Newer
Older
/* Common capabilities, needed by capability.o and root_plug.o
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/audit.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/ptrace.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
#include <linux/sched.h>
#include <linux/prctl.h>
#include <linux/securebits.h>
int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
{
NETLINK_CB(skb).eff_cap = current_cap();
int cap_netlink_recv(struct sk_buff *skb, int cap)
if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
return -EPERM;
return 0;
}
EXPORT_SYMBOL(cap_netlink_recv);
/*
* NOTE WELL: cap_capable() cannot be used like the kernel's capable()
* function. That is, it has the reverse semantics: cap_capable()
* returns 0 when a task has a capability, but the kernel's capable()
* returns 1 for this case.
*/
int cap_capable(struct task_struct *tsk, int cap, int audit)

David Howells
committed
__u32 cap_raised;

David Howells
committed
rcu_read_lock();
cap_raised = cap_raised(__task_cred(tsk)->cap_effective, cap);
rcu_read_unlock();
return cap_raised ? 0 : -EPERM;
}
int cap_settime(struct timespec *ts, struct timezone *tz)
{
if (!capable(CAP_SYS_TIME))
return -EPERM;
return 0;
}
int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)

David Howells
committed
int ret = 0;
rcu_read_lock();
if (!cap_issubset(__task_cred(child)->cap_permitted,
current_cred()->cap_permitted) &&

David Howells
committed
!capable(CAP_SYS_PTRACE))
ret = -EPERM;
rcu_read_unlock();
return ret;
}
int cap_ptrace_traceme(struct task_struct *parent)
{

David Howells
committed
int ret = 0;
rcu_read_lock();
if (!cap_issubset(current_cred()->cap_permitted,
__task_cred(parent)->cap_permitted) &&

David Howells
committed
!has_capability(parent, CAP_SYS_PTRACE))
ret = -EPERM;
rcu_read_unlock();
return ret;
}
int cap_capget (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{

David Howells
committed
const struct cred *cred;

David Howells
committed
rcu_read_lock();
cred = __task_cred(target);
*effective = cred->cap_effective;
*inheritable = cred->cap_inheritable;
*permitted = cred->cap_permitted;

David Howells
committed
rcu_read_unlock();
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
static inline int cap_inh_is_capped(void)
{
/*
* Return 1 if changes to the inheritable set are limited
* to the old permitted set. That is, if the current task
* does *not* possess the CAP_SETPCAP capability.
return cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0;
static inline int cap_limit_ptraced_target(void) { return 1; }
#else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
static inline int cap_inh_is_capped(void) { return 1; }
static inline int cap_limit_ptraced_target(void)
{
return !capable(CAP_SETPCAP);
}
#endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
int cap_capset(struct cred *new,
const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
if (cap_inh_is_capped() &&
!cap_issubset(*inheritable,
cap_combine(old->cap_inheritable,
old->cap_permitted)))
/* incapable of using this inheritable set */
if (!cap_issubset(*inheritable,
cap_combine(old->cap_inheritable,
old->cap_bset)))
/* no new pI capabilities outside bounding set */
return -EPERM;
/* verify restrictions on target's new Permitted set */
if (!cap_issubset(*permitted, old->cap_permitted))
return -EPERM;
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
if (!cap_issubset(*effective, *permitted))
new->cap_effective = *effective;
new->cap_inheritable = *inheritable;
new->cap_permitted = *permitted;
static inline void bprm_clear_caps(struct linux_binprm *bprm)
{

Andrew G. Morgan
committed
cap_clear(bprm->cap_post_exec_permitted);
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
bprm->cap_effective = false;
}
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
int cap_inode_need_killpriv(struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
int error;
if (!inode->i_op || !inode->i_op->getxattr)
return 0;
error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
if (error <= 0)
return 0;
return 1;
}
int cap_inode_killpriv(struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
if (!inode->i_op || !inode->i_op->removexattr)
return 0;
return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
}
static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
struct linux_binprm *bprm)
unsigned i;
int ret = 0;
if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
bprm->cap_effective = true;
else
bprm->cap_effective = false;
CAP_FOR_EACH_U32(i) {
__u32 permitted = caps->permitted.cap[i];
__u32 inheritable = caps->inheritable.cap[i];
/*
* pP' = (X & fP) | (pI & fI)
*/
bprm->cap_post_exec_permitted.cap[i] =
(current->cred->cap_bset.cap[i] & permitted) |
(current->cred->cap_inheritable.cap[i] & inheritable);
if (permitted & ~bprm->cap_post_exec_permitted.cap[i]) {
/*
* insufficient to execute correctly
*/
ret = -EPERM;
}
}
/*
* For legacy apps, with no internal support for recognizing they
* do not have enough capabilities, we return an error if they are
* missing some "forced" (aka file-permitted) capabilities.
*/
return bprm->cap_effective ? ret : 0;
}
int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
{
struct inode *inode = dentry->d_inode;
int size;
struct vfs_cap_data caps;
memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
if (!inode || !inode->i_op || !inode->i_op->getxattr)
return -ENODATA;
size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
XATTR_CAPS_SZ);
if (size == -ENODATA || size == -EOPNOTSUPP) {
/* no data, that's ok */
return -ENODATA;
}
if (size < 0)
return size;
if (size < sizeof(magic_etc))
cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
case VFS_CAP_REVISION_1:
if (size != XATTR_CAPS_SZ_1)
return -EINVAL;
tocopy = VFS_CAP_U32_1;
break;
case VFS_CAP_REVISION_2:
if (size != XATTR_CAPS_SZ_2)
return -EINVAL;
tocopy = VFS_CAP_U32_2;
break;

Andrew G. Morgan
committed
CAP_FOR_EACH_U32(i) {
if (i >= tocopy)
break;
cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
return 0;
}
/* Locate any VFS capabilities: */
static int get_file_caps(struct linux_binprm *bprm)
{
struct dentry *dentry;
int rc = 0;
struct cpu_vfs_cap_data vcaps;
bprm_clear_caps(bprm);
if (!file_caps_enabled)
return 0;
if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
return 0;
dentry = dget(bprm->file->f_dentry);
rc = get_vfs_caps_from_disk(dentry, &vcaps);
if (rc < 0) {
if (rc == -EINVAL)
printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
__func__, rc, bprm->filename);
else if (rc == -ENODATA)
rc = 0;
rc = bprm_caps_from_vfs_caps(&vcaps, bprm);
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
out:
dput(dentry);
if (rc)
bprm_clear_caps(bprm);
return rc;
}
#else
int cap_inode_need_killpriv(struct dentry *dentry)
{
return 0;
}
int cap_inode_killpriv(struct dentry *dentry)
{
return 0;
}
static inline int get_file_caps(struct linux_binprm *bprm)
{
bprm_clear_caps(bprm);
return 0;
}
#endif
int cap_bprm_set_security (struct linux_binprm *bprm)
{

Andrew G. Morgan
committed
if (!issecure(SECURE_NOROOT)) {
/*
* To support inheritance of root-permissions and suid-root
* executables under compatibility mode, we override the
* capability sets for the file.
*
* If only the real uid is 0, we do not set the effective
* bit.
*/
if (bprm->e_uid == 0 || current_uid() == 0) {

Andrew G. Morgan
committed
/* pP' = (cap_bset & ~0) | (pI & ~0) */
bprm->cap_post_exec_permitted = cap_combine(
current->cred->cap_bset,
current->cred->cap_inheritable);

Andrew G. Morgan
committed
bprm->cap_effective = (bprm->e_uid == 0);
ret = 0;
int cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
const struct cred *old = current_cred();
struct cred *new;
new = prepare_creds();
if (!new)
return -ENOMEM;
if (bprm->e_uid != old->uid || bprm->e_gid != old->gid ||

Andrew G. Morgan
committed
!cap_issubset(bprm->cap_post_exec_permitted,
set_dumpable(current->mm, suid_dumpable);
if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
if (!capable(CAP_SETUID)) {
bprm->e_uid = old->uid;
bprm->e_gid = old->gid;
if (cap_limit_ptraced_target()) {

Andrew G. Morgan
committed
bprm->cap_post_exec_permitted = cap_intersect(
bprm->cap_post_exec_permitted,
new->suid = new->euid = new->fsuid = bprm->e_uid;
new->sgid = new->egid = new->fsgid = bprm->e_gid;
/* For init, we want to retain the capabilities set
* in the init_task struct. Thus we skip the usual
* capability rules */
if (!is_global_init(current)) {
new->cap_permitted = bprm->cap_post_exec_permitted;
new->cap_effective = bprm->cap_post_exec_permitted;
/*
* Audit candidate if current->cap_effective is set
*
* We do not bother to audit if 3 things are true:
* 1) cap_effective has all caps
* 2) we are root
* 3) root is supposed to have all caps (SECURE_NOROOT)
* Since this is just a normal root execing a process.
*
* Number 1 above might fail if you don't have a full bset, but I think
* that is interesting information to audit.
*/
if (!cap_isclear(new->cap_effective)) {
if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
bprm->e_uid != 0 || new->uid != 0 ||
issecure(SECURE_NOROOT))
}
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
return commit_creds(new);
}
int cap_bprm_secureexec (struct linux_binprm *bprm)
{

David Howells
committed
const struct cred *cred = current_cred();
if (cred->uid != 0) {
if (bprm->cap_effective)
return 1;

Andrew G. Morgan
committed
if (!cap_isclear(bprm->cap_post_exec_permitted))
return (cred->euid != cred->uid ||
cred->egid != cred->gid);
int cap_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
if (!strcmp(name, XATTR_NAME_CAPS)) {
if (!capable(CAP_SETFCAP))
return -EPERM;
return 0;
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_inode_removexattr(struct dentry *dentry, const char *name)
if (!strcmp(name, XATTR_NAME_CAPS)) {
if (!capable(CAP_SETFCAP))
return -EPERM;
return 0;
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
/* moved from kernel/sys.c. */
/*
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
* a process after a call to setuid, setreuid, or setresuid.
*
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
* {r,e,s}uid != 0, the permitted and effective capabilities are
* cleared.
*
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
* capabilities of the process are cleared.
*
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
* capabilities are set to the permitted capabilities.
*
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
* never happen.
*
* -astor
*
* cevans - New behaviour, Oct '99
* A process may, via prctl(), elect to keep its capabilities when it
* calls setuid() and switches away from uid==0. Both permitted and
* effective sets will be retained.
* Without this change, it was impossible for a daemon to drop only some
* of its privilege. The call to setuid(!=0) would drop all privileges!
* Keeping uid 0 is not an option because uid 0 owns too many vital
* files..
* Thanks to Olaf Kirch and Peter Benie for spotting this.
*/
static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
(new->uid != 0 && new->euid != 0 && new->suid != 0) &&
!issecure(SECURE_KEEP_CAPS)) {
cap_clear(new->cap_permitted);
cap_clear(new->cap_effective);
if (old->euid == 0 && new->euid != 0)
cap_clear(new->cap_effective);
if (old->euid != 0 && new->euid == 0)
new->cap_effective = new->cap_permitted;
int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
{
switch (flags) {
case LSM_SETID_RE:
case LSM_SETID_ID:
case LSM_SETID_RES:
/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
if (!issecure(SECURE_NO_SETUID_FIXUP))
cap_emulate_setxuid(new, old);
/* Copied from kernel/sys.c:setfsuid. */
/*
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
* if not, we might be a bit too harsh here.
*/
if (!issecure(SECURE_NO_SETUID_FIXUP)) {
if (old->fsuid == 0 && new->fsuid != 0) {
new->cap_effective =
cap_drop_fs_set(new->cap_effective);
}
if (old->fsuid != 0 && new->fsuid == 0) {
new->cap_effective =
cap_raise_fs_set(new->cap_effective,
new->cap_permitted);
default:
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
/*
* Rationale: code calling task_setscheduler, task_setioprio, and
* task_setnice, assumes that
* . if capable(cap_sys_nice), then those actions should be allowed
* . if not capable(cap_sys_nice), but acting on your own processes,
* then those actions should be allowed
* This is insufficient now since you can call code without suid, but
* yet with increased caps.
* So we check for increased caps on the target process.
*/
static int cap_safe_nice(struct task_struct *p)

David Howells
committed
int is_subset;
rcu_read_lock();
is_subset = cap_issubset(__task_cred(p)->cap_permitted,
current_cred()->cap_permitted);
rcu_read_unlock();
if (!is_subset && !capable(CAP_SYS_NICE))
return -EPERM;
return 0;
}
int cap_task_setscheduler (struct task_struct *p, int policy,
struct sched_param *lp)
{
return cap_safe_nice(p);
}
int cap_task_setioprio (struct task_struct *p, int ioprio)
{
return cap_safe_nice(p);
}
int cap_task_setnice (struct task_struct *p, int nice)
{
return cap_safe_nice(p);
}
/*
* called from kernel/sys.c for prctl(PR_CABSET_DROP)
* done without task_capability_lock() because it introduces
* no new races - i.e. only another task doing capget() on
* this task could get inconsistent info. There can be no
* racing writer bc a task can only change its own caps.
*/
static long cap_prctl_drop(struct cred *new, unsigned long cap)
{
if (!capable(CAP_SETPCAP))
return -EPERM;
if (!cap_valid(cap))
return -EINVAL;
return 0;
}
#else
int cap_task_setscheduler (struct task_struct *p, int policy,
struct sched_param *lp)
{
return 0;
}
int cap_task_setioprio (struct task_struct *p, int ioprio)
{
return 0;
}
int cap_task_setnice (struct task_struct *p, int nice)
{
return 0;
}
#endif
int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
new = prepare_creds();
if (!new)
return -ENOMEM;
switch (option) {
case PR_CAPBSET_READ:
goto error;
error = !!cap_raised(new->cap_bset, arg2);
goto no_change;
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
case PR_CAPBSET_DROP:
error = cap_prctl_drop(new, arg2);
if (error < 0)
goto error;
goto changed;
/*
* The next four prctl's remain to assist with transitioning a
* system from legacy UID=0 based privilege (when filesystem
* capabilities are not in use) to a system using filesystem
* capabilities only - as the POSIX.1e draft intended.
*
* Note:
*
* PR_SET_SECUREBITS =
* issecure_mask(SECURE_KEEP_CAPS_LOCKED)
* | issecure_mask(SECURE_NOROOT)
* | issecure_mask(SECURE_NOROOT_LOCKED)
* | issecure_mask(SECURE_NO_SETUID_FIXUP)
* | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
*
* will ensure that the current process and all of its
* children will be locked into a pure
* capability-based-privilege environment.
*/
case PR_SET_SECUREBITS:
error = -EPERM;
if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
& (new->securebits ^ arg2)) /*[1]*/
|| ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
|| (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
|| (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0) /*[4]*/
/*
* [1] no changing of bits that are locked
* [2] no unlocking of locks
* [3] no setting of unsupported bits
* [4] doing anything requires privilege (go read about
* the "sendmail capabilities bug")
*/
)
/* cannot change a locked bit */
goto error;
new->securebits = arg2;
goto changed;
case PR_GET_SECUREBITS:
error = new->securebits;
goto no_change;
#endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
case PR_GET_KEEPCAPS:
if (issecure(SECURE_KEEP_CAPS))
error = 1;
if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
goto error;
error = -EPERM;
if (issecure(SECURE_KEEP_CAPS_LOCKED))
goto error;
if (arg2)
new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
goto changed;
default:
/* No functionality available - continue with default */
}
/* Functionality provided */
changed:
return commit_creds(new);
no_change:
error = 0;
error:
abort_creds(new);
return error;
}
int cap_syslog (int type)
{
if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
if (cap_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0)
return __vm_enough_memory(mm, pages, cap_sys_admin);