Skip to content
Snippets Groups Projects
messaging.c 13.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • /**
     * eCryptfs: Linux filesystem encryption layer
     *
    
     * Copyright (C) 2004-2008 International Business Machines Corp.
    
     *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
     *		Tyler Hicks <tyhicks@ou.edu>
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License version
     * 2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
     * 02111-1307, USA.
     */
    
    #include <linux/sched.h>
    
    #include <linux/user_namespace.h>
    #include <linux/nsproxy.h>
    
    #include "ecryptfs_kernel.h"
    
    
    static LIST_HEAD(ecryptfs_msg_ctx_free_list);
    static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
    static struct mutex ecryptfs_msg_ctx_lists_mux;
    
    static struct hlist_head *ecryptfs_daemon_hash;
    struct mutex ecryptfs_daemon_hash_mux;
    
    static int ecryptfs_hash_bits;
    
    #define ecryptfs_current_euid_hash(uid) \
    
    	hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
    
    static u32 ecryptfs_msg_counter;
    
    static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
    
    
    /**
     * ecryptfs_acquire_free_msg_ctx
     * @msg_ctx: The context that was acquired from the free list
     *
     * Acquires a context element from the free list and locks the mutex
    
     * on the context.  Sets the msg_ctx task to current.  Returns zero on
     * success; non-zero on error or upon failure to acquire a free
     * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
     * held.
    
     */
    static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
    {
    	struct list_head *p;
    	int rc;
    
    	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
    
    		printk(KERN_WARNING "%s: The eCryptfs free "
    		       "context list is empty.  It may be helpful to "
    		       "specify the ecryptfs_message_buf_len "
    		       "parameter to be greater than the current "
    		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
    
    		rc = -ENOMEM;
    		goto out;
    	}
    	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
    		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
    		if (mutex_trylock(&(*msg_ctx)->mux)) {
    			(*msg_ctx)->task = current;
    			rc = 0;
    			goto out;
    		}
    	}
    	rc = -ENOMEM;
    out:
    	return rc;
    }
    
    /**
     * ecryptfs_msg_ctx_free_to_alloc
     * @msg_ctx: The context to move from the free list to the alloc list
     *
    
     * Must be called with ecryptfs_msg_ctx_lists_mux held.
    
     */
    static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
    {
    	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
    	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
    	msg_ctx->counter = ++ecryptfs_msg_counter;
    }
    
    /**
     * ecryptfs_msg_ctx_alloc_to_free
     * @msg_ctx: The context to move from the alloc list to the free list
     *
    
     * Must be called with ecryptfs_msg_ctx_lists_mux held.
    
    void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
    
    {
    	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
    
    	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
    }
    
    /**
    
     * ecryptfs_find_daemon_by_euid
     * @daemon: If return value is zero, points to the desired daemon pointer
    
     * Must be called with ecryptfs_daemon_hash_mux held.
     *
    
     * Search the hash list for the current effective user id.
    
     *
     * Returns zero if the user id exists in the list; non-zero otherwise.
    
    int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
    
    	hlist_for_each_entry(*daemon,
    
    			    &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
    			    euid_chain) {
    
    		if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
    
    /**
     * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
     * @daemon: Pointer to set to newly allocated daemon struct
    
     * @file: File used when opening /dev/ecryptfs
    
     *
     * Must be called ceremoniously while in possession of
     * ecryptfs_sacred_daemon_hash_mux
     *
     * Returns zero on success; non-zero otherwise
     */
    int
    
    ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
    
    {
    	int rc = 0;
    
    	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
    	if (!(*daemon)) {
    		rc = -ENOMEM;
    
    		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
    
    		       "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
    		goto out;
    	}
    
    	mutex_init(&(*daemon)->mux);
    	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
    	init_waitqueue_head(&(*daemon)->wait);
    	(*daemon)->num_queued_msg_ctx = 0;
    	hlist_add_head(&(*daemon)->euid_chain,
    
    		       &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
    
    /**
     * ecryptfs_exorcise_daemon - Destroy the daemon struct
     *
     * Must be called ceremoniously while in possession of
     * ecryptfs_daemon_hash_mux and the daemon's own mux.
     */
    int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
    {
    	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
    	int rc = 0;
    
    	mutex_lock(&daemon->mux);
    	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
    	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
    		rc = -EBUSY;
    		mutex_unlock(&daemon->mux);
    		goto out;
    	}
    	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
    				 &daemon->msg_ctx_out_queue, daemon_out_list) {
    		list_del(&msg_ctx->daemon_out_list);
    		daemon->num_queued_msg_ctx--;
    		printk(KERN_WARNING "%s: Warning: dropping message that is in "
    		       "the out queue of a dying daemon\n", __func__);
    		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
    	}
    	hlist_del(&daemon->euid_chain);
    	mutex_unlock(&daemon->mux);
    
    Johannes Weiner's avatar
    Johannes Weiner committed
    	kzfree(daemon);
    
    	return rc;
    }
    
    /**
     * ecryptfs_process_reponse
     * @msg: The ecryptfs message received; the caller should sanity check
    
     *       msg->data_len and free the memory
     * @seq: The sequence number of the message; must match the sequence
     *       number for the existing message context waiting for this
     *       response
     *
     * Processes a response message after sending an operation request to
     * userspace. Some other process is awaiting this response. Before
     * sending out its first communications, the other process allocated a
     * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
     * response message contains this index so that we can copy over the
     * response message into the msg_ctx that the process holds a
     * reference to. The other process is going to wake up, check to see
     * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
     * proceed to read off and process the response message. Returns zero
     * upon delivery to desired context element; non-zero upon delivery
     * failure or error.
    
     * Returns zero on success; non-zero otherwise
    
    int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
    			      struct ecryptfs_message *msg, u32 seq)
    
    {
    	struct ecryptfs_msg_ctx *msg_ctx;
    
    	int rc;
    
    	if (msg->index >= ecryptfs_message_buf_len) {
    		rc = -EINVAL;
    
    		printk(KERN_ERR "%s: Attempt to reference "
    		       "context buffer at index [%d]; maximum "
    		       "allowable is [%d]\n", __func__, msg->index,
    		       (ecryptfs_message_buf_len - 1));
    
    		goto out;
    	}
    	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
    	mutex_lock(&msg_ctx->mux);
    	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
    		rc = -EINVAL;
    
    		printk(KERN_WARNING "%s: Desired context element is not "
    		       "pending a response\n", __func__);
    
    		goto unlock;
    	} else if (msg_ctx->counter != seq) {
    		rc = -EINVAL;
    
    		printk(KERN_WARNING "%s: Invalid message sequence; "
    		       "expected [%d]; received [%d]\n", __func__,
    		       msg_ctx->counter, seq);
    
    	msg_size = (sizeof(*msg) + msg->data_len);
    
    	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
    	if (!msg_ctx->msg) {
    		rc = -ENOMEM;
    
    		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
    
    		       "GFP_KERNEL memory\n", __func__, msg_size);
    
    		goto unlock;
    	}
    	memcpy(msg_ctx->msg, msg, msg_size);
    	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
    	wake_up_process(msg_ctx->task);
    
    unlock:
    	mutex_unlock(&msg_ctx->mux);
    out:
    	return rc;
    }
    
    /**
    
     * ecryptfs_send_message_locked
    
     * @data: The data to send
     * @data_len: The length of data
     * @msg_ctx: The message context allocated for the send
    
     *
     * Must be called with ecryptfs_daemon_hash_mux held.
     *
     * Returns zero on success; non-zero otherwise
    
    ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
    			     struct ecryptfs_msg_ctx **msg_ctx)
    
    	struct ecryptfs_daemon *daemon;
    
    	rc = ecryptfs_find_daemon_by_euid(&daemon);
    
    		rc = -ENOTCONN;
    		goto out;
    	}
    	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
    	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
    	if (rc) {
    		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
    
    		printk(KERN_WARNING "%s: Could not claim a free "
    		       "context element\n", __func__);
    
    		goto out;
    	}
    	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
    	mutex_unlock(&(*msg_ctx)->mux);
    	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
    
    	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
    				   daemon);
    
    	if (rc)
    		printk(KERN_ERR "%s: Error attempting to send message to "
    		       "userspace daemon; rc = [%d]\n", __func__, rc);
    
    /**
     * ecryptfs_send_message
     * @data: The data to send
     * @data_len: The length of data
     * @msg_ctx: The message context allocated for the send
     *
     * Grabs ecryptfs_daemon_hash_mux.
     *
     * Returns zero on success; non-zero otherwise
     */
    
    int ecryptfs_send_message(char *data, int data_len,
    
    			  struct ecryptfs_msg_ctx **msg_ctx)
    {
    	int rc;
    
    	mutex_lock(&ecryptfs_daemon_hash_mux);
    
    	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
    					  msg_ctx);
    
    	mutex_unlock(&ecryptfs_daemon_hash_mux);
    	return rc;
    }
    
    
    /**
     * ecryptfs_wait_for_response
     * @msg_ctx: The context that was assigned when sending a message
     * @msg: The incoming message from userspace; not set if rc != 0
     *
     * Sleeps until awaken by ecryptfs_receive_message or until the amount
     * of time exceeds ecryptfs_message_wait_timeout.  If zero is
     * returned, msg will point to a valid message from userspace; a
     * non-zero value is returned upon failure to receive a message or an
    
     * error occurs. Callee must free @msg on success.
    
     */
    int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
    			       struct ecryptfs_message **msg)
    {
    	signed long timeout = ecryptfs_message_wait_timeout * HZ;
    	int rc = 0;
    
    sleep:
    	timeout = schedule_timeout_interruptible(timeout);
    	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
    	mutex_lock(&msg_ctx->mux);
    	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
    		if (timeout) {
    			mutex_unlock(&msg_ctx->mux);
    			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
    			goto sleep;
    		}
    		rc = -ENOMSG;
    	} else {
    		*msg = msg_ctx->msg;
    		msg_ctx->msg = NULL;
    	}
    	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
    	mutex_unlock(&msg_ctx->mux);
    	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
    	return rc;
    }
    
    
    int __init ecryptfs_init_messaging(void)
    
    {
    	int i;
    	int rc = 0;
    
    	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
    		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
    
    		printk(KERN_WARNING "%s: Specified number of users is "
    		       "too large, defaulting to [%d] users\n", __func__,
    		       ecryptfs_number_of_users);
    
    	mutex_init(&ecryptfs_daemon_hash_mux);
    	mutex_lock(&ecryptfs_daemon_hash_mux);
    
    	ecryptfs_hash_bits = 1;
    	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
    		ecryptfs_hash_bits++;
    
    	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
    
    					* (1 << ecryptfs_hash_bits)),
    				       GFP_KERNEL);
    
    	if (!ecryptfs_daemon_hash) {
    
    		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
    		mutex_unlock(&ecryptfs_daemon_hash_mux);
    
    	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
    
    		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
    	mutex_unlock(&ecryptfs_daemon_hash_mux);
    
    	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
    
    					* ecryptfs_message_buf_len),
    				       GFP_KERNEL);
    
    	if (!ecryptfs_msg_ctx_arr) {
    		rc = -ENOMEM;
    
    		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
    
    		goto out;
    	}
    	mutex_init(&ecryptfs_msg_ctx_lists_mux);
    	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
    	ecryptfs_msg_counter = 0;
    	for (i = 0; i < ecryptfs_message_buf_len; i++) {
    		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
    
    		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
    
    		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
    		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
    		ecryptfs_msg_ctx_arr[i].index = i;
    		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
    		ecryptfs_msg_ctx_arr[i].counter = 0;
    		ecryptfs_msg_ctx_arr[i].task = NULL;
    		ecryptfs_msg_ctx_arr[i].msg = NULL;
    		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
    			      &ecryptfs_msg_ctx_free_list);
    		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
    	}
    	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
    
    	rc = ecryptfs_init_ecryptfs_miscdev();
    	if (rc)
    		ecryptfs_release_messaging();
    
    void ecryptfs_release_messaging(void)
    
    {
    	if (ecryptfs_msg_ctx_arr) {
    		int i;
    
    		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
    		for (i = 0; i < ecryptfs_message_buf_len; i++) {
    			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
    			if (ecryptfs_msg_ctx_arr[i].msg)
    				kfree(ecryptfs_msg_ctx_arr[i].msg);
    			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
    		}
    		kfree(ecryptfs_msg_ctx_arr);
    		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
    	}
    
    	if (ecryptfs_daemon_hash) {
    		struct ecryptfs_daemon *daemon;
    
    		mutex_lock(&ecryptfs_daemon_hash_mux);
    
    		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
    
    			hlist_for_each_entry(daemon,
    
    					     &ecryptfs_daemon_hash[i],
    					     euid_chain) {
    				rc = ecryptfs_exorcise_daemon(daemon);
    				if (rc)
    					printk(KERN_ERR "%s: Error whilst "
    					       "attempting to destroy daemon; "
    					       "rc = [%d]. Dazed and confused, "
    					       "but trying to continue.\n",
    					       __func__, rc);
    
    		kfree(ecryptfs_daemon_hash);
    		mutex_unlock(&ecryptfs_daemon_hash_mux);
    
    	ecryptfs_destroy_ecryptfs_miscdev();