Skip to content
Snippets Groups Projects
memcontrol.c 141 KiB
Newer Older
  • Learn to ignore specific revisions
  • 	MCS_PGMAJFAULT,
    
    	MCS_INACTIVE_ANON,
    	MCS_ACTIVE_ANON,
    	MCS_INACTIVE_FILE,
    	MCS_ACTIVE_FILE,
    	MCS_UNEVICTABLE,
    	NR_MCS_STAT,
    };
    
    struct mcs_total_stat {
    	s64 stat[NR_MCS_STAT];
    
    struct {
    	char *local_name;
    	char *total_name;
    } memcg_stat_strings[NR_MCS_STAT] = {
    	{"cache", "total_cache"},
    	{"rss", "total_rss"},
    
    	{"mapped_file", "total_mapped_file"},
    
    	{"pgpgin", "total_pgpgin"},
    	{"pgpgout", "total_pgpgout"},
    
    	{"swap", "total_swap"},
    
    	{"pgfault", "total_pgfault"},
    	{"pgmajfault", "total_pgmajfault"},
    
    	{"inactive_anon", "total_inactive_anon"},
    	{"active_anon", "total_active_anon"},
    	{"inactive_file", "total_inactive_file"},
    	{"active_file", "total_active_file"},
    	{"unevictable", "total_unevictable"}
    };
    
    
    
    static void
    mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
    
    {
    	s64 val;
    
    	/* per cpu stat */
    
    	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
    
    	s->stat[MCS_CACHE] += val * PAGE_SIZE;
    
    	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
    
    	s->stat[MCS_RSS] += val * PAGE_SIZE;
    
    	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
    
    	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
    
    	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
    
    	s->stat[MCS_PGPGIN] += val;
    
    	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
    
    	s->stat[MCS_PGPGOUT] += val;
    
    	if (do_swap_account) {
    
    		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
    
    		s->stat[MCS_SWAP] += val * PAGE_SIZE;
    	}
    
    	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
    	s->stat[MCS_PGFAULT] += val;
    	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
    	s->stat[MCS_PGMAJFAULT] += val;
    
    
    	/* per zone stat */
    	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
    	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
    	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
    	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
    	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
    	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
    	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
    	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
    	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
    	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
    }
    
    static void
    mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
    {
    
    	struct mem_cgroup *iter;
    
    	for_each_mem_cgroup_tree(iter, mem)
    		mem_cgroup_get_local_stat(iter, s);
    
    #ifdef CONFIG_NUMA
    static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
    {
    	int nid;
    	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
    	unsigned long node_nr;
    	struct cgroup *cont = m->private;
    	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
    
    	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
    	seq_printf(m, "total=%lu", total_nr);
    	for_each_node_state(nid, N_HIGH_MEMORY) {
    		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    
    	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
    	seq_printf(m, "file=%lu", file_nr);
    	for_each_node_state(nid, N_HIGH_MEMORY) {
    		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    
    	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
    	seq_printf(m, "anon=%lu", anon_nr);
    	for_each_node_state(nid, N_HIGH_MEMORY) {
    		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    
    	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
    	seq_printf(m, "unevictable=%lu", unevictable_nr);
    	for_each_node_state(nid, N_HIGH_MEMORY) {
    		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
    									nid);
    		seq_printf(m, " N%d=%lu", nid, node_nr);
    	}
    	seq_putc(m, '\n');
    	return 0;
    }
    #endif /* CONFIG_NUMA */
    
    
    static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
    				 struct cgroup_map_cb *cb)
    
    {
    	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
    
    	struct mcs_total_stat mystat;
    
    	memset(&mystat, 0, sizeof(mystat));
    	mem_cgroup_get_local_stat(mem_cont, &mystat);
    
    	for (i = 0; i < NR_MCS_STAT; i++) {
    		if (i == MCS_SWAP && !do_swap_account)
    			continue;
    
    		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
    
    	/* Hierarchical information */
    
    	{
    		unsigned long long limit, memsw_limit;
    		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
    		cb->fill(cb, "hierarchical_memory_limit", limit);
    		if (do_swap_account)
    			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
    	}
    
    	memset(&mystat, 0, sizeof(mystat));
    	mem_cgroup_get_total_stat(mem_cont, &mystat);
    
    	for (i = 0; i < NR_MCS_STAT; i++) {
    		if (i == MCS_SWAP && !do_swap_account)
    			continue;
    
    		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
    
    #ifdef CONFIG_DEBUG_VM
    
    	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
    
    
    	{
    		int nid, zid;
    		struct mem_cgroup_per_zone *mz;
    		unsigned long recent_rotated[2] = {0, 0};
    		unsigned long recent_scanned[2] = {0, 0};
    
    		for_each_online_node(nid)
    			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
    
    				recent_rotated[0] +=
    					mz->reclaim_stat.recent_rotated[0];
    				recent_rotated[1] +=
    					mz->reclaim_stat.recent_rotated[1];
    				recent_scanned[0] +=
    					mz->reclaim_stat.recent_scanned[0];
    				recent_scanned[1] +=
    					mz->reclaim_stat.recent_scanned[1];
    			}
    		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
    		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
    		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
    		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
    	}
    #endif
    
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
    
    	return get_swappiness(memcg);
    }
    
    static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
    				       u64 val)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
    	struct mem_cgroup *parent;
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    	if (val > 100)
    		return -EINVAL;
    
    	if (cgrp->parent == NULL)
    		return -EINVAL;
    
    	parent = mem_cgroup_from_cont(cgrp->parent);
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    	/* If under hierarchy, only empty-root can set this value */
    	if ((parent->use_hierarchy) ||
    
    	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
    		cgroup_unlock();
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    		return -EINVAL;
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    
    	memcg->swappiness = val;
    
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    	return 0;
    }
    
    
    static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
    {
    	struct mem_cgroup_threshold_ary *t;
    	u64 usage;
    	int i;
    
    	rcu_read_lock();
    	if (!swap)
    
    		t = rcu_dereference(memcg->thresholds.primary);
    
    		t = rcu_dereference(memcg->memsw_thresholds.primary);
    
    
    	if (!t)
    		goto unlock;
    
    	usage = mem_cgroup_usage(memcg, swap);
    
    	/*
    	 * current_threshold points to threshold just below usage.
    	 * If it's not true, a threshold was crossed after last
    	 * call of __mem_cgroup_threshold().
    	 */
    
    	i = t->current_threshold;
    
    
    	/*
    	 * Iterate backward over array of thresholds starting from
    	 * current_threshold and check if a threshold is crossed.
    	 * If none of thresholds below usage is crossed, we read
    	 * only one element of the array here.
    	 */
    	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
    		eventfd_signal(t->entries[i].eventfd, 1);
    
    	/* i = current_threshold + 1 */
    	i++;
    
    	/*
    	 * Iterate forward over array of thresholds starting from
    	 * current_threshold+1 and check if a threshold is crossed.
    	 * If none of thresholds above usage is crossed, we read
    	 * only one element of the array here.
    	 */
    	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
    		eventfd_signal(t->entries[i].eventfd, 1);
    
    	/* Update current_threshold */
    
    	t->current_threshold = i - 1;
    
    unlock:
    	rcu_read_unlock();
    }
    
    static void mem_cgroup_threshold(struct mem_cgroup *memcg)
    {
    
    	while (memcg) {
    		__mem_cgroup_threshold(memcg, false);
    		if (do_swap_account)
    			__mem_cgroup_threshold(memcg, true);
    
    		memcg = parent_mem_cgroup(memcg);
    	}
    
    }
    
    static int compare_thresholds(const void *a, const void *b)
    {
    	const struct mem_cgroup_threshold *_a = a;
    	const struct mem_cgroup_threshold *_b = b;
    
    	return _a->threshold - _b->threshold;
    }
    
    
    static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    {
    	struct mem_cgroup_eventfd_list *ev;
    
    	list_for_each_entry(ev, &mem->oom_notify, list)
    		eventfd_signal(ev->eventfd, 1);
    	return 0;
    }
    
    static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
    {
    
    	struct mem_cgroup *iter;
    
    	for_each_mem_cgroup_tree(iter, mem)
    		mem_cgroup_oom_notify_cb(iter);
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    }
    
    static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
    	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
    
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
    
    	struct mem_cgroup_thresholds *thresholds;
    	struct mem_cgroup_threshold_ary *new;
    
    	int type = MEMFILE_TYPE(cft->private);
    	u64 threshold, usage;
    
    	int i, size, ret;
    
    
    	ret = res_counter_memparse_write_strategy(args, &threshold);
    	if (ret)
    		return ret;
    
    	mutex_lock(&memcg->thresholds_lock);
    
    	if (type == _MEM)
    
    		thresholds = &memcg->thresholds;
    
    	else if (type == _MEMSWAP)
    
    		thresholds = &memcg->memsw_thresholds;
    
    	else
    		BUG();
    
    	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
    
    	/* Check if a threshold crossed before adding a new one */
    
    	if (thresholds->primary)
    
    		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
    
    
    	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
    
    
    	/* Allocate memory for new array of thresholds */
    
    	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
    
    		ret = -ENOMEM;
    		goto unlock;
    	}
    
    	new->size = size;
    
    
    	/* Copy thresholds (if any) to new array */
    
    	if (thresholds->primary) {
    		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
    
    				sizeof(struct mem_cgroup_threshold));
    
    	/* Add new threshold */
    
    	new->entries[size - 1].eventfd = eventfd;
    	new->entries[size - 1].threshold = threshold;
    
    
    	/* Sort thresholds. Registering of new threshold isn't time-critical */
    
    	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
    
    			compare_thresholds, NULL);
    
    	/* Find current threshold */
    
    	new->current_threshold = -1;
    
    	for (i = 0; i < size; i++) {
    
    		if (new->entries[i].threshold < usage) {
    
    			 * new->current_threshold will not be used until
    			 * rcu_assign_pointer(), so it's safe to increment
    
    			++new->current_threshold;
    
    	/* Free old spare buffer and save old primary buffer as spare */
    	kfree(thresholds->spare);
    	thresholds->spare = thresholds->primary;
    
    	rcu_assign_pointer(thresholds->primary, new);
    
    	/* To be sure that nobody uses thresholds */
    
    	synchronize_rcu();
    
    unlock:
    	mutex_unlock(&memcg->thresholds_lock);
    
    	return ret;
    }
    
    
    static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	struct cftype *cft, struct eventfd_ctx *eventfd)
    
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
    
    	struct mem_cgroup_thresholds *thresholds;
    	struct mem_cgroup_threshold_ary *new;
    
    	int type = MEMFILE_TYPE(cft->private);
    	u64 usage;
    
    	int i, j, size;
    
    
    	mutex_lock(&memcg->thresholds_lock);
    	if (type == _MEM)
    
    		thresholds = &memcg->thresholds;
    
    	else if (type == _MEMSWAP)
    
    		thresholds = &memcg->memsw_thresholds;
    
    	else
    		BUG();
    
    	/*
    	 * Something went wrong if we trying to unregister a threshold
    	 * if we don't have thresholds
    	 */
    	BUG_ON(!thresholds);
    
    	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
    
    	/* Check if a threshold crossed before removing */
    	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
    
    	/* Calculate new number of threshold */
    
    	size = 0;
    	for (i = 0; i < thresholds->primary->size; i++) {
    		if (thresholds->primary->entries[i].eventfd != eventfd)
    
    	new = thresholds->spare;
    
    	/* Set thresholds array to NULL if we don't have thresholds */
    	if (!size) {
    
    		kfree(new);
    		new = NULL;
    
    	new->size = size;
    
    
    	/* Copy thresholds and find current threshold */
    
    	new->current_threshold = -1;
    	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
    		if (thresholds->primary->entries[i].eventfd == eventfd)
    
    		new->entries[j] = thresholds->primary->entries[i];
    		if (new->entries[j].threshold < usage) {
    
    			 * new->current_threshold will not be used
    
    			 * until rcu_assign_pointer(), so it's safe to increment
    			 * it here.
    			 */
    
    			++new->current_threshold;
    
    	/* Swap primary and spare array */
    	thresholds->spare = thresholds->primary;
    	rcu_assign_pointer(thresholds->primary, new);
    
    	/* To be sure that nobody uses thresholds */
    
    	synchronize_rcu();
    
    	mutex_unlock(&memcg->thresholds_lock);
    }
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
    	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
    	struct mem_cgroup_eventfd_list *event;
    	int type = MEMFILE_TYPE(cft->private);
    
    	BUG_ON(type != _OOM_TYPE);
    	event = kmalloc(sizeof(*event),	GFP_KERNEL);
    	if (!event)
    		return -ENOMEM;
    
    	mutex_lock(&memcg_oom_mutex);
    
    	event->eventfd = eventfd;
    	list_add(&event->list, &memcg->oom_notify);
    
    	/* already in OOM ? */
    	if (atomic_read(&memcg->oom_lock))
    		eventfd_signal(eventfd, 1);
    	mutex_unlock(&memcg_oom_mutex);
    
    	return 0;
    }
    
    
    static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	struct cftype *cft, struct eventfd_ctx *eventfd)
    {
    	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
    	struct mem_cgroup_eventfd_list *ev, *tmp;
    	int type = MEMFILE_TYPE(cft->private);
    
    	BUG_ON(type != _OOM_TYPE);
    
    	mutex_lock(&memcg_oom_mutex);
    
    	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
    		if (ev->eventfd == eventfd) {
    			list_del(&ev->list);
    			kfree(ev);
    		}
    	}
    
    	mutex_unlock(&memcg_oom_mutex);
    }
    
    
    static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
    	struct cftype *cft,  struct cgroup_map_cb *cb)
    {
    	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
    
    	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
    
    	if (atomic_read(&mem->oom_lock))
    		cb->fill(cb, "under_oom", 1);
    	else
    		cb->fill(cb, "under_oom", 0);
    	return 0;
    }
    
    static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
    	struct cftype *cft, u64 val)
    {
    	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
    	struct mem_cgroup *parent;
    
    	/* cannot set to root cgroup and only 0 and 1 are allowed */
    	if (!cgrp->parent || !((val == 0) || (val == 1)))
    		return -EINVAL;
    
    	parent = mem_cgroup_from_cont(cgrp->parent);
    
    	cgroup_lock();
    	/* oom-kill-disable is a flag for subhierarchy. */
    	if ((parent->use_hierarchy) ||
    	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
    		cgroup_unlock();
    		return -EINVAL;
    	}
    	mem->oom_kill_disable = val;
    
    	if (!val)
    		memcg_oom_recover(mem);
    
    #ifdef CONFIG_NUMA
    static const struct file_operations mem_control_numa_stat_file_operations = {
    	.read = seq_read,
    	.llseek = seq_lseek,
    	.release = single_release,
    };
    
    static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
    {
    	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
    
    	file->f_op = &mem_control_numa_stat_file_operations;
    	return single_open(file, mem_control_numa_stat_show, cont);
    }
    #endif /* CONFIG_NUMA */
    
    
    static struct cftype mem_cgroup_files[] = {
    	{
    
    		.name = "usage_in_bytes",
    
    		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
    
    		.read_u64 = mem_cgroup_read,
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    		.register_event = mem_cgroup_usage_register_event,
    		.unregister_event = mem_cgroup_usage_unregister_event,
    
    	{
    		.name = "max_usage_in_bytes",
    
    		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
    
    		.trigger = mem_cgroup_reset,
    
    		.read_u64 = mem_cgroup_read,
    	},
    
    		.name = "limit_in_bytes",
    
    		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
    
    		.read_u64 = mem_cgroup_read,
    
    	{
    		.name = "soft_limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
    		.write_string = mem_cgroup_write,
    		.read_u64 = mem_cgroup_read,
    	},
    
    	{
    		.name = "failcnt",
    
    		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
    
    		.trigger = mem_cgroup_reset,
    
    		.read_u64 = mem_cgroup_read,
    
    		.read_map = mem_control_stat_show,
    
    	{
    		.name = "force_empty",
    		.trigger = mem_cgroup_force_empty_write,
    	},
    
    	{
    		.name = "use_hierarchy",
    		.write_u64 = mem_cgroup_hierarchy_write,
    		.read_u64 = mem_cgroup_hierarchy_read,
    	},
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    	{
    		.name = "swappiness",
    		.read_u64 = mem_cgroup_swappiness_read,
    		.write_u64 = mem_cgroup_swappiness_write,
    	},
    
    	{
    		.name = "move_charge_at_immigrate",
    		.read_u64 = mem_cgroup_move_charge_read,
    		.write_u64 = mem_cgroup_move_charge_write,
    	},
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	{
    		.name = "oom_control",
    
    		.read_map = mem_cgroup_oom_control_read,
    		.write_u64 = mem_cgroup_oom_control_write,
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    		.register_event = mem_cgroup_oom_register_event,
    		.unregister_event = mem_cgroup_oom_unregister_event,
    		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
    	},
    
    #ifdef CONFIG_NUMA
    	{
    		.name = "numa_stat",
    		.open = mem_control_numa_stat_open,
    	},
    #endif
    
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
    static struct cftype memsw_cgroup_files[] = {
    	{
    		.name = "memsw.usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
    		.read_u64 = mem_cgroup_read,
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    		.register_event = mem_cgroup_usage_register_event,
    		.unregister_event = mem_cgroup_usage_unregister_event,
    
    	},
    	{
    		.name = "memsw.max_usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
    		.trigger = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read,
    	},
    	{
    		.name = "memsw.limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
    		.write_string = mem_cgroup_write,
    		.read_u64 = mem_cgroup_read,
    	},
    	{
    		.name = "memsw.failcnt",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
    		.trigger = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read,
    	},
    };
    
    static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
    {
    	if (!do_swap_account)
    		return 0;
    	return cgroup_add_files(cont, ss, memsw_cgroup_files,
    				ARRAY_SIZE(memsw_cgroup_files));
    };
    #else
    static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
    {
    	return 0;
    }
    #endif
    
    
    static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
    {
    	struct mem_cgroup_per_node *pn;
    
    	int zone, tmp = node;
    
    	/*
    	 * This routine is called against possible nodes.
    	 * But it's BUG to call kmalloc() against offline node.
    	 *
    	 * TODO: this routine can waste much memory for nodes which will
    	 *       never be onlined. It's better to use memory hotplug callback
    	 *       function.
    	 */
    
    	if (!node_state(node, N_NORMAL_MEMORY))
    		tmp = -1;
    
    	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
    
    	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    		mz = &pn->zoneinfo[zone];
    
    		for_each_lru(l)
    			INIT_LIST_HEAD(&mz->lists[l]);
    
    		mz->usage_in_excess = 0;
    
    		mz->on_tree = false;
    		mz->mem = mem;
    
    static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
    {
    	kfree(mem->info.nodeinfo[node]);
    }
    
    
    static struct mem_cgroup *mem_cgroup_alloc(void)
    {
    	struct mem_cgroup *mem;
    
    	int size = sizeof(struct mem_cgroup);
    
    	/* Can be very big if MAX_NUMNODES is very big */
    
    	if (size < PAGE_SIZE)
    
    		mem = kzalloc(size, GFP_KERNEL);
    
    	if (!mem)
    		return NULL;
    
    
    	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
    
    	if (!mem->stat)
    		goto out_free;
    
    	spin_lock_init(&mem->pcp_counter_lock);
    
    
    out_free:
    	if (size < PAGE_SIZE)
    		kfree(mem);
    	else
    		vfree(mem);
    	return NULL;
    
    /*
     * At destroying mem_cgroup, references from swap_cgroup can remain.
     * (scanning all at force_empty is too costly...)
     *
     * Instead of clearing all references at force_empty, we remember
     * the number of reference from swap_cgroup and free mem_cgroup when
     * it goes down to 0.
     *
     * Removal of cgroup itself succeeds regardless of refs from swap.
     */
    
    
    static void __mem_cgroup_free(struct mem_cgroup *mem)
    
    	mem_cgroup_remove_from_trees(mem);
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	free_css_id(&mem_cgroup_subsys, &mem->css);
    
    
    	for_each_node_state(node, N_POSSIBLE)
    		free_mem_cgroup_per_zone_info(mem, node);
    
    
    	free_percpu(mem->stat);
    	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
    
    static void mem_cgroup_get(struct mem_cgroup *mem)
    {
    	atomic_inc(&mem->refcnt);
    }
    
    
    static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
    
    	if (atomic_sub_and_test(count, &mem->refcnt)) {
    
    		struct mem_cgroup *parent = parent_mem_cgroup(mem);
    
    		__mem_cgroup_free(mem);
    
    		if (parent)
    			mem_cgroup_put(parent);
    	}
    
    static void mem_cgroup_put(struct mem_cgroup *mem)
    {
    	__mem_cgroup_put(mem, 1);
    }
    
    
    /*
     * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
     */
    static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
    {
    	if (!mem->res.parent)
    		return NULL;
    	return mem_cgroup_from_res_counter(mem->res.parent, res);
    }
    
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
    static void __init enable_swap_cgroup(void)
    {
    
    	if (!mem_cgroup_disabled() && really_do_swap_account)
    
    		do_swap_account = 1;
    }
    #else
    static void __init enable_swap_cgroup(void)
    {
    }
    #endif
    
    
    static int mem_cgroup_soft_limit_tree_init(void)
    {
    	struct mem_cgroup_tree_per_node *rtpn;
    	struct mem_cgroup_tree_per_zone *rtpz;
    	int tmp, node, zone;
    
    	for_each_node_state(node, N_POSSIBLE) {
    		tmp = node;
    		if (!node_state(node, N_NORMAL_MEMORY))
    			tmp = -1;
    		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
    		if (!rtpn)
    			return 1;
    
    		soft_limit_tree.rb_tree_per_node[node] = rtpn;
    
    		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    			rtpz = &rtpn->rb_tree_per_zone[zone];
    			rtpz->rb_root = RB_ROOT;
    			spin_lock_init(&rtpz->lock);
    		}
    	}
    	return 0;
    }
    
    
    Li Zefan's avatar
    Li Zefan committed
    static struct cgroup_subsys_state * __ref
    
    mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
    {
    
    	struct mem_cgroup *mem, *parent;
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	long error = -ENOMEM;
    
    	mem = mem_cgroup_alloc();
    	if (!mem)
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    		return ERR_PTR(error);
    
    	for_each_node_state(node, N_POSSIBLE)
    		if (alloc_mem_cgroup_per_zone_info(mem, node))
    			goto free_out;
    
    	if (cont->parent == NULL) {
    
    		enable_swap_cgroup();
    
    		if (mem_cgroup_soft_limit_tree_init())
    			goto free_out;
    
    		for_each_possible_cpu(cpu) {
    			struct memcg_stock_pcp *stock =
    						&per_cpu(memcg_stock, cpu);
    			INIT_WORK(&stock->work, drain_local_stock);
    		}
    
    		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
    
    		parent = mem_cgroup_from_cont(cont->parent);
    
    		mem->use_hierarchy = parent->use_hierarchy;
    
    		mem->oom_kill_disable = parent->oom_kill_disable;
    
    	if (parent && parent->use_hierarchy) {
    		res_counter_init(&mem->res, &parent->res);
    		res_counter_init(&mem->memsw, &parent->memsw);
    
    		/*
    		 * We increment refcnt of the parent to ensure that we can
    		 * safely access it on res_counter_charge/uncharge.
    		 * This refcnt will be decremented when freeing this
    		 * mem_cgroup(see mem_cgroup_put).
    		 */
    		mem_cgroup_get(parent);
    
    	} else {
    		res_counter_init(&mem->res, NULL);
    		res_counter_init(&mem->memsw, NULL);
    	}
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	mem->last_scanned_child = 0;
    
    	mem->last_scanned_node = MAX_NUMNODES;
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	INIT_LIST_HEAD(&mem->oom_notify);
    
    KOSAKI Motohiro's avatar
    KOSAKI Motohiro committed
    	if (parent)
    		mem->swappiness = get_swappiness(parent);
    
    	atomic_set(&mem->refcnt, 1);
    
    	mem->move_charge_at_immigrate = 0;
    
    	mutex_init(&mem->thresholds_lock);
    
    	return &mem->css;
    
    	__mem_cgroup_free(mem);
    
    KAMEZAWA Hiroyuki's avatar
    KAMEZAWA Hiroyuki committed
    	return ERR_PTR(error);
    
    static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
    
    					struct cgroup *cont)
    {
    	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
    
    
    	return mem_cgroup_force_empty(mem, false);
    
    static void mem_cgroup_destroy(struct cgroup_subsys *ss,
    				struct cgroup *cont)
    {
    
    	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
    
    	mem_cgroup_put(mem);
    
    }
    
    static int mem_cgroup_populate(struct cgroup_subsys *ss,
    				struct cgroup *cont)
    {
    
    	int ret;
    
    	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
    				ARRAY_SIZE(mem_cgroup_files));
    
    	if (!ret)
    		ret = register_memsw_files(cont, ss);
    	return ret;
    
    #ifdef CONFIG_MMU
    
    /* Handlers for move charge at task migration. */
    
    #define PRECHARGE_COUNT_AT_ONCE	256
    static int mem_cgroup_do_precharge(unsigned long count)
    
    	int ret = 0;
    	int batch_count = PRECHARGE_COUNT_AT_ONCE;
    
    	struct mem_cgroup *mem = mc.to;
    
    
    	if (mem_cgroup_is_root(mem)) {
    		mc.precharge += count;
    		/* we don't need css_get for root */
    		return ret;
    	}
    	/* try to charge at once */
    	if (count > 1) {
    		struct res_counter *dummy;
    		/*
    		 * "mem" cannot be under rmdir() because we've already checked
    		 * by cgroup_lock_live_cgroup() that it is not removed and we
    		 * are still under the same cgroup_mutex. So we can postpone
    		 * css_get().
    		 */
    		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
    			goto one_by_one;
    		if (do_swap_account && res_counter_charge(&mem->memsw,
    						PAGE_SIZE * count, &dummy)) {
    			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
    			goto one_by_one;
    		}
    		mc.precharge += count;
    		return ret;
    	}
    one_by_one:
    	/* fall back to one by one charge */
    	while (count--) {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    		if (!batch_count--) {
    			batch_count = PRECHARGE_COUNT_AT_ONCE;
    			cond_resched();
    		}
    
    		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
    
    		if (ret || !mem)
    			/* mem_cgroup_clear_mc() will do uncharge later */
    			return -ENOMEM;
    		mc.precharge++;
    	}
    
    	return ret;
    }
    
    /**
     * is_target_pte_for_mc - check a pte whether it is valid for move charge
     * @vma: the vma the pte to be checked belongs
     * @addr: the address corresponding to the pte to be checked