Skip to content
Snippets Groups Projects
dm-array.c 19.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2012 Red Hat, Inc.
     *
     * This file is released under the GPL.
     */
    
    #include "dm-array.h"
    #include "dm-space-map.h"
    #include "dm-transaction-manager.h"
    
    #include <linux/export.h>
    #include <linux/device-mapper.h>
    
    #define DM_MSG_PREFIX "array"
    
    /*----------------------------------------------------------------*/
    
    /*
     * The array is implemented as a fully populated btree, which points to
     * blocks that contain the packed values.  This is more space efficient
     * than just using a btree since we don't store 1 key per value.
     */
    struct array_block {
    	__le32 csum;
    	__le32 max_entries;
    	__le32 nr_entries;
    	__le32 value_size;
    	__le64 blocknr; /* Block this node is supposed to live in. */
    } __packed;
    
    /*----------------------------------------------------------------*/
    
    /*
     * Validator methods.  As usual we calculate a checksum, and also write the
     * block location into the header (paranoia about ssds remapping areas by
     * mistake).
     */
    #define CSUM_XOR 595846735
    
    static void array_block_prepare_for_write(struct dm_block_validator *v,
    					  struct dm_block *b,
    					  size_t size_of_block)
    {
    	struct array_block *bh_le = dm_block_data(b);
    
    	bh_le->blocknr = cpu_to_le64(dm_block_location(b));
    	bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
    						 size_of_block - sizeof(__le32),
    						 CSUM_XOR));
    }
    
    static int array_block_check(struct dm_block_validator *v,
    			     struct dm_block *b,
    			     size_t size_of_block)
    {
    	struct array_block *bh_le = dm_block_data(b);
    	__le32 csum_disk;
    
    	if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
    		DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
    			    (unsigned long long) le64_to_cpu(bh_le->blocknr),
    			    (unsigned long long) dm_block_location(b));
    		return -ENOTBLK;
    	}
    
    	csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
    					       size_of_block - sizeof(__le32),
    					       CSUM_XOR));
    	if (csum_disk != bh_le->csum) {
    		DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
    			    (unsigned) le32_to_cpu(csum_disk),
    			    (unsigned) le32_to_cpu(bh_le->csum));
    		return -EILSEQ;
    	}
    
    	return 0;
    }
    
    static struct dm_block_validator array_validator = {
    	.name = "array",
    	.prepare_for_write = array_block_prepare_for_write,
    	.check = array_block_check
    };
    
    /*----------------------------------------------------------------*/
    
    /*
     * Functions for manipulating the array blocks.
     */
    
    /*
     * Returns a pointer to a value within an array block.
     *
     * index - The index into _this_ specific block.
     */
    static void *element_at(struct dm_array_info *info, struct array_block *ab,
    			unsigned index)
    {
    	unsigned char *entry = (unsigned char *) (ab + 1);
    
    	entry += index * info->value_type.size;
    
    	return entry;
    }
    
    /*
     * Utility function that calls one of the value_type methods on every value
     * in an array block.
     */
    static void on_entries(struct dm_array_info *info, struct array_block *ab,
    		       void (*fn)(void *, const void *))
    {
    	unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
    
    	for (i = 0; i < nr_entries; i++)
    		fn(info->value_type.context, element_at(info, ab, i));
    }
    
    /*
     * Increment every value in an array block.
     */
    static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
    {
    	struct dm_btree_value_type *vt = &info->value_type;
    
    	if (vt->inc)
    		on_entries(info, ab, vt->inc);
    }
    
    /*
     * Decrement every value in an array block.
     */
    static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
    {
    	struct dm_btree_value_type *vt = &info->value_type;
    
    	if (vt->dec)
    		on_entries(info, ab, vt->dec);
    }
    
    /*
     * Each array block can hold this many values.
     */
    static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
    {
    	return (size_of_block - sizeof(struct array_block)) / value_size;
    }
    
    /*
     * Allocate a new array block.  The caller will need to unlock block.
     */
    static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
    			uint32_t max_entries,
    			struct dm_block **block, struct array_block **ab)
    {
    	int r;
    
    	r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
    	if (r)
    		return r;
    
    	(*ab) = dm_block_data(*block);
    	(*ab)->max_entries = cpu_to_le32(max_entries);
    	(*ab)->nr_entries = cpu_to_le32(0);
    	(*ab)->value_size = cpu_to_le32(info->value_type.size);
    
    	return 0;
    }
    
    /*
     * Pad an array block out with a particular value.  Every instance will
     * cause an increment of the value_type.  new_nr must always be more than
     * the current number of entries.
     */
    static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
    			const void *value, unsigned new_nr)
    {
    	unsigned i;
    	uint32_t nr_entries;
    	struct dm_btree_value_type *vt = &info->value_type;
    
    	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
    	BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
    
    	nr_entries = le32_to_cpu(ab->nr_entries);
    	for (i = nr_entries; i < new_nr; i++) {
    		if (vt->inc)
    			vt->inc(vt->context, value);
    		memcpy(element_at(info, ab, i), value, vt->size);
    	}
    	ab->nr_entries = cpu_to_le32(new_nr);
    }
    
    /*
     * Remove some entries from the back of an array block.  Every value
     * removed will be decremented.  new_nr must be <= the current number of
     * entries.
     */
    static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
    			unsigned new_nr)
    {
    	unsigned i;
    	uint32_t nr_entries;
    	struct dm_btree_value_type *vt = &info->value_type;
    
    	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
    	BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
    
    	nr_entries = le32_to_cpu(ab->nr_entries);
    	for (i = nr_entries; i > new_nr; i--)
    		if (vt->dec)
    			vt->dec(vt->context, element_at(info, ab, i - 1));
    	ab->nr_entries = cpu_to_le32(new_nr);
    }
    
    /*
     * Read locks a block, and coerces it to an array block.  The caller must
     * unlock 'block' when finished.
     */
    static int get_ablock(struct dm_array_info *info, dm_block_t b,
    		      struct dm_block **block, struct array_block **ab)
    {
    	int r;
    
    	r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
    	if (r)
    		return r;
    
    	*ab = dm_block_data(*block);
    	return 0;
    }
    
    /*
     * Unlocks an array block.
     */
    static int unlock_ablock(struct dm_array_info *info, struct dm_block *block)
    {
    	return dm_tm_unlock(info->btree_info.tm, block);
    }
    
    /*----------------------------------------------------------------*/
    
    /*
     * Btree manipulation.
     */
    
    /*
     * Looks up an array block in the btree, and then read locks it.
     *
     * index is the index of the index of the array_block, (ie. the array index
     * / max_entries).
     */
    static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
    			 unsigned index, struct dm_block **block,
    			 struct array_block **ab)
    {
    	int r;
    	uint64_t key = index;
    	__le64 block_le;
    
    	r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
    	if (r)
    		return r;
    
    	return get_ablock(info, le64_to_cpu(block_le), block, ab);
    }
    
    /*
     * Insert an array block into the btree.  The block is _not_ unlocked.
     */
    static int insert_ablock(struct dm_array_info *info, uint64_t index,
    			 struct dm_block *block, dm_block_t *root)
    {
    	__le64 block_le = cpu_to_le64(dm_block_location(block));
    
    	__dm_bless_for_disk(block_le);
    	return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
    }
    
    /*
     * Looks up an array block in the btree.  Then shadows it, and updates the
     * btree to point to this new shadow.  'root' is an input/output parameter
     * for both the current root block, and the new one.
     */
    static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
    			 unsigned index, struct dm_block **block,
    			 struct array_block **ab)
    {
    	int r, inc;
    	uint64_t key = index;
    	dm_block_t b;
    	__le64 block_le;
    
    	/*
    	 * lookup
    	 */
    	r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
    	if (r)
    		return r;
    	b = le64_to_cpu(block_le);
    
    	/*
    	 * shadow
    	 */
    	r = dm_tm_shadow_block(info->btree_info.tm, b,
    			       &array_validator, block, &inc);
    	if (r)
    		return r;
    
    	*ab = dm_block_data(*block);
    	if (inc)
    		inc_ablock_entries(info, *ab);
    
    	/*
    	 * Reinsert.
    	 *
    	 * The shadow op will often be a noop.  Only insert if it really
    	 * copied data.
    	 */
    
    	if (dm_block_location(*block) != b) {
    		/*
    		 * dm_tm_shadow_block will have already decremented the old
    		 * block, but it is still referenced by the btree.  We
    		 * increment to stop the insert decrementing it below zero
    		 * when overwriting the old value.
    		 */
    		dm_tm_inc(info->btree_info.tm, b);
    
    		r = insert_ablock(info, index, *block, root);
    
    
    	return r;
    }
    
    /*
     * Allocate an new array block, and fill it with some values.
     */
    static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
    			     uint32_t max_entries,
    			     unsigned block_index, uint32_t nr,
    			     const void *value, dm_block_t *root)
    {
    	int r;
    	struct dm_block *block;
    	struct array_block *ab;
    
    	r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
    	if (r)
    		return r;
    
    	fill_ablock(info, ab, value, nr);
    	r = insert_ablock(info, block_index, block, root);
    	unlock_ablock(info, block);
    
    	return r;
    }
    
    static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
    			       unsigned begin_block, unsigned end_block,
    			       unsigned max_entries, const void *value,
    			       dm_block_t *root)
    {
    	int r = 0;
    
    	for (; !r && begin_block != end_block; begin_block++)
    		r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
    
    	return r;
    }
    
    /*
     * There are a bunch of functions involved with resizing an array.  This
     * structure holds information that commonly needed by them.  Purely here
     * to reduce parameter count.
     */
    struct resize {
    	/*
    	 * Describes the array.
    	 */
    	struct dm_array_info *info;
    
    	/*
    	 * The current root of the array.  This gets updated.
    	 */
    	dm_block_t root;
    
    	/*
    	 * Metadata block size.  Used to calculate the nr entries in an
    	 * array block.
    	 */
    	size_t size_of_block;
    
    	/*
    	 * Maximum nr entries in an array block.
    	 */
    	unsigned max_entries;
    
    	/*
    	 * nr of completely full blocks in the array.
    	 *
    	 * 'old' refers to before the resize, 'new' after.
    	 */
    	unsigned old_nr_full_blocks, new_nr_full_blocks;
    
    	/*
    	 * Number of entries in the final block.  0 iff only full blocks in
    	 * the array.
    	 */
    	unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
    
    	/*
    	 * The default value used when growing the array.
    	 */
    	const void *value;
    };
    
    /*
     * Removes a consecutive set of array blocks from the btree.  The values
     * in block are decremented as a side effect of the btree remove.
     *
     * begin_index - the index of the first array block to remove.
     * end_index - the one-past-the-end value.  ie. this block is not removed.
     */
    static int drop_blocks(struct resize *resize, unsigned begin_index,
    		       unsigned end_index)
    {
    	int r;
    
    	while (begin_index != end_index) {
    		uint64_t key = begin_index++;
    		r = dm_btree_remove(&resize->info->btree_info, resize->root,
    				    &key, &resize->root);
    		if (r)
    			return r;
    	}
    
    	return 0;
    }
    
    /*
     * Calculates how many blocks are needed for the array.
     */
    static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
    				       unsigned nr_entries_in_last_block)
    {
    	return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
    }
    
    /*
     * Shrink an array.
     */
    static int shrink(struct resize *resize)
    {
    	int r;
    	unsigned begin, end;
    	struct dm_block *block;
    	struct array_block *ab;
    
    	/*
    	 * Lose some blocks from the back?
    	 */
    	if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
    		begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
    					       resize->new_nr_entries_in_last_block);
    		end = total_nr_blocks_needed(resize->old_nr_full_blocks,
    					     resize->old_nr_entries_in_last_block);
    
    		r = drop_blocks(resize, begin, end);
    		if (r)
    			return r;
    	}
    
    	/*
    	 * Trim the new tail block
    	 */
    	if (resize->new_nr_entries_in_last_block) {
    		r = shadow_ablock(resize->info, &resize->root,
    				  resize->new_nr_full_blocks, &block, &ab);
    		if (r)
    			return r;
    
    		trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
    		unlock_ablock(resize->info, block);
    	}
    
    	return 0;
    }
    
    /*
     * Grow an array.
     */
    static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
    {
    	int r;
    	struct dm_block *block;
    	struct array_block *ab;
    
    	r = shadow_ablock(resize->info, &resize->root,
    			  resize->old_nr_full_blocks, &block, &ab);
    	if (r)
    		return r;
    
    	fill_ablock(resize->info, ab, resize->value, new_nr_entries);
    	unlock_ablock(resize->info, block);
    
    	return r;
    }
    
    static int grow_add_tail_block(struct resize *resize)
    {
    	return insert_new_ablock(resize->info, resize->size_of_block,
    				 resize->max_entries,
    				 resize->new_nr_full_blocks,
    				 resize->new_nr_entries_in_last_block,
    				 resize->value, &resize->root);
    }
    
    static int grow_needs_more_blocks(struct resize *resize)
    {
    	int r;
    
    	unsigned old_nr_blocks = resize->old_nr_full_blocks;
    
    
    	if (resize->old_nr_entries_in_last_block > 0) {
    
    		old_nr_blocks++;
    
    
    		r = grow_extend_tail_block(resize, resize->max_entries);
    		if (r)
    			return r;
    	}
    
    	r = insert_full_ablocks(resize->info, resize->size_of_block,
    
    				old_nr_blocks,
    
    				resize->new_nr_full_blocks,
    				resize->max_entries, resize->value,
    				&resize->root);
    	if (r)
    		return r;
    
    	if (resize->new_nr_entries_in_last_block)
    		r = grow_add_tail_block(resize);
    
    	return r;
    }
    
    static int grow(struct resize *resize)
    {
    	if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
    		return grow_needs_more_blocks(resize);
    
    	else if (resize->old_nr_entries_in_last_block)
    		return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
    
    	else
    		return grow_add_tail_block(resize);
    }
    
    /*----------------------------------------------------------------*/
    
    /*
     * These are the value_type functions for the btree elements, which point
     * to array blocks.
     */
    static void block_inc(void *context, const void *value)
    {
    	__le64 block_le;
    	struct dm_array_info *info = context;
    
    	memcpy(&block_le, value, sizeof(block_le));
    	dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
    }
    
    static void block_dec(void *context, const void *value)
    {
    	int r;
    	uint64_t b;
    	__le64 block_le;
    	uint32_t ref_count;
    	struct dm_block *block;
    	struct array_block *ab;
    	struct dm_array_info *info = context;
    
    	memcpy(&block_le, value, sizeof(block_le));
    	b = le64_to_cpu(block_le);
    
    	r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
    	if (r) {
    		DMERR_LIMIT("couldn't get reference count for block %llu",
    			    (unsigned long long) b);
    		return;
    	}
    
    	if (ref_count == 1) {
    		/*
    		 * We're about to drop the last reference to this ablock.
    		 * So we need to decrement the ref count of the contents.
    		 */
    		r = get_ablock(info, b, &block, &ab);
    		if (r) {
    			DMERR_LIMIT("couldn't get array block %llu",
    				    (unsigned long long) b);
    			return;
    		}
    
    		dec_ablock_entries(info, ab);
    		unlock_ablock(info, block);
    	}
    
    	dm_tm_dec(info->btree_info.tm, b);
    }
    
    static int block_equal(void *context, const void *value1, const void *value2)
    {
    	return !memcmp(value1, value2, sizeof(__le64));
    }
    
    /*----------------------------------------------------------------*/
    
    void dm_array_info_init(struct dm_array_info *info,
    			struct dm_transaction_manager *tm,
    			struct dm_btree_value_type *vt)
    {
    	struct dm_btree_value_type *bvt = &info->btree_info.value_type;
    
    	memcpy(&info->value_type, vt, sizeof(info->value_type));
    	info->btree_info.tm = tm;
    	info->btree_info.levels = 1;
    
    	bvt->context = info;
    	bvt->size = sizeof(__le64);
    	bvt->inc = block_inc;
    	bvt->dec = block_dec;
    	bvt->equal = block_equal;
    }
    EXPORT_SYMBOL_GPL(dm_array_info_init);
    
    int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
    {
    	return dm_btree_empty(&info->btree_info, root);
    }
    EXPORT_SYMBOL_GPL(dm_array_empty);
    
    static int array_resize(struct dm_array_info *info, dm_block_t root,
    			uint32_t old_size, uint32_t new_size,
    			const void *value, dm_block_t *new_root)
    {
    	int r;
    	struct resize resize;
    
    	if (old_size == new_size)
    		return 0;
    
    	resize.info = info;
    	resize.root = root;
    	resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
    	resize.max_entries = calc_max_entries(info->value_type.size,
    					      resize.size_of_block);
    
    	resize.old_nr_full_blocks = old_size / resize.max_entries;
    	resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
    	resize.new_nr_full_blocks = new_size / resize.max_entries;
    	resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
    	resize.value = value;
    
    	r = ((new_size > old_size) ? grow : shrink)(&resize);
    	if (r)
    		return r;
    
    	*new_root = resize.root;
    	return 0;
    }
    
    int dm_array_resize(struct dm_array_info *info, dm_block_t root,
    		    uint32_t old_size, uint32_t new_size,
    		    const void *value, dm_block_t *new_root)
    		    __dm_written_to_disk(value)
    {
    	int r = array_resize(info, root, old_size, new_size, value, new_root);
    	__dm_unbless_for_disk(value);
    	return r;
    }
    EXPORT_SYMBOL_GPL(dm_array_resize);
    
    int dm_array_del(struct dm_array_info *info, dm_block_t root)
    {
    	return dm_btree_del(&info->btree_info, root);
    }
    EXPORT_SYMBOL_GPL(dm_array_del);
    
    int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
    		       uint32_t index, void *value_le)
    {
    	int r;
    	struct dm_block *block;
    	struct array_block *ab;
    	size_t size_of_block;
    	unsigned entry, max_entries;
    
    	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
    	max_entries = calc_max_entries(info->value_type.size, size_of_block);
    
    	r = lookup_ablock(info, root, index / max_entries, &block, &ab);
    	if (r)
    		return r;
    
    	entry = index % max_entries;
    	if (entry >= le32_to_cpu(ab->nr_entries))
    		r = -ENODATA;
    	else
    		memcpy(value_le, element_at(info, ab, entry),
    		       info->value_type.size);
    
    	unlock_ablock(info, block);
    	return r;
    }
    EXPORT_SYMBOL_GPL(dm_array_get_value);
    
    static int array_set_value(struct dm_array_info *info, dm_block_t root,
    			   uint32_t index, const void *value, dm_block_t *new_root)
    {
    	int r;
    	struct dm_block *block;
    	struct array_block *ab;
    	size_t size_of_block;
    	unsigned max_entries;
    	unsigned entry;
    	void *old_value;
    	struct dm_btree_value_type *vt = &info->value_type;
    
    	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
    	max_entries = calc_max_entries(info->value_type.size, size_of_block);
    
    	r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
    	if (r)
    		return r;
    	*new_root = root;
    
    	entry = index % max_entries;
    	if (entry >= le32_to_cpu(ab->nr_entries)) {
    		r = -ENODATA;
    		goto out;
    	}
    
    	old_value = element_at(info, ab, entry);
    	if (vt->dec &&
    	    (!vt->equal || !vt->equal(vt->context, old_value, value))) {
    		vt->dec(vt->context, old_value);
    		if (vt->inc)
    			vt->inc(vt->context, value);
    	}
    
    	memcpy(old_value, value, info->value_type.size);
    
    out:
    	unlock_ablock(info, block);
    	return r;
    }
    
    int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
    		 uint32_t index, const void *value, dm_block_t *new_root)
    		 __dm_written_to_disk(value)
    {
    	int r;
    
    	r = array_set_value(info, root, index, value, new_root);
    	__dm_unbless_for_disk(value);
    	return r;
    }
    EXPORT_SYMBOL_GPL(dm_array_set_value);
    
    struct walk_info {
    	struct dm_array_info *info;
    	int (*fn)(void *context, uint64_t key, void *leaf);
    	void *context;
    };
    
    static int walk_ablock(void *context, uint64_t *keys, void *leaf)
    {
    	struct walk_info *wi = context;
    
    	int r;
    	unsigned i;
    	__le64 block_le;
    	unsigned nr_entries, max_entries;
    	struct dm_block *block;
    	struct array_block *ab;
    
    	memcpy(&block_le, leaf, sizeof(block_le));
    	r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
    	if (r)
    		return r;
    
    	max_entries = le32_to_cpu(ab->max_entries);
    	nr_entries = le32_to_cpu(ab->nr_entries);
    	for (i = 0; i < nr_entries; i++) {
    		r = wi->fn(wi->context, keys[0] * max_entries + i,
    			   element_at(wi->info, ab, i));
    
    		if (r)
    			break;
    	}
    
    	unlock_ablock(wi->info, block);
    	return r;
    }
    
    int dm_array_walk(struct dm_array_info *info, dm_block_t root,
    		  int (*fn)(void *, uint64_t key, void *leaf),
    		  void *context)
    {
    	struct walk_info wi;
    
    	wi.info = info;
    	wi.fn = fn;
    	wi.context = context;
    
    	return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
    }
    EXPORT_SYMBOL_GPL(dm_array_walk);
    
    /*----------------------------------------------------------------*/