Skip to content
Snippets Groups Projects
arm.c 22.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2012 - Virtual Open Systems and Columbia University
     * Author: Christoffer Dall <c.dall@virtualopensystems.com>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License, version 2, as
     * published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
     */
    
    
    #include <linux/cpu.h>
    
    #include <linux/errno.h>
    #include <linux/err.h>
    #include <linux/kvm_host.h>
    #include <linux/module.h>
    #include <linux/vmalloc.h>
    #include <linux/fs.h>
    #include <linux/mman.h>
    #include <linux/sched.h>
    
    #include <linux/kvm.h>
    
    #include <trace/events/kvm.h>
    
    #define CREATE_TRACE_POINTS
    #include "trace.h"
    
    #include <asm/uaccess.h>
    #include <asm/ptrace.h>
    #include <asm/mman.h>
    
    #include <asm/tlbflush.h>
    
    #include <asm/cacheflush.h>
    
    #include <asm/virt.h>
    #include <asm/kvm_arm.h>
    #include <asm/kvm_asm.h>
    #include <asm/kvm_mmu.h>
    
    #include <asm/kvm_emulate.h>
    
    #include <asm/kvm_coproc.h>
    
    #include <asm/kvm_psci.h>
    
    
    #ifdef REQUIRES_VIRT
    __asm__(".arch_extension	virt");
    #endif
    
    
    static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
    
    static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
    
    static unsigned long hyp_default_vectors;
    
    
    /* Per-CPU variable containing the currently running vcpu. */
    static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
    
    
    /* The VMID used in the VTTBR */
    static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
    static u8 kvm_next_vmid;
    static DEFINE_SPINLOCK(kvm_vmid_lock);
    
    static bool vgic_present;
    
    
    static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
    {
    	BUG_ON(preemptible());
    
    	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
    
    }
    
    /**
     * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
     * Must be called from non-preemptible context
     */
    struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
    {
    	BUG_ON(preemptible());
    
    	return __this_cpu_read(kvm_arm_running_vcpu);
    
    }
    
    /**
     * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
     */
    struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
    {
    	return &kvm_arm_running_vcpu;
    }
    
    
    int kvm_arch_hardware_enable(void *garbage)
    {
    	return 0;
    }
    
    int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
    {
    	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
    }
    
    void kvm_arch_hardware_disable(void *garbage)
    {
    }
    
    int kvm_arch_hardware_setup(void)
    {
    	return 0;
    }
    
    void kvm_arch_hardware_unsetup(void)
    {
    }
    
    void kvm_arch_check_processor_compat(void *rtn)
    {
    	*(int *)rtn = 0;
    }
    
    void kvm_arch_sync_events(struct kvm *kvm)
    {
    }
    
    
    /**
     * kvm_arch_init_vm - initializes a VM data structure
     * @kvm:	pointer to the KVM struct
     */
    
    int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
    {
    
    	ret = kvm_alloc_stage2_pgd(kvm);
    	if (ret)
    		goto out_fail_alloc;
    
    	ret = create_hyp_mappings(kvm, kvm + 1);
    	if (ret)
    		goto out_free_stage2_pgd;
    
    
    	/* Mark the initial VMID generation invalid */
    	kvm->arch.vmid_gen = 0;
    
    	return ret;
    out_free_stage2_pgd:
    	kvm_free_stage2_pgd(kvm);
    out_fail_alloc:
    	return ret;
    
    }
    
    int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
    {
    	return VM_FAULT_SIGBUS;
    }
    
    
    void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
    
    int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
    			    unsigned long npages)
    
    /**
     * kvm_arch_destroy_vm - destroy the VM data structure
     * @kvm:	pointer to the KVM struct
     */
    
    void kvm_arch_destroy_vm(struct kvm *kvm)
    {
    	int i;
    
    
    	kvm_free_stage2_pgd(kvm);
    
    
    	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
    		if (kvm->vcpus[i]) {
    			kvm_arch_vcpu_free(kvm->vcpus[i]);
    			kvm->vcpus[i] = NULL;
    		}
    	}
    }
    
    int kvm_dev_ioctl_check_extension(long ext)
    {
    	int r;
    	switch (ext) {
    
    	case KVM_CAP_IRQCHIP:
    		r = vgic_present;
    		break;
    
    	case KVM_CAP_DEVICE_CTRL:
    
    	case KVM_CAP_USER_MEMORY:
    	case KVM_CAP_SYNC_MMU:
    	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
    	case KVM_CAP_ONE_REG:
    
    		r = 1;
    		break;
    	case KVM_CAP_COALESCED_MMIO:
    		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
    		break;
    
    	case KVM_CAP_ARM_SET_DEVICE_ADDR:
    		r = 1;
    
    	case KVM_CAP_NR_VCPUS:
    		r = num_online_cpus();
    		break;
    	case KVM_CAP_MAX_VCPUS:
    		r = KVM_MAX_VCPUS;
    		break;
    	default:
    
    		r = kvm_arch_dev_ioctl_check_extension(ext);
    
    		break;
    	}
    	return r;
    }
    
    long kvm_arch_dev_ioctl(struct file *filp,
    			unsigned int ioctl, unsigned long arg)
    {
    	return -EINVAL;
    }
    
    
    void kvm_arch_memslots_updated(struct kvm *kvm)
    {
    }
    
    
    int kvm_arch_prepare_memory_region(struct kvm *kvm,
    				   struct kvm_memory_slot *memslot,
    				   struct kvm_userspace_memory_region *mem,
    
    				   enum kvm_mr_change change)
    
    {
    	return 0;
    }
    
    void kvm_arch_commit_memory_region(struct kvm *kvm,
    				   struct kvm_userspace_memory_region *mem,
    
    				   const struct kvm_memory_slot *old,
    				   enum kvm_mr_change change)
    
    {
    }
    
    void kvm_arch_flush_shadow_all(struct kvm *kvm)
    {
    }
    
    void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
    				   struct kvm_memory_slot *slot)
    {
    }
    
    struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
    {
    	int err;
    	struct kvm_vcpu *vcpu;
    
    	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
    	if (!vcpu) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	err = kvm_vcpu_init(vcpu, kvm, id);
    	if (err)
    		goto free_vcpu;
    
    
    	err = create_hyp_mappings(vcpu, vcpu + 1);
    	if (err)
    		goto vcpu_uninit;
    
    
    vcpu_uninit:
    	kvm_vcpu_uninit(vcpu);
    
    free_vcpu:
    	kmem_cache_free(kvm_vcpu_cache, vcpu);
    out:
    	return ERR_PTR(err);
    }
    
    int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
    {
    	return 0;
    }
    
    void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
    {
    
    	kvm_mmu_free_memory_caches(vcpu);
    
    	kvm_timer_vcpu_terminate(vcpu);
    
    	kmem_cache_free(kvm_vcpu_cache, vcpu);
    
    }
    
    void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
    {
    	kvm_arch_vcpu_free(vcpu);
    }
    
    int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
    {
    	return 0;
    }
    
    int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
    {
    
    	/* Force users to call KVM_ARM_VCPU_INIT */
    	vcpu->arch.target = -1;
    
    
    	/* Set up VGIC */
    	ret = kvm_vgic_vcpu_init(vcpu);
    	if (ret)
    		return ret;
    
    
    	/* Set up the timer */
    	kvm_timer_vcpu_init(vcpu);
    
    
    	return 0;
    }
    
    void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
    {
    }
    
    void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
    {
    
    	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
    
    
    	/*
    	 * Check whether this vcpu requires the cache to be flushed on
    	 * this physical CPU. This is a consequence of doing dcache
    	 * operations by set/way on this vcpu. We do it here to be in
    	 * a non-preemptible section.
    	 */
    	if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
    		flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
    
    
    	kvm_arm_set_running_vcpu(vcpu);
    
    }
    
    void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
    {
    
    	/*
    	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
    	 * if the vcpu is no longer assigned to a cpu.  This is used for the
    	 * optimized make_all_cpus_request path.
    	 */
    	vcpu->cpu = -1;
    
    
    	kvm_arm_set_running_vcpu(NULL);
    
    }
    
    int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
    					struct kvm_guest_debug *dbg)
    {
    	return -EINVAL;
    }
    
    
    int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
    				    struct kvm_mp_state *mp_state)
    {
    	return -EINVAL;
    }
    
    int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
    				    struct kvm_mp_state *mp_state)
    {
    	return -EINVAL;
    }
    
    
    /**
     * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
     * @v:		The VCPU pointer
     *
     * If the guest CPU is not waiting for interrupts or an interrupt line is
     * asserted, the CPU is by definition runnable.
     */
    
    int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
    {
    
    	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
    
    /* Just ensure a guest exit from a particular CPU */
    static void exit_vm_noop(void *info)
    {
    }
    
    void force_vm_exit(const cpumask_t *mask)
    {
    	smp_call_function_many(mask, exit_vm_noop, NULL, true);
    }
    
    /**
     * need_new_vmid_gen - check that the VMID is still valid
     * @kvm: The VM's VMID to checkt
     *
     * return true if there is a new generation of VMIDs being used
     *
     * The hardware supports only 256 values with the value zero reserved for the
     * host, so we check if an assigned value belongs to a previous generation,
     * which which requires us to assign a new value. If we're the first to use a
     * VMID for the new generation, we must flush necessary caches and TLBs on all
     * CPUs.
     */
    static bool need_new_vmid_gen(struct kvm *kvm)
    {
    	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
    }
    
    /**
     * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
     * @kvm	The guest that we are about to run
     *
     * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
     * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
     * caches and TLBs.
     */
    static void update_vttbr(struct kvm *kvm)
    {
    	phys_addr_t pgd_phys;
    	u64 vmid;
    
    	if (!need_new_vmid_gen(kvm))
    		return;
    
    	spin_lock(&kvm_vmid_lock);
    
    	/*
    	 * We need to re-check the vmid_gen here to ensure that if another vcpu
    	 * already allocated a valid vmid for this vm, then this vcpu should
    	 * use the same vmid.
    	 */
    	if (!need_new_vmid_gen(kvm)) {
    		spin_unlock(&kvm_vmid_lock);
    		return;
    	}
    
    	/* First user of a new VMID generation? */
    	if (unlikely(kvm_next_vmid == 0)) {
    		atomic64_inc(&kvm_vmid_gen);
    		kvm_next_vmid = 1;
    
    		/*
    		 * On SMP we know no other CPUs can use this CPU's or each
    		 * other's VMID after force_vm_exit returns since the
    		 * kvm_vmid_lock blocks them from reentry to the guest.
    		 */
    		force_vm_exit(cpu_all_mask);
    		/*
    		 * Now broadcast TLB + ICACHE invalidation over the inner
    		 * shareable domain to make sure all data structures are
    		 * clean.
    		 */
    		kvm_call_hyp(__kvm_flush_vm_context);
    	}
    
    	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
    	kvm->arch.vmid = kvm_next_vmid;
    	kvm_next_vmid++;
    
    	/* update vttbr to be used with the new vmid */
    	pgd_phys = virt_to_phys(kvm->arch.pgd);
    	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
    	kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
    	kvm->arch.vttbr |= vmid;
    
    	spin_unlock(&kvm_vmid_lock);
    }
    
    static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
    {
    
    	if (likely(vcpu->arch.has_run_once))
    		return 0;
    
    	vcpu->arch.has_run_once = true;
    
    	/*
    	 * Initialize the VGIC before running a vcpu the first time on
    	 * this VM.
    	 */
    
    	if (unlikely(!vgic_initialized(vcpu->kvm))) {
    		ret = kvm_vgic_init(vcpu->kvm);
    
    		if (ret)
    			return ret;
    	}
    
    
    	/*
    	 * Handle the "start in power-off" case by calling into the
    	 * PSCI code.
    	 */
    	if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
    		*vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
    		kvm_psci_call(vcpu);
    	}
    
    
    static void vcpu_pause(struct kvm_vcpu *vcpu)
    {
    	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
    
    	wait_event_interruptible(*wq, !vcpu->arch.pause);
    }
    
    
    static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
    {
    	return vcpu->arch.target >= 0;
    }
    
    
    /**
     * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
     * @vcpu:	The VCPU pointer
     * @run:	The kvm_run structure pointer used for userspace state exchange
     *
     * This function is called through the VCPU_RUN ioctl called from user space. It
     * will execute VM code in a loop until the time slice for the process is used
     * or some emulation is needed from user space in which case the function will
     * return with return value 0 and with the kvm_run structure filled in with the
     * required data for the requested emulation.
     */
    
    int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    
    	int ret;
    	sigset_t sigsaved;
    
    
    	if (unlikely(!kvm_vcpu_initialized(vcpu)))
    
    		return -ENOEXEC;
    
    	ret = kvm_vcpu_first_run_init(vcpu);
    	if (ret)
    		return ret;
    
    
    	if (run->exit_reason == KVM_EXIT_MMIO) {
    		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
    		if (ret)
    			return ret;
    	}
    
    
    	if (vcpu->sigset_active)
    		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
    
    	ret = 1;
    	run->exit_reason = KVM_EXIT_UNKNOWN;
    	while (ret > 0) {
    		/*
    		 * Check conditions before entering the guest
    		 */
    		cond_resched();
    
    		update_vttbr(vcpu->kvm);
    
    
    		if (vcpu->arch.pause)
    			vcpu_pause(vcpu);
    
    
    		kvm_vgic_flush_hwstate(vcpu);
    
    		kvm_timer_flush_hwstate(vcpu);
    
    		local_irq_disable();
    
    		/*
    		 * Re-check atomic conditions
    		 */
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			run->exit_reason = KVM_EXIT_INTR;
    		}
    
    		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
    			local_irq_enable();
    
    			kvm_timer_sync_hwstate(vcpu);
    
    			kvm_vgic_sync_hwstate(vcpu);
    
    			continue;
    		}
    
    		/**************************************************************
    		 * Enter the guest
    		 */
    		trace_kvm_entry(*vcpu_pc(vcpu));
    		kvm_guest_enter();
    		vcpu->mode = IN_GUEST_MODE;
    
    		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
    
    		vcpu->mode = OUTSIDE_GUEST_MODE;
    
    		vcpu->arch.last_pcpu = smp_processor_id();
    
    		kvm_guest_exit();
    		trace_kvm_exit(*vcpu_pc(vcpu));
    		/*
    		 * We may have taken a host interrupt in HYP mode (ie
    		 * while executing the guest). This interrupt is still
    		 * pending, as we haven't serviced it yet!
    		 *
    		 * We're now back in SVC mode, with interrupts
    		 * disabled.  Enabling the interrupts now will have
    		 * the effect of taking the interrupt again, in SVC
    		 * mode this time.
    		 */
    		local_irq_enable();
    
    		/*
    		 * Back from guest
    		 *************************************************************/
    
    
    		kvm_timer_sync_hwstate(vcpu);
    
    		kvm_vgic_sync_hwstate(vcpu);
    
    
    		ret = handle_exit(vcpu, run, ret);
    	}
    
    	if (vcpu->sigset_active)
    		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
    	return ret;
    
    static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
    {
    	int bit_index;
    	bool set;
    	unsigned long *ptr;
    
    	if (number == KVM_ARM_IRQ_CPU_IRQ)
    		bit_index = __ffs(HCR_VI);
    	else /* KVM_ARM_IRQ_CPU_FIQ */
    		bit_index = __ffs(HCR_VF);
    
    	ptr = (unsigned long *)&vcpu->arch.irq_lines;
    	if (level)
    		set = test_and_set_bit(bit_index, ptr);
    	else
    		set = test_and_clear_bit(bit_index, ptr);
    
    	/*
    	 * If we didn't change anything, no need to wake up or kick other CPUs
    	 */
    	if (set == level)
    		return 0;
    
    	/*
    	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
    	 * trigger a world-switch round on the running physical CPU to set the
    	 * virtual IRQ/FIQ fields in the HCR appropriately.
    	 */
    	kvm_vcpu_kick(vcpu);
    
    	return 0;
    }
    
    
    int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
    			  bool line_status)
    
    {
    	u32 irq = irq_level->irq;
    	unsigned int irq_type, vcpu_idx, irq_num;
    	int nrcpus = atomic_read(&kvm->online_vcpus);
    	struct kvm_vcpu *vcpu = NULL;
    	bool level = irq_level->level;
    
    	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
    	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
    	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
    
    	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
    
    
    	switch (irq_type) {
    	case KVM_ARM_IRQ_TYPE_CPU:
    		if (irqchip_in_kernel(kvm))
    			return -ENXIO;
    
    		if (vcpu_idx >= nrcpus)
    			return -EINVAL;
    
    		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
    		if (!vcpu)
    			return -EINVAL;
    
    		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
    			return -EINVAL;
    
    		return vcpu_interrupt_line(vcpu, irq_num, level);
    	case KVM_ARM_IRQ_TYPE_PPI:
    		if (!irqchip_in_kernel(kvm))
    			return -ENXIO;
    
    		if (vcpu_idx >= nrcpus)
    			return -EINVAL;
    
    		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
    		if (!vcpu)
    			return -EINVAL;
    
    		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
    			return -EINVAL;
    
    		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
    	case KVM_ARM_IRQ_TYPE_SPI:
    		if (!irqchip_in_kernel(kvm))
    			return -ENXIO;
    
    		if (irq_num < VGIC_NR_PRIVATE_IRQS ||
    		    irq_num > KVM_ARM_IRQ_GIC_MAX)
    			return -EINVAL;
    
    		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
    	}
    
    	return -EINVAL;
    
    long kvm_arch_vcpu_ioctl(struct file *filp,
    			 unsigned int ioctl, unsigned long arg)
    {
    	struct kvm_vcpu *vcpu = filp->private_data;
    	void __user *argp = (void __user *)arg;
    
    	switch (ioctl) {
    	case KVM_ARM_VCPU_INIT: {
    		struct kvm_vcpu_init init;
    
    		if (copy_from_user(&init, argp, sizeof(init)))
    			return -EFAULT;
    
    		return kvm_vcpu_set_target(vcpu, &init);
    
    	}
    	case KVM_SET_ONE_REG:
    	case KVM_GET_ONE_REG: {
    		struct kvm_one_reg reg;
    
    
    		if (unlikely(!kvm_vcpu_initialized(vcpu)))
    			return -ENOEXEC;
    
    
    		if (copy_from_user(&reg, argp, sizeof(reg)))
    			return -EFAULT;
    		if (ioctl == KVM_SET_ONE_REG)
    			return kvm_arm_set_reg(vcpu, &reg);
    		else
    			return kvm_arm_get_reg(vcpu, &reg);
    	}
    	case KVM_GET_REG_LIST: {
    		struct kvm_reg_list __user *user_list = argp;
    		struct kvm_reg_list reg_list;
    		unsigned n;
    
    
    		if (unlikely(!kvm_vcpu_initialized(vcpu)))
    			return -ENOEXEC;
    
    
    		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
    			return -EFAULT;
    		n = reg_list.n;
    		reg_list.n = kvm_arm_num_regs(vcpu);
    		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
    			return -EFAULT;
    		if (n < reg_list.n)
    			return -E2BIG;
    		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
    	}
    	default:
    		return -EINVAL;
    	}
    }
    
    int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
    {
    	return -EINVAL;
    }
    
    
    static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
    					struct kvm_arm_device_addr *dev_addr)
    {
    
    	unsigned long dev_id, type;
    
    	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
    		KVM_ARM_DEVICE_ID_SHIFT;
    	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
    		KVM_ARM_DEVICE_TYPE_SHIFT;
    
    	switch (dev_id) {
    	case KVM_ARM_DEVICE_VGIC_V2:
    		if (!vgic_present)
    			return -ENXIO;
    
    		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
    
    long kvm_arch_vm_ioctl(struct file *filp,
    		       unsigned int ioctl, unsigned long arg)
    {
    
    	struct kvm *kvm = filp->private_data;
    	void __user *argp = (void __user *)arg;
    
    	switch (ioctl) {
    
    	case KVM_CREATE_IRQCHIP: {
    		if (vgic_present)
    			return kvm_vgic_create(kvm);
    		else
    			return -ENXIO;
    	}
    
    	case KVM_ARM_SET_DEVICE_ADDR: {
    		struct kvm_arm_device_addr dev_addr;
    
    		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
    			return -EFAULT;
    		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
    	}
    
    	case KVM_ARM_PREFERRED_TARGET: {
    		int err;
    		struct kvm_vcpu_init init;
    
    		err = kvm_vcpu_preferred_target(&init);
    		if (err)
    			return err;
    
    		if (copy_to_user(argp, &init, sizeof(init)))
    			return -EFAULT;
    
    		return 0;
    	}
    
    static void cpu_init_hyp_mode(void *dummy)
    
    	phys_addr_t boot_pgd_ptr;
    	phys_addr_t pgd_ptr;
    
    	unsigned long hyp_stack_ptr;
    	unsigned long stack_page;
    	unsigned long vector_ptr;
    
    	/* Switch from the HYP stub to our own HYP init vector */
    
    	__hyp_set_vectors(kvm_get_idmap_vector());
    
    	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
    	pgd_ptr = kvm_mmu_get_httbr();
    
    	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
    
    	hyp_stack_ptr = stack_page + PAGE_SIZE;
    	vector_ptr = (unsigned long)__kvm_hyp_vector;
    
    
    	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
    
    static int hyp_init_cpu_notify(struct notifier_block *self,
    			       unsigned long action, void *cpu)
    {
    	switch (action) {
    	case CPU_STARTING:
    	case CPU_STARTING_FROZEN:
    		cpu_init_hyp_mode(NULL);
    		break;
    	}
    
    	return NOTIFY_OK;
    
    static struct notifier_block hyp_init_cpu_nb = {
    	.notifier_call = hyp_init_cpu_notify,
    };
    
    
    /**
     * Inits Hyp-mode on all online CPUs
     */
    static int init_hyp_mode(void)
    {
    	int cpu;
    	int err = 0;
    
    	/*
    	 * Allocate Hyp PGD and setup Hyp identity mapping
    	 */
    	err = kvm_mmu_init();
    	if (err)
    		goto out_err;
    
    	/*
    	 * It is probably enough to obtain the default on one
    	 * CPU. It's unlikely to be different on the others.
    	 */
    	hyp_default_vectors = __hyp_get_vectors();
    
    	/*
    	 * Allocate stack pages for Hypervisor-mode
    	 */
    	for_each_possible_cpu(cpu) {
    		unsigned long stack_page;
    
    		stack_page = __get_free_page(GFP_KERNEL);
    		if (!stack_page) {
    			err = -ENOMEM;
    			goto out_free_stack_pages;
    		}
    
    		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
    	}
    
    	/*
    	 * Map the Hyp-code called directly from the host
    	 */
    	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
    	if (err) {
    		kvm_err("Cannot map world-switch code\n");
    		goto out_free_mappings;
    	}
    
    	/*
    	 * Map the Hyp stack pages
    	 */
    	for_each_possible_cpu(cpu) {
    		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
    		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
    
    		if (err) {
    			kvm_err("Cannot map hyp stack\n");
    			goto out_free_mappings;
    		}
    	}
    
    	/*
    
    	 * Map the host CPU structures
    
    	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
    	if (!kvm_host_cpu_state) {
    
    		err = -ENOMEM;
    
    		kvm_err("Cannot allocate host CPU state\n");
    
    		goto out_free_mappings;
    	}
    
    	for_each_possible_cpu(cpu) {
    
    		kvm_cpu_context_t *cpu_ctxt;
    
    		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
    		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
    
    			kvm_err("Cannot map host CPU state: %d\n", err);
    			goto out_free_context;
    
    	/*
    	 * Execute the init code on each CPU.
    	 */
    	on_each_cpu(cpu_init_hyp_mode, NULL, 1);
    
    
    	/*
    	 * Init HYP view of VGIC
    	 */
    	err = kvm_vgic_hyp_init();
    	if (err)
    
    #ifdef CONFIG_KVM_ARM_VGIC
    		vgic_present = true;
    #endif
    
    
    	/*
    	 * Init HYP architected timer support
    	 */
    	err = kvm_timer_hyp_init();
    	if (err)
    		goto out_free_mappings;
    
    
    #ifndef CONFIG_HOTPLUG_CPU
    	free_boot_hyp_pgd();
    #endif
    
    
    	kvm_info("Hyp mode initialized successfully\n");
    
    out_free_context:
    	free_percpu(kvm_host_cpu_state);
    
    out_free_mappings:
    
    	free_hyp_pgds();
    
    out_free_stack_pages:
    	for_each_possible_cpu(cpu)
    		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
    out_err:
    	kvm_err("error initializing Hyp mode: %d\n", err);
    	return err;
    }
    
    
    static void check_kvm_target_cpu(void *ret)
    {
    	*(int *)ret = kvm_target_cpu();
    }
    
    
    /**
     * Initialize Hyp-mode and memory mappings on all CPUs.
     */
    
    int kvm_arch_init(void *opaque)
    {