Skip to content
Snippets Groups Projects
memcontrol.c 17.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* memcontrol.c - Memory Controller
     *
     * Copyright IBM Corporation, 2007
     * Author Balbir Singh <balbir@linux.vnet.ibm.com>
     *
    
     * Copyright 2007 OpenVZ SWsoft Inc
     * Author: Pavel Emelianov <xemul@openvz.org>
     *
    
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     */
    
    #include <linux/res_counter.h>
    #include <linux/memcontrol.h>
    #include <linux/cgroup.h>
    
    #include <linux/mm.h>
    
    #include <linux/page-flags.h>
    
    #include <linux/backing-dev.h>
    
    #include <linux/bit_spinlock.h>
    #include <linux/rcupdate.h>
    
    #include <linux/swap.h>
    #include <linux/spinlock.h>
    #include <linux/fs.h>
    
    struct cgroup_subsys mem_cgroup_subsys;
    
    static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
    
    
    /*
     * The memory controller data structure. The memory controller controls both
     * page cache and RSS per cgroup. We would eventually like to provide
     * statistics based on the statistics developed by Rik Van Riel for clock-pro,
     * to help the administrator determine what knobs to tune.
     *
     * TODO: Add a water mark for the memory controller. Reclaim will begin when
    
     * we hit the water mark. May be even add a low water mark, such that
     * no reclaim occurs from a cgroup at it's low water mark, this is
     * a feature that will be implemented much later in the future.
    
     */
    struct mem_cgroup {
    	struct cgroup_subsys_state css;
    	/*
    	 * the counter to account for memory usage
    	 */
    	struct res_counter res;
    
    	/*
    	 * Per cgroup active and inactive list, similar to the
    	 * per zone LRU lists.
    	 * TODO: Consider making these lists per zone
    	 */
    	struct list_head active_list;
    	struct list_head inactive_list;
    
    	/*
    	 * spin_lock to protect the per cgroup LRU
    	 */
    	spinlock_t lru_lock;
    
    	unsigned long control_type;	/* control RSS or RSS+Pagecache */
    
    /*
     * We use the lower bit of the page->page_cgroup pointer as a bit spin
     * lock. We need to ensure that page->page_cgroup is atleast two
     * byte aligned (based on comments from Nick Piggin)
     */
    #define PAGE_CGROUP_LOCK_BIT 	0x0
    #define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)
    
    
    /*
     * A page_cgroup page is associated with every page descriptor. The
     * page_cgroup helps us identify information about the cgroup
     */
    struct page_cgroup {
    	struct list_head lru;		/* per cgroup LRU list */
    	struct page *page;
    	struct mem_cgroup *mem_cgroup;
    
    	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
    					/* mapped and cached states     */
    
    enum {
    	MEM_CGROUP_TYPE_UNSPEC = 0,
    	MEM_CGROUP_TYPE_MAPPED,
    	MEM_CGROUP_TYPE_CACHED,
    	MEM_CGROUP_TYPE_ALL,
    	MEM_CGROUP_TYPE_MAX,
    };
    
    static struct mem_cgroup init_mem_cgroup;
    
    
    static inline
    struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
    {
    	return container_of(cgroup_subsys_state(cont,
    				mem_cgroup_subsys_id), struct mem_cgroup,
    				css);
    }
    
    
    static inline
    struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
    {
    	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
    				struct mem_cgroup, css);
    }
    
    void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
    {
    	struct mem_cgroup *mem;
    
    	mem = mem_cgroup_from_task(p);
    	css_get(&mem->css);
    	mm->mem_cgroup = mem;
    }
    
    void mm_free_cgroup(struct mm_struct *mm)
    {
    	css_put(&mm->mem_cgroup->css);
    }
    
    
    static inline int page_cgroup_locked(struct page *page)
    {
    	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
    					&page->page_cgroup);
    }
    
    
    void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
    {
    
    	int locked;
    
    	/*
    	 * While resetting the page_cgroup we might not hold the
    	 * page_cgroup lock. free_hot_cold_page() is an example
    	 * of such a scenario
    	 */
    	if (pc)
    		VM_BUG_ON(!page_cgroup_locked(page));
    	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
    	page->page_cgroup = ((unsigned long)pc | locked);
    
    }
    
    struct page_cgroup *page_get_page_cgroup(struct page *page)
    {
    
    	return (struct page_cgroup *)
    		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
    }
    
    
    static void __always_inline lock_page_cgroup(struct page *page)
    
    {
    	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
    	VM_BUG_ON(!page_cgroup_locked(page));
    }
    
    
    static void __always_inline unlock_page_cgroup(struct page *page)
    
    {
    	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
    }
    
    
    /*
     * Tie new page_cgroup to struct page under lock_page_cgroup()
     * This can fail if the page has been tied to a page_cgroup.
     * If success, returns 0.
     */
    static inline int
    page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
    {
    	int ret = 0;
    
    	lock_page_cgroup(page);
    	if (!page_get_page_cgroup(page))
    		page_assign_page_cgroup(page, pc);
    	else /* A page is tied to other pc. */
    		ret = 1;
    	unlock_page_cgroup(page);
    	return ret;
    }
    
    /*
     * Clear page->page_cgroup member under lock_page_cgroup().
     * If given "pc" value is different from one page->page_cgroup,
     * page->cgroup is not cleared.
     * Returns a value of page->page_cgroup at lock taken.
     * A can can detect failure of clearing by following
     *  clear_page_cgroup(page, pc) == pc
     */
    
    static inline struct page_cgroup *
    clear_page_cgroup(struct page *page, struct page_cgroup *pc)
    {
    	struct page_cgroup *ret;
    	/* lock and clear */
    	lock_page_cgroup(page);
    	ret = page_get_page_cgroup(page);
    	if (likely(ret == pc))
    		page_assign_page_cgroup(page, NULL);
    	unlock_page_cgroup(page);
    	return ret;
    }
    
    
    
    static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
    
    {
    	if (active)
    		list_move(&pc->lru, &pc->mem_cgroup->active_list);
    	else
    		list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
    }
    
    
    int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
    {
    	int ret;
    
    	task_lock(task);
    	ret = task->mm && mm_cgroup(task->mm) == mem;
    	task_unlock(task);
    	return ret;
    }
    
    
    /*
     * This routine assumes that the appropriate zone's lru lock is already held
     */
    void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
    {
    	struct mem_cgroup *mem;
    	if (!pc)
    		return;
    
    	mem = pc->mem_cgroup;
    
    	spin_lock(&mem->lru_lock);
    	__mem_cgroup_move_lists(pc, active);
    	spin_unlock(&mem->lru_lock);
    }
    
    unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
    					struct list_head *dst,
    					unsigned long *scanned, int order,
    					int mode, struct zone *z,
    					struct mem_cgroup *mem_cont,
    					int active)
    {
    	unsigned long nr_taken = 0;
    	struct page *page;
    	unsigned long scan;
    	LIST_HEAD(pc_list);
    	struct list_head *src;
    
    
    	if (active)
    		src = &mem_cont->active_list;
    	else
    		src = &mem_cont->inactive_list;
    
    	spin_lock(&mem_cont->lru_lock);
    
    	scan = 0;
    	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
    		if (scan++ > nr_to_scan)
    			break;
    
    		page = pc->page;
    		VM_BUG_ON(!pc);
    
    
    		if (PageActive(page) && !active) {
    			__mem_cgroup_move_lists(pc, true);
    			scan--;
    			continue;
    		}
    		if (!PageActive(page) && active) {
    			__mem_cgroup_move_lists(pc, false);
    			scan--;
    			continue;
    		}
    
    		/*
    		 * Reclaim, per zone
    		 * TODO: make the active/inactive lists per zone
    		 */
    		if (page_zone(page) != z)
    			continue;
    
    		/*
    		 * Check if the meta page went away from under us
    		 */
    		if (!list_empty(&pc->lru))
    			list_move(&pc->lru, &pc_list);
    		else
    			continue;
    
    		if (__isolate_lru_page(page, mode) == 0) {
    			list_move(&page->lru, dst);
    			nr_taken++;
    		}
    	}
    
    	list_splice(&pc_list, src);
    	spin_unlock(&mem_cont->lru_lock);
    
    	*scanned = scan;
    	return nr_taken;
    }
    
    
    /*
     * Charge the memory controller for page usage.
     * Return
     * 0 if the charge was successful
     * < 0 if the cgroup is over its limit
     */
    
    int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
    				gfp_t gfp_mask)
    
    {
    	struct mem_cgroup *mem;
    
    	unsigned long flags;
    	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
    
    
    	/*
    	 * Should page_cgroup's go to their own slab?
    	 * One could optimize the performance of the charging routine
    	 * by saving a bit in the page_flags and using it as a lock
    	 * to see if the cgroup page already has a page_cgroup associated
    	 * with it
    	 */
    
    	lock_page_cgroup(page);
    	pc = page_get_page_cgroup(page);
    	/*
    	 * The page_cgroup exists and the page has already been accounted
    	 */
    	if (pc) {
    
    		if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
    			/* this page is under being uncharged ? */
    			unlock_page_cgroup(page);
    			cpu_relax();
    			goto retry;
    
    	}
    
    	unlock_page_cgroup(page);
    
    
    	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
    
    	if (pc == NULL)
    		goto err;
    
    	rcu_read_lock();
    	/*
    	 * We always charge the cgroup the mm_struct belongs to
    	 * the mm_struct's mem_cgroup changes on task migration if the
    	 * thread group leader migrates. It's possible that mm is not
    	 * set, if so charge the init_mm (happens for pagecache usage).
    	 */
    	if (!mm)
    		mm = &init_mm;
    
    	mem = rcu_dereference(mm->mem_cgroup);
    	/*
    	 * For every charge from the cgroup, increment reference
    	 * count
    	 */
    	css_get(&mem->css);
    	rcu_read_unlock();
    
    	/*
    	 * If we created the page_cgroup, we should free it on exceeding
    	 * the cgroup limit.
    	 */
    
    	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
    
    		bool is_atomic = gfp_mask & GFP_ATOMIC;
    		/*
    		 * We cannot reclaim under GFP_ATOMIC, fail the charge
    		 */
    		if (is_atomic)
    			goto noreclaim;
    
    		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
    
    			continue;
    
    		/*
     		 * try_to_free_mem_cgroup_pages() might not give us a full
     		 * picture of reclaim. Some pages are reclaimed and might be
     		 * moved to swap cache or just unmapped from the cgroup.
     		 * Check the limit again to see if the reclaim reduced the
     		 * current usage of the cgroup before giving up
     		 */
    		if (res_counter_check_under_limit(&mem->res))
    			continue;
    			/*
    			 * Since we control both RSS and cache, we end up with a
    			 * very interesting scenario where we end up reclaiming
    			 * memory (essentially RSS), since the memory is pushed
    			 * to swap cache, we eventually end up adding those
    			 * pages back to our list. Hence we give ourselves a
    			 * few chances before we fail
    			 */
    		else if (nr_retries--) {
    			congestion_wait(WRITE, HZ/10);
    			continue;
    		}
    
    		css_put(&mem->css);
    
    		if (!is_atomic)
    			mem_cgroup_out_of_memory(mem, GFP_KERNEL);
    
    		goto free_pc;
    	}
    
    	atomic_set(&pc->ref_cnt, 1);
    	pc->mem_cgroup = mem;
    	pc->page = page;
    
    	if (page_cgroup_assign_new_page_cgroup(page, pc)) {
    		/*
    		 * an another charge is added to this page already.
    		 * we do take lock_page_cgroup(page) again and read
    		 * page->cgroup, increment refcnt.... just retry is OK.
    		 */
    		res_counter_uncharge(&mem->res, PAGE_SIZE);
    		css_put(&mem->css);
    		kfree(pc);
    		goto retry;
    	}
    
    	spin_lock_irqsave(&mem->lru_lock, flags);
    	list_add(&pc->lru, &mem->active_list);
    	spin_unlock_irqrestore(&mem->lru_lock, flags);
    
    
    done:
    	return 0;
    free_pc:
    	kfree(pc);
    err:
    	return -ENOMEM;
    }
    
    
    /*
     * See if the cached pages should be charged at all?
     */
    
    int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
    				gfp_t gfp_mask)
    
    {
    	struct mem_cgroup *mem;
    	if (!mm)
    		mm = &init_mm;
    
    	mem = rcu_dereference(mm->mem_cgroup);
    	if (mem->control_type == MEM_CGROUP_TYPE_ALL)
    
    		return mem_cgroup_charge(page, mm, gfp_mask);
    
    /*
     * Uncharging is always a welcome operation, we never complain, simply
     * uncharge.
     */
    void mem_cgroup_uncharge(struct page_cgroup *pc)
    {
    	struct mem_cgroup *mem;
    	struct page *page;
    
    	unsigned long flags;
    
    	/*
    	 * This can handle cases when a page is not charged at all and we
    	 * are switching between handling the control_type.
    	 */
    
    	if (!pc)
    		return;
    
    	if (atomic_dec_and_test(&pc->ref_cnt)) {
    		page = pc->page;
    
    		/*
    		 * get page->cgroup and clear it under lock.
    		 */
    		if (clear_page_cgroup(page, pc) == pc) {
    			mem = pc->mem_cgroup;
    			css_put(&mem->css);
    			res_counter_uncharge(&mem->res, PAGE_SIZE);
    			spin_lock_irqsave(&mem->lru_lock, flags);
    			list_del_init(&pc->lru);
    			spin_unlock_irqrestore(&mem->lru_lock, flags);
    			kfree(pc);
    		} else {
    			/*
    			 * Note:This will be removed when force-empty patch is
    			 * applied. just show warning here.
    			 */
    			printk(KERN_ERR "Race in mem_cgroup_uncharge() ?");
    			dump_stack();
    		}
    
    /*
     * Returns non-zero if a page (under migration) has valid page_cgroup member.
     * Refcnt of page_cgroup is incremented.
     */
    
    int mem_cgroup_prepare_migration(struct page *page)
    {
    	struct page_cgroup *pc;
    	int ret = 0;
    	lock_page_cgroup(page);
    	pc = page_get_page_cgroup(page);
    	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
    		ret = 1;
    	unlock_page_cgroup(page);
    	return ret;
    }
    
    void mem_cgroup_end_migration(struct page *page)
    {
    	struct page_cgroup *pc = page_get_page_cgroup(page);
    	mem_cgroup_uncharge(pc);
    }
    /*
     * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
     * And no race with uncharge() routines because page_cgroup for *page*
     * has extra one reference by mem_cgroup_prepare_migration.
     */
    
    void mem_cgroup_page_migration(struct page *page, struct page *newpage)
    {
    	struct page_cgroup *pc;
    retry:
    	pc = page_get_page_cgroup(page);
    	if (!pc)
    		return;
    	if (clear_page_cgroup(page, pc) != pc)
    		goto retry;
    	pc->page = newpage;
    	lock_page_cgroup(newpage);
    	page_assign_page_cgroup(newpage, pc);
    	unlock_page_cgroup(newpage);
    	return;
    }
    
    int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
    {
    	*tmp = memparse(buf, &buf);
    	if (*buf != '\0')
    		return -EINVAL;
    
    	/*
    	 * Round up the value to the closest page size
    	 */
    	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
    	return 0;
    }
    
    static ssize_t mem_cgroup_read(struct cgroup *cont,
    			struct cftype *cft, struct file *file,
    			char __user *userbuf, size_t nbytes, loff_t *ppos)
    
    {
    	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
    
    				cft->private, userbuf, nbytes, ppos,
    				NULL);
    
    }
    
    static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
    				struct file *file, const char __user *userbuf,
    				size_t nbytes, loff_t *ppos)
    {
    	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
    
    				cft->private, userbuf, nbytes, ppos,
    				mem_cgroup_write_strategy);
    
    static ssize_t mem_control_type_write(struct cgroup *cont,
    			struct cftype *cft, struct file *file,
    			const char __user *userbuf,
    			size_t nbytes, loff_t *pos)
    {
    	int ret;
    	char *buf, *end;
    	unsigned long tmp;
    	struct mem_cgroup *mem;
    
    	mem = mem_cgroup_from_cont(cont);
    	buf = kmalloc(nbytes + 1, GFP_KERNEL);
    	ret = -ENOMEM;
    	if (buf == NULL)
    		goto out;
    
    	buf[nbytes] = 0;
    	ret = -EFAULT;
    	if (copy_from_user(buf, userbuf, nbytes))
    		goto out_free;
    
    	ret = -EINVAL;
    	tmp = simple_strtoul(buf, &end, 10);
    	if (*end != '\0')
    		goto out_free;
    
    	if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
    		goto out_free;
    
    	mem->control_type = tmp;
    	ret = nbytes;
    out_free:
    	kfree(buf);
    out:
    	return ret;
    }
    
    static ssize_t mem_control_type_read(struct cgroup *cont,
    				struct cftype *cft,
    				struct file *file, char __user *userbuf,
    				size_t nbytes, loff_t *ppos)
    {
    	unsigned long val;
    	char buf[64], *s;
    	struct mem_cgroup *mem;
    
    	mem = mem_cgroup_from_cont(cont);
    	s = buf;
    	val = mem->control_type;
    	s += sprintf(s, "%lu\n", val);
    	return simple_read_from_buffer((void __user *)userbuf, nbytes,
    			ppos, buf, s - buf);
    }
    
    
    static struct cftype mem_cgroup_files[] = {
    	{
    
    		.name = "usage_in_bytes",
    
    		.private = RES_USAGE,
    		.read = mem_cgroup_read,
    	},
    	{
    
    		.name = "limit_in_bytes",
    
    		.private = RES_LIMIT,
    		.write = mem_cgroup_write,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "failcnt",
    		.private = RES_FAILCNT,
    		.read = mem_cgroup_read,
    	},
    
    	{
    		.name = "control_type",
    		.write = mem_control_type_write,
    		.read = mem_control_type_read,
    	},
    
    static struct mem_cgroup init_mem_cgroup;
    
    
    static struct cgroup_subsys_state *
    mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
    {
    	struct mem_cgroup *mem;
    
    
    	if (unlikely((cont->parent) == NULL)) {
    		mem = &init_mem_cgroup;
    		init_mm.mem_cgroup = mem;
    	} else
    		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
    
    	if (mem == NULL)
    		return NULL;
    
    
    	res_counter_init(&mem->res);
    
    	INIT_LIST_HEAD(&mem->active_list);
    	INIT_LIST_HEAD(&mem->inactive_list);
    
    	spin_lock_init(&mem->lru_lock);
    
    	mem->control_type = MEM_CGROUP_TYPE_ALL;
    
    	return &mem->css;
    }
    
    static void mem_cgroup_destroy(struct cgroup_subsys *ss,
    				struct cgroup *cont)
    {
    	kfree(mem_cgroup_from_cont(cont));
    }
    
    static int mem_cgroup_populate(struct cgroup_subsys *ss,
    				struct cgroup *cont)
    {
    	return cgroup_add_files(cont, ss, mem_cgroup_files,
    					ARRAY_SIZE(mem_cgroup_files));
    }
    
    
    static void mem_cgroup_move_task(struct cgroup_subsys *ss,
    				struct cgroup *cont,
    				struct cgroup *old_cont,
    				struct task_struct *p)
    {
    	struct mm_struct *mm;
    	struct mem_cgroup *mem, *old_mem;
    
    	mm = get_task_mm(p);
    	if (mm == NULL)
    		return;
    
    	mem = mem_cgroup_from_cont(cont);
    	old_mem = mem_cgroup_from_cont(old_cont);
    
    	if (mem == old_mem)
    		goto out;
    
    	/*
    	 * Only thread group leaders are allowed to migrate, the mm_struct is
    	 * in effect owned by the leader
    	 */
    	if (p->tgid != p->pid)
    		goto out;
    
    	css_get(&mem->css);
    	rcu_assign_pointer(mm->mem_cgroup, mem);
    	css_put(&old_mem->css);
    
    out:
    	mmput(mm);
    	return;
    }
    
    
    struct cgroup_subsys mem_cgroup_subsys = {
    	.name = "memory",
    	.subsys_id = mem_cgroup_subsys_id,
    	.create = mem_cgroup_create,
    	.destroy = mem_cgroup_destroy,
    	.populate = mem_cgroup_populate,
    
    	.attach = mem_cgroup_move_task,
    
    	.early_init = 1,