Skip to content
Snippets Groups Projects
efi.c 14.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Common EFI (Extensible Firmware Interface) support functions
     * Based on Extensible Firmware Interface Specification version 1.0
     *
     * Copyright (C) 1999 VA Linux Systems
     * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
     * Copyright (C) 1999-2002 Hewlett-Packard Co.
     *	David Mosberger-Tang <davidm@hpl.hp.com>
     *	Stephane Eranian <eranian@hpl.hp.com>
     * Copyright (C) 2005-2008 Intel Co.
     *	Fenghua Yu <fenghua.yu@intel.com>
     *	Bibo Mao <bibo.mao@intel.com>
     *	Chandramouli Narayanan <mouli@linux.intel.com>
     *	Huang Ying <ying.huang@intel.com>
     *
     * Copied from efi_32.c to eliminate the duplicated code between EFI
     * 32/64 support code. --ying 2007-10-26
     *
     * All EFI Runtime Services are not implemented yet as EFI only
     * supports physical mode addressing on SoftSDV. This is to be fixed
     * in a future version.  --drummond 1999-07-20
     *
     * Implemented EFI runtime services and virtual mode calls.  --davidm
     *
     * Goutham Rao: <goutham.rao@intel.com>
     *	Skip non-WB memory and ignore empty memory ranges.
     */
    
    #include <linux/kernel.h>
    #include <linux/init.h>
    #include <linux/efi.h>
    #include <linux/bootmem.h>
    #include <linux/spinlock.h>
    #include <linux/uaccess.h>
    #include <linux/time.h>
    #include <linux/io.h>
    #include <linux/reboot.h>
    #include <linux/bcd.h>
    
    #include <asm/setup.h>
    #include <asm/efi.h>
    #include <asm/time.h>
    
    #include <asm/cacheflush.h>
    #include <asm/tlbflush.h>
    
    
    #define EFI_DEBUG	1
    #define PFX 		"EFI: "
    
    int efi_enabled;
    EXPORT_SYMBOL(efi_enabled);
    
    struct efi efi;
    EXPORT_SYMBOL(efi);
    
    struct efi_memory_map memmap;
    
    struct efi efi_phys __initdata;
    static efi_system_table_t efi_systab __initdata;
    
    
    static int __init setup_noefi(char *arg)
    {
    	efi_enabled = 0;
    	return 0;
    }
    early_param("noefi", setup_noefi);
    
    
    static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
    {
    	return efi_call_virt2(get_time, tm, tc);
    }
    
    static efi_status_t virt_efi_set_time(efi_time_t *tm)
    {
    	return efi_call_virt1(set_time, tm);
    }
    
    static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
    					     efi_bool_t *pending,
    					     efi_time_t *tm)
    {
    	return efi_call_virt3(get_wakeup_time,
    			      enabled, pending, tm);
    }
    
    static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
    {
    	return efi_call_virt2(set_wakeup_time,
    			      enabled, tm);
    }
    
    static efi_status_t virt_efi_get_variable(efi_char16_t *name,
    					  efi_guid_t *vendor,
    					  u32 *attr,
    					  unsigned long *data_size,
    					  void *data)
    {
    	return efi_call_virt5(get_variable,
    			      name, vendor, attr,
    			      data_size, data);
    }
    
    static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
    					       efi_char16_t *name,
    					       efi_guid_t *vendor)
    {
    	return efi_call_virt3(get_next_variable,
    			      name_size, name, vendor);
    }
    
    static efi_status_t virt_efi_set_variable(efi_char16_t *name,
    					  efi_guid_t *vendor,
    					  unsigned long attr,
    					  unsigned long data_size,
    					  void *data)
    {
    	return efi_call_virt5(set_variable,
    			      name, vendor, attr,
    			      data_size, data);
    }
    
    static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
    {
    	return efi_call_virt1(get_next_high_mono_count, count);
    }
    
    static void virt_efi_reset_system(int reset_type,
    				  efi_status_t status,
    				  unsigned long data_size,
    				  efi_char16_t *data)
    {
    	efi_call_virt4(reset_system, reset_type, status,
    		       data_size, data);
    }
    
    static efi_status_t virt_efi_set_virtual_address_map(
    	unsigned long memory_map_size,
    	unsigned long descriptor_size,
    	u32 descriptor_version,
    	efi_memory_desc_t *virtual_map)
    {
    	return efi_call_virt4(set_virtual_address_map,
    			      memory_map_size, descriptor_size,
    			      descriptor_version, virtual_map);
    }
    
    static efi_status_t __init phys_efi_set_virtual_address_map(
    	unsigned long memory_map_size,
    	unsigned long descriptor_size,
    	u32 descriptor_version,
    	efi_memory_desc_t *virtual_map)
    {
    	efi_status_t status;
    
    	efi_call_phys_prelog();
    	status = efi_call_phys4(efi_phys.set_virtual_address_map,
    				memory_map_size, descriptor_size,
    				descriptor_version, virtual_map);
    	efi_call_phys_epilog();
    	return status;
    }
    
    static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
    					     efi_time_cap_t *tc)
    {
    	efi_status_t status;
    
    	efi_call_phys_prelog();
    	status = efi_call_phys2(efi_phys.get_time, tm, tc);
    	efi_call_phys_epilog();
    	return status;
    }
    
    int efi_set_rtc_mmss(unsigned long nowtime)
    {
    	int real_seconds, real_minutes;
    	efi_status_t 	status;
    	efi_time_t 	eft;
    	efi_time_cap_t 	cap;
    
    	status = efi.get_time(&eft, &cap);
    	if (status != EFI_SUCCESS) {
    		printk(KERN_ERR "Oops: efitime: can't read time!\n");
    		return -1;
    	}
    
    	real_seconds = nowtime % 60;
    	real_minutes = nowtime / 60;
    	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
    		real_minutes += 30;
    	real_minutes %= 60;
    	eft.minute = real_minutes;
    	eft.second = real_seconds;
    
    	status = efi.set_time(&eft);
    	if (status != EFI_SUCCESS) {
    		printk(KERN_ERR "Oops: efitime: can't write time!\n");
    		return -1;
    	}
    	return 0;
    }
    
    unsigned long efi_get_time(void)
    {
    	efi_status_t status;
    	efi_time_t eft;
    	efi_time_cap_t cap;
    
    	status = efi.get_time(&eft, &cap);
    	if (status != EFI_SUCCESS)
    		printk(KERN_ERR "Oops: efitime: can't read time!\n");
    
    	return mktime(eft.year, eft.month, eft.day, eft.hour,
    		      eft.minute, eft.second);
    }
    
    #if EFI_DEBUG
    static void __init print_efi_memmap(void)
    {
    	efi_memory_desc_t *md;
    	void *p;
    	int i;
    
    	for (p = memmap.map, i = 0;
    	     p < memmap.map_end;
    	     p += memmap.desc_size, i++) {
    		md = p;
    		printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
    			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
    			i, md->type, md->attribute, md->phys_addr,
    			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
    			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
    	}
    }
    #endif  /*  EFI_DEBUG  */
    
    void __init efi_init(void)
    {
    	efi_config_table_t *config_tables;
    	efi_runtime_services_t *runtime;
    	efi_char16_t *c16;
    	char vendor[100] = "unknown";
    	int i = 0;
    	void *tmp;
    
    #ifdef CONFIG_X86_32
    	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
    	memmap.phys_map = (void *)boot_params.efi_info.efi_memmap;
    #else
    	efi_phys.systab = (efi_system_table_t *)
    		(boot_params.efi_info.efi_systab |
    		 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
    	memmap.phys_map = (void *)
    		(boot_params.efi_info.efi_memmap |
    		 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
    #endif
    	memmap.nr_map = boot_params.efi_info.efi_memmap_size /
    		boot_params.efi_info.efi_memdesc_size;
    	memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
    	memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
    
    
    	efi.systab = early_ioremap((unsigned long)efi_phys.systab,
    				   sizeof(efi_system_table_t));
    
    	if (efi.systab == NULL)
    		printk(KERN_ERR "Couldn't map the EFI system table!\n");
    	memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
    
    	early_iounmap(efi.systab, sizeof(efi_system_table_t));
    
    	efi.systab = &efi_systab;
    
    	/*
    	 * Verify the EFI Table
    	 */
    	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
    		printk(KERN_ERR "EFI system table signature incorrect!\n");
    	if ((efi.systab->hdr.revision >> 16) == 0)
    		printk(KERN_ERR "Warning: EFI system table version "
    		       "%d.%02d, expected 1.00 or greater!\n",
    		       efi.systab->hdr.revision >> 16,
    		       efi.systab->hdr.revision & 0xffff);
    
    	/*
    	 * Show what we know for posterity
    	 */
    
    	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
    
    	if (c16) {
    		for (i = 0; i < sizeof(vendor) && *c16; ++i)
    			vendor[i] = *c16++;
    		vendor[i] = '\0';
    	} else
    		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
    
    	early_iounmap(tmp, 2);
    
    
    	printk(KERN_INFO "EFI v%u.%.02u by %s \n",
    	       efi.systab->hdr.revision >> 16,
    	       efi.systab->hdr.revision & 0xffff, vendor);
    
    	/*
    	 * Let's see what config tables the firmware passed to us.
    	 */
    
    	config_tables = early_ioremap(
    
    		efi.systab->tables,
    		efi.systab->nr_tables * sizeof(efi_config_table_t));
    	if (config_tables == NULL)
    		printk(KERN_ERR "Could not map EFI Configuration Table!\n");
    
    	printk(KERN_INFO);
    	for (i = 0; i < efi.systab->nr_tables; i++) {
    		if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
    			efi.mps = config_tables[i].table;
    			printk(" MPS=0x%lx ", config_tables[i].table);
    		} else if (!efi_guidcmp(config_tables[i].guid,
    					ACPI_20_TABLE_GUID)) {
    			efi.acpi20 = config_tables[i].table;
    			printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
    		} else if (!efi_guidcmp(config_tables[i].guid,
    					ACPI_TABLE_GUID)) {
    			efi.acpi = config_tables[i].table;
    			printk(" ACPI=0x%lx ", config_tables[i].table);
    		} else if (!efi_guidcmp(config_tables[i].guid,
    					SMBIOS_TABLE_GUID)) {
    			efi.smbios = config_tables[i].table;
    			printk(" SMBIOS=0x%lx ", config_tables[i].table);
    		} else if (!efi_guidcmp(config_tables[i].guid,
    					HCDP_TABLE_GUID)) {
    			efi.hcdp = config_tables[i].table;
    			printk(" HCDP=0x%lx ", config_tables[i].table);
    		} else if (!efi_guidcmp(config_tables[i].guid,
    					UGA_IO_PROTOCOL_GUID)) {
    			efi.uga = config_tables[i].table;
    			printk(" UGA=0x%lx ", config_tables[i].table);
    		}
    	}
    	printk("\n");
    
    	early_iounmap(config_tables,
    
    			  efi.systab->nr_tables * sizeof(efi_config_table_t));
    
    	/*
    	 * Check out the runtime services table. We need to map
    	 * the runtime services table so that we can grab the physical
    	 * address of several of the EFI runtime functions, needed to
    	 * set the firmware into virtual mode.
    	 */
    
    	runtime = early_ioremap((unsigned long)efi.systab->runtime,
    				sizeof(efi_runtime_services_t));
    
    	if (runtime != NULL) {
    		/*
    		 * We will only need *early* access to the following
    		 * two EFI runtime services before set_virtual_address_map
    		 * is invoked.
    		 */
    		efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
    		efi_phys.set_virtual_address_map =
    			(efi_set_virtual_address_map_t *)
    			runtime->set_virtual_address_map;
    		/*
    		 * Make efi_get_time can be called before entering
    		 * virtual mode.
    		 */
    		efi.get_time = phys_efi_get_time;
    	} else
    		printk(KERN_ERR "Could not map the EFI runtime service "
    		       "table!\n");
    
    	early_iounmap(runtime, sizeof(efi_runtime_services_t));
    
    
    	/* Map the EFI memory map */
    
    	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
    				   memmap.nr_map * memmap.desc_size);
    
    	if (memmap.map == NULL)
    		printk(KERN_ERR "Could not map the EFI memory map!\n");
    	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
    	if (memmap.desc_size != sizeof(efi_memory_desc_t))
    		printk(KERN_WARNING "Kernel-defined memdesc"
    		       "doesn't match the one from EFI!\n");
    
    #ifdef CONFIG_X86_64
    	/* Setup for EFI runtime service */
    	reboot_type = BOOT_EFI;
    
    #endif
    #if EFI_DEBUG
    	print_efi_memmap();
    #endif
    }
    
    
    #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
    static void __init runtime_code_page_mkexec(void)
    {
    	efi_memory_desc_t *md;
    	unsigned long end;
    	void *p;
    
    	if (!(__supported_pte_mask & _PAGE_NX))
    		return;
    
    	/* Make EFI runtime service code area executable */
    	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
    		md = p;
    		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
    		if (md->type == EFI_RUNTIME_SERVICES_CODE &&
    
    		    (end >> PAGE_SHIFT) <= max_pfn_mapped)
    
    			change_page_attr_addr(md->virt_addr,
    					      md->num_pages,
    					      PAGE_KERNEL_EXEC_NOCACHE);
    	}
    	__flush_tlb_all();
    }
    #else
    static inline void __init runtime_code_page_mkexec(void) { }
    #endif
    
    
    /*
     * This function will switch the EFI runtime services to virtual mode.
     * Essentially, look through the EFI memmap and map every region that
     * has the runtime attribute bit set in its memory descriptor and update
     * that memory descriptor with the virtual address obtained from ioremap().
     * This enables the runtime services to be called without having to
     * thunk back into physical mode for every invocation.
     */
    void __init efi_enter_virtual_mode(void)
    {
    	efi_memory_desc_t *md;
    	efi_status_t status;
    	unsigned long end;
    	void *p;
    
    	efi.systab = NULL;
    	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
    		md = p;
    		if (!(md->attribute & EFI_MEMORY_RUNTIME))
    			continue;
    
    		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
    
    		if ((md->attribute & EFI_MEMORY_WB) &&
    
    		    ((end >> PAGE_SHIFT) <= max_pfn_mapped))
    
    			md->virt_addr = (unsigned long)__va(md->phys_addr);
    		else
    			md->virt_addr = (unsigned long)
    				efi_ioremap(md->phys_addr,
    					    md->num_pages << EFI_PAGE_SHIFT);
    		if (!md->virt_addr)
    			printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
    			       (unsigned long long)md->phys_addr);
    		if ((md->phys_addr <= (unsigned long)efi_phys.systab) &&
    		    ((unsigned long)efi_phys.systab < end))
    			efi.systab = (efi_system_table_t *)(unsigned long)
    				(md->virt_addr - md->phys_addr +
    				 (unsigned long)efi_phys.systab);
    	}
    
    	BUG_ON(!efi.systab);
    
    	status = phys_efi_set_virtual_address_map(
    		memmap.desc_size * memmap.nr_map,
    		memmap.desc_size,
    		memmap.desc_version,
    		memmap.phys_map);
    
    	if (status != EFI_SUCCESS) {
    		printk(KERN_ALERT "Unable to switch EFI into virtual mode "
    		       "(status=%lx)!\n", status);
    		panic("EFI call to SetVirtualAddressMap() failed!");
    	}
    
    	/*
    	 * Now that EFI is in virtual mode, update the function
    	 * pointers in the runtime service table to the new virtual addresses.
    	 *
    	 * Call EFI services through wrapper functions.
    	 */
    	efi.get_time = virt_efi_get_time;
    	efi.set_time = virt_efi_set_time;
    	efi.get_wakeup_time = virt_efi_get_wakeup_time;
    	efi.set_wakeup_time = virt_efi_set_wakeup_time;
    	efi.get_variable = virt_efi_get_variable;
    	efi.get_next_variable = virt_efi_get_next_variable;
    	efi.set_variable = virt_efi_set_variable;
    	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
    	efi.reset_system = virt_efi_reset_system;
    	efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
    	runtime_code_page_mkexec();
    }
    
    /*
     * Convenience functions to obtain memory types and attributes
     */
    u32 efi_mem_type(unsigned long phys_addr)
    {
    	efi_memory_desc_t *md;
    	void *p;
    
    	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
    		md = p;
    		if ((md->phys_addr <= phys_addr) &&
    		    (phys_addr < (md->phys_addr +
    				  (md->num_pages << EFI_PAGE_SHIFT))))
    			return md->type;
    	}
    	return 0;
    }
    
    u64 efi_mem_attributes(unsigned long phys_addr)
    {
    	efi_memory_desc_t *md;
    	void *p;
    
    	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
    		md = p;
    		if ((md->phys_addr <= phys_addr) &&
    		    (phys_addr < (md->phys_addr +
    				  (md->num_pages << EFI_PAGE_SHIFT))))
    			return md->attribute;
    	}
    	return 0;
    }