unnecessary multiplications/divisions in the
     * two most common HZ cases:
     */
    unsigned int inline jiffies_to_msecs(const unsigned long j)
    {
    #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
    	return (MSEC_PER_SEC / HZ) * j;
    #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
    	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
    #else
    
    # if BITS_PER_LONG == 32
    
    	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
    
    # else
    	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
    # endif
    
    Eric Dumazet's avatar
    Eric Dumazet committed
    #endif
    }
    EXPORT_SYMBOL(jiffies_to_msecs);
    
    unsigned int inline jiffies_to_usecs(const unsigned long j)
    {
    #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
    	return (USEC_PER_SEC / HZ) * j;
    #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
    	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
    #else
    
    # if BITS_PER_LONG == 32
    
    	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
    
    # else
    	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
    # endif
    
    Eric Dumazet's avatar
    Eric Dumazet committed
    #endif
    }
    EXPORT_SYMBOL(jiffies_to_usecs);
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    /**
    
     * timespec_trunc - Truncate timespec to a granularity
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * @t: Timespec
    
     * @gran: Granularity in ns.
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     *
    
     * Truncate a timespec to a granularity. gran must be smaller than a second.
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * Always rounds down.
     *
     * This function should be only used for timestamps returned by
     * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
    
    Li Zefan's avatar
    Li Zefan committed
     * it doesn't handle the better resolution of the latter.
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     */
    struct timespec timespec_trunc(struct timespec t, unsigned gran)
    {
    	/*
    	 * Division is pretty slow so avoid it for common cases.
    	 * Currently current_kernel_time() never returns better than
    	 * jiffies resolution. Exploit that.
    	 */
    	if (gran <= jiffies_to_usecs(1) * 1000) {
    		/* nothing */
    	} else if (gran == 1000000000) {
    		t.tv_nsec = 0;
    	} else {
    		t.tv_nsec -= t.tv_nsec % gran;
    	}
    	return t;
    }
    EXPORT_SYMBOL(timespec_trunc);
    
    
    #ifndef CONFIG_GENERIC_TIME
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    /*
     * Simulate gettimeofday using do_gettimeofday which only allows a timeval
     * and therefore only yields usec accuracy
     */
    void getnstimeofday(struct timespec *tv)
    {
    	struct timeval x;
    
    	do_gettimeofday(&x);
    	tv->tv_sec = x.tv_sec;
    	tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
    }
    
    EXPORT_SYMBOL_GPL(getnstimeofday);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #endif
    
    
    /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
     * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
     * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
     *
     * [For the Julian calendar (which was used in Russia before 1917,
     * Britain & colonies before 1752, anywhere else before 1582,
     * and is still in use by some communities) leave out the
     * -year/100+year/400 terms, and add 10.]
     *
     * This algorithm was first published by Gauss (I think).
     *
     * WARNING: this function will overflow on 2106-02-07 06:28:16 on
    
    Li Zefan's avatar
    Li Zefan committed
     * machines where long is 32-bit! (However, as time_t is signed, we
    
     * will already get problems at other places on 2038-01-19 03:14:08)
     */
    unsigned long
    
    mktime(const unsigned int year0, const unsigned int mon0,
           const unsigned int day, const unsigned int hour,
           const unsigned int min, const unsigned int sec)
    
    	unsigned int mon = mon0, year = year0;
    
    	/* 1..12 -> 11,12,1..10 */
    	if (0 >= (int) (mon -= 2)) {
    		mon += 12;	/* Puts Feb last since it has leap day */
    
    		year -= 1;
    	}
    
    	return ((((unsigned long)
    		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
    		  year*365 - 719499
    	    )*24 + hour /* now have hours */
    	  )*60 + min /* now have minutes */
    	)*60 + sec; /* finally seconds */
    }
    
    
    EXPORT_SYMBOL(mktime);
    
    
    /**
     * set_normalized_timespec - set timespec sec and nsec parts and normalize
     *
     * @ts:		pointer to timespec variable to be set
     * @sec:	seconds to set
     * @nsec:	nanoseconds to set
     *
     * Set seconds and nanoseconds field of a timespec variable and
     * normalize to the timespec storage format
     *
     * Note: The tv_nsec part is always in the range of
    
     *	0 <= tv_nsec < NSEC_PER_SEC
    
     * For negative values only the tv_sec field is negative !
     */
    
    void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
    
    {
    	while (nsec >= NSEC_PER_SEC) {
    
    		/*
    		 * The following asm() prevents the compiler from
    		 * optimising this loop into a modulo operation. See
    		 * also __iter_div_u64_rem() in include/linux/time.h
    		 */
    		asm("" : "+rm"(nsec));
    
    		nsec -= NSEC_PER_SEC;
    		++sec;
    	}
    	while (nsec < 0) {
    
    		nsec += NSEC_PER_SEC;
    		--sec;
    	}
    	ts->tv_sec = sec;
    	ts->tv_nsec = nsec;
    }
    
    EXPORT_SYMBOL(set_normalized_timespec);
    
    /**
     * ns_to_timespec - Convert nanoseconds to timespec
     * @nsec:       the nanoseconds value to be converted
     *
     * Returns the timespec representation of the nsec parameter.
     */
    
    struct timespec ns_to_timespec(const s64 nsec)
    
    Roman Zippel's avatar
    Roman Zippel committed
    	s32 rem;
    
    	if (!nsec)
    		return (struct timespec) {0, 0};
    
    
    Roman Zippel's avatar
    Roman Zippel committed
    	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
    	if (unlikely(rem < 0)) {
    		ts.tv_sec--;
    		rem += NSEC_PER_SEC;
    	}
    	ts.tv_nsec = rem;
    
    EXPORT_SYMBOL(ns_to_timespec);
    
    
    /**
     * ns_to_timeval - Convert nanoseconds to timeval
     * @nsec:       the nanoseconds value to be converted
     *
     * Returns the timeval representation of the nsec parameter.
     */
    
    struct timeval ns_to_timeval(const s64 nsec)
    
    {
    	struct timespec ts = ns_to_timespec(nsec);
    	struct timeval tv;
    
    	tv.tv_sec = ts.tv_sec;
    	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
    
    	return tv;
    }
    
    EXPORT_SYMBOL(ns_to_timeval);
    
    /*
     * When we convert to jiffies then we interpret incoming values
     * the following way:
     *
     * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
     *
     * - 'too large' values [that would result in larger than
     *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
     *
     * - all other values are converted to jiffies by either multiplying
     *   the input value by a factor or dividing it with a factor
     *
     * We must also be careful about 32-bit overflows.
     */
    
    unsigned long msecs_to_jiffies(const unsigned int m)
    {
    
    	/*
    	 * Negative value, means infinite timeout:
    	 */
    	if ((int)m < 0)
    
    		return MAX_JIFFY_OFFSET;
    
    #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
    
    	/*
    	 * HZ is equal to or smaller than 1000, and 1000 is a nice
    	 * round multiple of HZ, divide with the factor between them,
    	 * but round upwards:
    	 */
    
    	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
    #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
    
    	/*
    	 * HZ is larger than 1000, and HZ is a nice round multiple of
    	 * 1000 - simply multiply with the factor between them.
    	 *
    	 * But first make sure the multiplication result cannot
    	 * overflow:
    	 */
    	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
    		return MAX_JIFFY_OFFSET;
    
    
    	return m * (HZ / MSEC_PER_SEC);
    #else
    
    	/*
    	 * Generic case - multiply, round and divide. But first
    	 * check that if we are doing a net multiplication, that
    
    	 * we wouldn't overflow:
    
    	 */
    	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
    		return MAX_JIFFY_OFFSET;
    
    
    	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
    
    		>> MSEC_TO_HZ_SHR32;
    
    #endif
    }
    EXPORT_SYMBOL(msecs_to_jiffies);
    
    unsigned long usecs_to_jiffies(const unsigned int u)
    {
    	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
    		return MAX_JIFFY_OFFSET;
    #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
    	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
    #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
    	return u * (HZ / USEC_PER_SEC);
    #else
    
    	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
    
    		>> USEC_TO_HZ_SHR32;
    
    #endif
    }
    EXPORT_SYMBOL(usecs_to_jiffies);
    
    /*
     * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
     * that a remainder subtract here would not do the right thing as the
     * resolution values don't fall on second boundries.  I.e. the line:
     * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
     *
     * Rather, we just shift the bits off the right.
     *
     * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
     * value to a scaled second value.
     */
    unsigned long
    timespec_to_jiffies(const struct timespec *value)
    {
    	unsigned long sec = value->tv_sec;
    	long nsec = value->tv_nsec + TICK_NSEC - 1;
    
    	if (sec >= MAX_SEC_IN_JIFFIES){
    		sec = MAX_SEC_IN_JIFFIES;
    		nsec = 0;
    	}
    	return (((u64)sec * SEC_CONVERSION) +
    		(((u64)nsec * NSEC_CONVERSION) >>
    		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
    
    }
    EXPORT_SYMBOL(timespec_to_jiffies);
    
    void
    jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
    {
    	/*
    	 * Convert jiffies to nanoseconds and separate with
    	 * one divide.
    	 */
    
    Roman Zippel's avatar
    Roman Zippel committed
    	u32 rem;
    	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
    				    NSEC_PER_SEC, &rem);
    	value->tv_nsec = rem;
    
    }
    EXPORT_SYMBOL(jiffies_to_timespec);
    
    /* Same for "timeval"
     *
     * Well, almost.  The problem here is that the real system resolution is
     * in nanoseconds and the value being converted is in micro seconds.
     * Also for some machines (those that use HZ = 1024, in-particular),
     * there is a LARGE error in the tick size in microseconds.
    
     * The solution we use is to do the rounding AFTER we convert the
     * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
     * Instruction wise, this should cost only an additional add with carry
     * instruction above the way it was done above.
     */
    unsigned long
    timeval_to_jiffies(const struct timeval *value)
    {
    	unsigned long sec = value->tv_sec;
    	long usec = value->tv_usec;
    
    	if (sec >= MAX_SEC_IN_JIFFIES){
    		sec = MAX_SEC_IN_JIFFIES;
    		usec = 0;
    	}
    	return (((u64)sec * SEC_CONVERSION) +
    		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
    		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
    }
    
    EXPORT_SYMBOL(timeval_to_jiffies);
    
    
    void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
    {
    	/*
    	 * Convert jiffies to nanoseconds and separate with
    	 * one divide.
    	 */
    
    Roman Zippel's avatar
    Roman Zippel committed
    	u32 rem;
    
    Roman Zippel's avatar
    Roman Zippel committed
    	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
    				    NSEC_PER_SEC, &rem);
    	value->tv_usec = rem / NSEC_PER_USEC;
    
    EXPORT_SYMBOL(jiffies_to_timeval);
    
    
    /*
     * Convert jiffies/jiffies_64 to clock_t and back.
     */
    clock_t jiffies_to_clock_t(long x)
    {
    #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
    
    # if HZ < USER_HZ
    	return x * (USER_HZ / HZ);
    # else
    
    	return x / (HZ / USER_HZ);
    
    Roman Zippel's avatar
    Roman Zippel committed
    	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
    
    #endif
    }
    EXPORT_SYMBOL(jiffies_to_clock_t);
    
    unsigned long clock_t_to_jiffies(unsigned long x)
    {
    #if (HZ % USER_HZ)==0
    	if (x >= ~0UL / (HZ / USER_HZ))
    		return ~0UL;
    	return x * (HZ / USER_HZ);
    #else
    	/* Don't worry about loss of precision here .. */
    	if (x >= ~0UL / HZ * USER_HZ)
    		return ~0UL;
    
    	/* .. but do try to contain it here */
    
    Roman Zippel's avatar
    Roman Zippel committed
    	return div_u64((u64)x * HZ, USER_HZ);
    
    #endif
    }
    EXPORT_SYMBOL(clock_t_to_jiffies);
    
    u64 jiffies_64_to_clock_t(u64 x)
    {
    #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
    
    # if HZ < USER_HZ
    
    Roman Zippel's avatar
    Roman Zippel committed
    	x = div_u64(x * USER_HZ, HZ);
    
    Roman Zippel's avatar
    Roman Zippel committed
    	x = div_u64(x, HZ / USER_HZ);
    
    # else
    	/* Nothing to do */
    
    #else
    	/*
    	 * There are better ways that don't overflow early,
    	 * but even this doesn't overflow in hundreds of years
    	 * in 64 bits, so..
    	 */
    
    Roman Zippel's avatar
    Roman Zippel committed
    	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
    
    #endif
    	return x;
    }
    EXPORT_SYMBOL(jiffies_64_to_clock_t);
    
    u64 nsec_to_clock_t(u64 x)
    {
    #if (NSEC_PER_SEC % USER_HZ) == 0
    
    Roman Zippel's avatar
    Roman Zippel committed
    	return div_u64(x, NSEC_PER_SEC / USER_HZ);
    
    #elif (USER_HZ % 512) == 0
    
    Roman Zippel's avatar
    Roman Zippel committed
    	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
    
    #else
    	/*
             * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
             * overflow after 64.99 years.
             * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
             */
    
    Roman Zippel's avatar
    Roman Zippel committed
    	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #if (BITS_PER_LONG < 64)
    u64 get_jiffies_64(void)
    {
    	unsigned long seq;
    	u64 ret;
    
    	do {
    		seq = read_seqbegin(&xtime_lock);
    		ret = jiffies_64;
    	} while (read_seqretry(&xtime_lock, seq));
    	return ret;
    }
    EXPORT_SYMBOL(get_jiffies_64);
    #endif
    
    EXPORT_SYMBOL(jiffies);
    
    
    /*
     * Add two timespec values and do a safety check for overflow.
     * It's assumed that both values are valid (>= 0)
     */
    struct timespec timespec_add_safe(const struct timespec lhs,
    				  const struct timespec rhs)
    {
    	struct timespec res;
    
    	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
    				lhs.tv_nsec + rhs.tv_nsec);
    
    	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
    		res.tv_sec = TIME_T_MAX;
    
    	return res;
    }