Skip to content
Snippets Groups Projects
cyto.json 93.4 KiB
Newer Older
    },
    "003-005": {
      "source": "003",
      "target": "005",
      "label": "A mapping induces images and preimages."
    },
    "005-006": {
      "source": "005",
      "target": "006",
      "label": "Injectivity and surjectivity can be expressed in terms of images and preimages."
    },
    "005-305": {
      "source": "005",
      "target": "305",
      "label": "Characterize continuity in terms of preimages of open balls."
    },
    "005-307": {
      "source": "005",
      "target": "307",
      "label": "Topological properties of images under continuous functions."
    },
    "110-307": {
      "source": "110",
      "target": "307",
      "label": "Continuous functions preserve compactness of sets in their image."
    },
    "111-307": {
      "source": "111",
      "target": "307",
      "label": "The Heine-Borel theorem gives the existence of maxima and minima for continuous functions defined on compact sets."
    },
    "307-506": {
      "source": "307",
      "target": "506",
      "label": "The existence of minima and maxima for continuous functions on compact sets is necessary for the proof of Rolle's theorem."
    },
    "000-006": {
      "source": "000",
      "target": "006",
      "label": "Image and Preimage are characterized via logical statements involving quantifiers."
    },
    "003-007": {
      "source": "003",
      "target": "007",
      "label": "Composition is an operation on maps."
    },
    "001-105": {
      "source": "001",
      "target": "105",
      "label": "Supremum and infimum are numbers associated to sets of real numbers."
    },
    "002-105": {
      "source": "002",
      "target": "105",
      "label": "Supremum and infimum are numbers associated to sets of real numbers."
    },
    "100-115": {
      "source": "100",
      "target": "115",
      "label": "Being Cauchy is a property of a sequence."
    },
    "115-106": {
      "source": "115",
      "target": "106",
      "label": "Completeness can be defined by stating that every Cauchy sequences converges."
    },
    "105-106": {
      "source": "105",
      "target": "106",
      "label": "Existence of suprema of bounded sets is a characterization of completeness."
    },
    "001-110": {
      "source": "001",
      "target": "110",
      "label": "Open, closed and compact are properties of sets of numbers."
    },
    "001-112": {
      "source": "001",
      "target": "112",
      "label": "The interior, the closure or the boundary of a set is a set again."
    },
    "002-100": {
      "source": "002",
      "target": "100",
      "label": "A sequence is a map having the real numbers as domain "
    },
    "002-101": {
      "source": "002",
      "target": "101",
      "label": "The definition of convergence involves the absolute value of a difference of real numbers and a quantitative comparison with another real number."
    },
    "002-106": {
      "source": "002",
      "target": "106",
      "label": "Real numbers are complete by the completeness axiom."
    },
    "003-100": {
      "source": "003",
      "target": "100",
      "label": "A sequence is a map of natural numbers "
    },
    "003-300": {
      "source": "003",
      "target": "300",
      "label": "Function is just another name for map."
    },
    "003-304": {
      "source": "003",
      "target": "304",
      "label": "Continuity is a central notion for maps on the real numbers."
    },
    "004-011": {
      "source": "004",
      "target": "011",
      "label": "A lot of identities for sums and products are proved via induction."
    },
    "004-100": {
      "source": "004",
      "target": "100",
      "label": "A sequence is a map having the natural numbers as domain."
    },
    "006-400": {
      "source": "006",
      "target": "400",
      "label": "The exponential function is a bijective function onto the positive reals."
    },
    "400-401": {
      "source": "400",
      "target": "401",
      "label": "The bijectivity of the exponential gives the logarithm function as inverse."
    },
    "206-400": {
      "source": "206",
      "target": "400",
      "label": "The exponential series is absolutely convergent."
    },
    "211-400": {
      "source": "211",
      "target": "400",
      "label": "The functional equation of the exponential is a consequence of the Cauchy product."
    },
    "006-505": {
      "source": "006",
      "target": "505",
      "label": "Bijective differentiable functions can be differentiated using the inversion formula."
    },
    "006-401": {
      "source": "006",
      "target": "401",
      "label": "The natural logarithm is the inverse of the exponential function."
    },
    "304-401": {
      "source": "304",
      "target": "401",
      "label": "The natural logarithem is the inverse of a continuous function."
    },
    "007-306": {
      "source": "007",
      "target": "306",
      "label": "Composition of continuous functions gives a continuous function."
    },
    "007-502": {
      "source": "007",
      "target": "502",
      "label": "How to differentiate a composition of functions."
    },
    "500-502": {
      "source": "500",
      "target": "502",
      "label": "Break down differentiability of compositions to the differentiability of simpler functions."
    },
    "100-101": {
      "source": "100",
      "target": "101",
      "label": "Having a limit is a property of a sequence."
    },
    "101-109": {
      "source": "101",
      "target": "109",
      "label": "Limit inferior and limit superior are in particular limits."
    },
    "107-109": {
      "source": "107",
      "target": "109",
      "label": "Limit inferior and limit superior are the largest and smallest accumulation points of a subsequence."
    },
    "101-103": {
      "source": "101",
      "target": "103",
      "label": "Calculating limits of sums, products or quotients of convergent sequences."
    },
    "101-104": {
      "source": "101",
      "target": "104",
      "label": "Monotonicity and boundedness imply convergence."
      "source": "101",
      "target": "115",
      "label": "Every convergent sequence is also a Cauchy sequence."
    },
    "101-110": {
      "source": "101",
      "target": "110",
      "label": "Closedness is characterized by convergence of sequences."
    },
    "107-110": {
      "source": "107",
      "target": "110",
      "label": "Compactness is characterized by existence of converging subsequences."
    },
    "101-107": {
      "source": "101",
      "target": "107",
      "label": "A sequence may have a convergent subsequence and this limit is then an accumulation value of the original sequence."
    },
    "101-108": {
      "source": "101",
      "target": "108",
      "label": "Bolzano Weierstrass guarantees convergence of certain sequences."
    },
    "102-104": {
      "source": "102",
      "target": "104",
      "label": "A bound for the sequence is also a bound for the limit by the monotonicity of limits."
    },
    "102-108": {
      "source": "102",
      "target": "108",
      "label": "The Bolzano Weierstrass Theorem guarantees the existence of accumulation points for bounded sequences."
    },
    "103-203": {
      "source": "103",
      "target": "203",
      "label": "Considering series as limits of sequences of partial sums leads to limit theorems for sequences."
    },
    "000-108": {
      "source": "000",
      "target": "108",
      "label": "Bolzano Weierstrass theorem is a logical statement."
    },
    "108-109": {
      "source": "108",
      "target": "109",
      "label": "Bolzano Weierstrass theorem guarantees the existence of a limit inferior and superior."
    },
    "110-111": {
      "source": "110",
      "target": "111",
      "label": "Heine-Borel theorem characterizes bounded and closed sets."
    },
    "110-112": {
      "source": "110",
      "target": "112",
      "label": "Interior is an open set, closure and boundary are closed sets."
    },
    "111-112": {
      "source": "111",
      "target": "112",
      "label": "The closure of a bounded set is always compact by Heine-Borel theorem."
    },
    "104-111": {
      "source": "104",
      "target": "111",
      "label": "Sandwiching gives rise to the proof using nested intervals in the Heine-Borel theorem."
    },
    "104-309": {
      "source": "104",
      "target": "309",
      "label": "The convergence of the intervals is based on monotonicity of the underlying sequences."
    },
    "108-309": {
      "source": "108",
      "target": "309",
      "label": "The nested intervals technique used in the proof of the Bolzano-Weierstrass theorem is also used for the proof of the intermediate value theorem."
    },
    "107-108": {
      "source": "107",
      "target": "108",
      "label": "Bolzano Weierstrass guarantees existence of accumulation values."
    },
    "100-200": {
      "source": "100",
      "target": "200",
      "label": "A series is a sequence of partial sums."
    },
    "101-200": {
      "source": "101",
      "target": "200",
      "label": "A convergent series is a convergent sequence."
    },
    "011-200": {
      "source": "011",
      "target": "200",
      "label": "Partial sums are described using the formal sum notation."
    },
    "200-201": {
      "source": "200",
      "target": "201",
      "label": " "
    },
    "200-203": {
      "source": "200",
      "target": "203",
      "label": " "
    },
    "200-204": {
      "source": "200",
      "target": "204",
      "label": "The Cauchy criterion works for sequences of partial sums that are Cauchy."
    },
    "106-204": {
      "source": "106",
      "target": "204",
      "label": "Cauchy sequences converge, therefore the Cauchy criterion for series gives convergence of a series."
    },
    "115-204": {
      "source": "115",
      "target": "204",
      "label": "If the sequence of partial sums is a Cauchy sequence, then it converges."
    },
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    "102-204": {
      "source": "102",
      "target": "204",
      "label": "The Cauchy criterion involves bounds on certain parts of the partial sum."
    },
    "008-204": {
      "source": "008",
      "target": "204",
      "label": "The necessary criterion for series convergence is an implication but no equivalence."
    },
    "203-205": {
      "source": "203",
      "target": "205",
      "label": "A sufficient criterion for convergence of a series."
    },
    "008-205": {
      "source": "008",
      "target": "205",
      "label": "The Leibniz criterion gives the sufficient condition for convergence of a series but no equivalence."
    },
    "200-205": {
      "source": "200",
      "target": "205",
      "label": "The Leibniz criterion makes a statement about partial sums of an alternating sequence."
    },
    "104-205": {
      "source": "104",
      "target": "205",
      "label": "The Leibniz criterion makes a statement about partial sums of an monotonic sequence."
    },
    "200-206": {
      "source": "200",
      "target": "206",
      "label": "A strong concept of convergence for sequences of partial sums."
    },
    "201-206": {
      "source": "201",
      "target": "206",
      "label": "The geometric series is an example of an absolutely convergent sequence."
    },
    "205-206": {
      "source": "205",
      "target": "206",
      "label": "The Leibniz theorem shows that the alternating harmonic series is convergent but not absolutely convergent."
    },
    "200-207": {
      "source": "200",
      "target": "207",
      "label": "The comparison tests compare the terms of the partial sums to the ones of other series."
    },
    "200-208": {
      "source": "200",
      "target": "208",
      "label": " "
    },
    "102-209": {
      "source": "102",
      "target": "209",
      "label": "If the nth root of the underlying sequence is bounded by a number striclty smaller than one, the series converges by the root criterion."
    },
    "200-210": {
      "source": "200",
      "target": "210",
      "label": "Reordering a series leads to a new sequence of partial sums."
    },
    "206-210": {
      "source": "206",
      "target": "210",
      "label": "Reordering an absolutely convergent sequence does not change the limit."
    },
    "203-210": {
      "source": "203",
      "target": "210",
      "label": "Reordering of a series may change the limit of the series."
    },
    "006-210": {
      "source": "006",
      "target": "210",
      "label": "Reordering of a series is defined via an bijective mapping of natural numbers."
    },
    "200-211": {
      "source": "200",
      "target": "211",
      "label": " "
    },
    "109-209": {
      "source": "109",
      "target": "209",
      "label": "The root criterion in its limit form gives a condition for the limsup of the underlying sequence."
    },
    "209-403": {
      "source": "209",
      "target": "403",
      "label": "The root criterion is useful for determining domains of convergence."
    },
    "201-209": {
      "source": "201",
      "target": "209",
      "label": "The geometric series is used in the proof of the root criterion as a majorant."
    },
    "201-207": {
      "source": "201",
      "target": "207",
      "label": "The geometric series is often used as a majorant in the comparison test."
    },
    "201-208": {
      "source": "201",
      "target": "208",
      "label": "The geometric series is used in the proof of the quotient criterion as a majorant."
    },
    "207-208": {
      "source": "207",
      "target": "208",
      "label": "The proof of the quotient criterion relies on majorant criterion."
    },
    "208-400": {
      "source": "208",
      "target": "400",
      "label": "By the quotient criterion on can show that the exponential series converges absolutely."
    },
    "207-209": {
      "source": "207",
      "target": "209",
      "label": "The proof of the root criterion relies on majorant criterion."
    },
    "206-208": {
      "source": "206",
      "target": "208",
      "label": " The quotient criterion is a statement about absolute convergence of a series."
    },
    "206-209": {
      "source": "206",
      "target": "209",
      "label": " The root criterion is a statement about absolute convergence of a series."
    },
    "206-211": {
      "source": "206",
      "target": "211",
      "label": "Taking the Cauchy product is an operation on two absolute convergent series."
    },
    "005-300": {
      "source": "005",
      "target": "300",
      "label": "Boundedness of a function can be expressed in terms of the image or range."
    },
    "100-300": {
      "source": "100",
      "target": "300",
      "label": "A sequence of functions gives rise to a sequence of real numbers via point evaluations."
    },
    "101-303": {
      "source": "101",
      "target": "303",
      "label": "Limits of functions are limits of sequences of real numbers."
    },
    "001-300": {
      "source": "001",
      "target": "300",
      "label": "Bounded functions on an interval form a set."
    },
    "300-301": {
      "source": "300",
      "target": "301",
      "label": "Pointwise convergence is a notion of convergence for sequences of functions."
    },
    "301-302": {
      "source": "301",
      "target": "302",
      "label": "Pointwise convergence is a weaker notion of convergence for sequences of functions than uniform convergence."
    },
    "300-308": {
      "source": "300",
      "target": "308",
      "label": "Properties of the limit of a sequence of continuous functions."
    },
    "301-308": {
      "source": "301",
      "target": "308",
      "label": "The pointwise limit of a sequences of continuous functions does not have to be continuous."
    },
    "300-400": {
      "source": "300",
      "target": "400",
      "label": "The exponential series can be considered as a sequence of partial sums of functions"
    },
    "200-400": {
      "source": "200",
      "target": "400",
      "label": "The exponential series can be considered as a sequence of partial sums of functions"
    },
    "300-403": {
      "source": "300",
      "target": "403",
      "label": "A power series is essentially a sequence of partial sums of functions."
    },
    "001-010": {
      "source": "001",
      "target": "010",
      "label": "We use different operations to work with multiple sets."
    },
    "010-110": {
      "source": "010",
      "target": "110",
      "label": "Set operations may be used to modify set properties like opennes, closedness or compactness."
    },
    "304-500": {
      "source": "304",
      "target": "500",
      "label": "Differentiability of a function is a stronger property than continuity."
    },
    "500-501": {
      "source": "500",
      "target": "501",
      "label": "How to differentiate a sum of differentiable functions."
    },
    "500-506": {
      "source": "500",
      "target": "506",
      "label": "Rolle's theorem makes a statement about zeros of the first derivative of a differentiable function."
    },
    "506-507": {
      "source": "506",
      "target": "507",
      "label": "A notion stronger than pointwise convergence is uniform convergence."
    },
    "300-302": {
      "source": "300",
      "target": "302",
      "label": "Special notion of convergence for sequences of functions."
    },
    "101-304": {
      "source": "101",
      "target": "304",
      "label": "Continuous functions map convergent sequences to convergent sequences."
    },
    "304-400": {
      "source": "304",
      "target": "400",
      "label": "The exponential function is continuous."
    },
    "103-306": {
      "source": "103",
      "target": "306",
      "label": "Continuity of sums, products, and quotients is preserved as a consequence of the limit theorems for sequences."
    },
    "304-306": {
      "source": "304",
      "target": "306",
      "label": "Continuity is preserved under certain operations with functions."
    },
    "502-609": {
      "source": "502",
      "target": "609",
      "label": "Integration by substitution is loosely speaking the inverse operation to calculating the derivative via the chain rule."
    },
    "304-307": {
      "source": "304",
      "target": "307",
      "label": "Continuity preverves compactness of sets."
    },
    "304-309": {
      "source": "304",
      "target": "309",
      "label": "Continuous functions on intervals don't have jumps. Instead they attain every value in between to elements of their range."
    },
    "303-304": {
      "source": "303",
      "target": "304",
      "label": "If a function is continuous at a point, the the value coincides with the function limit at this point."
    },
    "302-304": {
      "source": "302",
      "target": "304",
      "label": "Uniform convergence of continuous functions leads to a continuous limit function."
    },
    "305-308": {
      "source": "305",
      "target": "308",
      "label": "The epsilon-delta criterion allows for an elegant proof of the continuity of the uniform limit of a sequence of continuous functions."
    },
    "103-303": {
      "source": "103",
      "target": "303",
      "label": "Calculating limits of functions builds on the limit theorems of sequences."
    },
    "402-403": {
      "source": "402",
      "target": "403",
      "label": "Each partial sum of a power series is a polynomial."
    },
    "110-305": {
      "source": "110",
      "target": "305",
      "label": "Characterize continuity using open intervals."
    },
    "402-511": {
      "source": "402",
      "target": "511",
      "label": "Use polynomials to approximate differentiable functions."
    },
    "303-508": {
      "source": "303",
      "target": "508",
      "label": "Calculate limits of functions using l'Hospital's rule."
    },
    "403-511": {
      "source": "403",
      "target": "511",
      "label": "A Taylor series is a particular power series."
    },
    "508-509": {
      "source": "508",
      "target": "509",
      "label": "Further situations where limits can be calculated using l'Hospital's rule."
    },
    "403-503": {
      "source": "403",
      "target": "503",
      "label": "Uniform convergence within the domain of convergence of a power series."
    },
    "300-503": {
      "source": "300",
      "target": "503",
      "label": "Differentiability of sequences of functions."
    },
    "500-503": {
      "source": "500",
      "target": "503",
      "label": "Differentiability of sequences of functions."
    },
    "301-503": {
      "source": "301",
      "target": "503",
      "label": "Proving pointwise convergence of a sequence of differentiable functions is part of proving the differentiability of the limit function."
    },
    "302-503": {
      "source": "302",
      "target": "503",
      "label": "Proving uniform convergence of the derivatives of a function is part of proving the differentiability of the limit function."
    },
    "510-511": {
      "source": "510",
      "target": "511",
      "label": "Evaluations of higher derivatives form the coefficients of a Taylor polynomial."
    },
    "511-512": {
      "source": "511",
      "target": "512",
      "label": "Application of Taylor's theorem to a particular example."
    },
    "512-513": {
      "source": "512",
      "target": "513",
      "label": "Proof of Taylor's theorem."
    },
    "304-305": {
      "source": "304",
      "target": "305",
      "label": "A different notion of continuity using open balls."
    },
    "002-600": {
      "source": "002",
      "target": "600",
      "label": "Functions that are constant on intervals of real numbers."
    },
    "003-600": {
      "source": "003",
      "target": "600",
      "label": "Step functions are a particular type of piecewise defined mapping."
    },
    "600-601": {
      "source": "600",
      "target": "601",
      "label": "A first notion of area under a function graph for step functions."
    },
    "601-603": {
      "source": "601",
      "target": "603",
      "label": "Generalizing the concept of an integral to bounded functions via approximation."
    },
    "500-606": {
      "source": "500",
      "target": "606",
      "label": "Differentiation is in some sense the opposite of integration."
    },
    "500-606": {
      "source": "500",
      "target": "606",
      "label": "Differentiation is in some sense the opposite of integration."
    },
    "601-602": {
      "source": "601",
      "target": "602",
      "label": "The definition of the Riemann integral gives rise to nice properties."
    },
    "603-609": {
      "source": "603",
      "target": "609",
      "label": "A tool to calculate the integral of a bounded function."
    },
    "006-609": {
      "source": "006",
      "target": "609",
      "label": "Transformations of the domain of integration need to be invertible or at least injective."
    },
    "500-609": {
      "source": "500",
      "target": "609",
      "label": "Transformations of the domain of integration need to be differentiable."
    },
    "400-609": {
      "source": "400",
      "target": "609",
      "label": "Using the substitution rule may help to calculate integrals of exponentials."
    },
    "007-609": {
      "source": "007",
      "target": "609",
      "label": "Some integrands in the substitution rule involve compositions of functions."
    },
    "207-613": {
      "source": "207",
      "target": "613",
      "label": "Comparison principles aim at inheriting a nice property from a well-known object to a new object of study."
    },
    "606-607": {
      "source": "606",
      "target": "607",
      "label": "The second fundamental theorem tells us how antiderivatives differ."
    },
    "500-607": {
      "source": "500",
      "target": "607",
      "label": "The second fundamental theorem connects integration and differentiation."
    },
    "601-604": {
      "source": "601",
      "target": "604",
      "label": "By definition the Riemann integral consists of limits of integrals of step functions."
    },
    "603-605": {
      "source": "603",
      "target": "605",
      "label": "Properties of the Riemann integral."
    },
    "605-609": {
      "source": "605",
      "target": "609",
      "label": "The Riemann integral comes with an order of the integral boundaries."
    },
    "605-608": {
      "source": "605",
      "target": "608",
      "label": "A further property of the Riemann integral is the mean-value theorem."
    },
    "501-610": {
      "source": "501",
      "target": "610",
      "label": "This integration rule can be seen as an inversion of the product rule of differentiation."
    },
    "603-610": {
      "source": "603",
      "target": "610",
      "label": "A further important rule for calculating integrals."
    },
    "507-608": {
      "source": "507",
      "target": "608",
      "label": "A further mean value property for integrals instead of derivatives."
    },
    "603-604": {
      "source": "603",
      "target": "604",
      "label": "Compute integrals according to the definition."
    },
    "603-607": {
      "source": "603",
      "target": "607",
      "label": "The second fundamental theorem connects integration and differentiation."
    },
    "203-613": {
      "source": "203",
      "target": "613",
      "label": "Characterize the convergence of an integral by the convergence of a suitable series."
    },
    "612-613": {
      "source": "612",
      "target": "613",
      "label": "Estimate improper Riemann integrals via series."
    },
    "604-606": {
      "source": "604",
      "target": "606",
      "label": "The fundamental theorem of calculus allows to reuse examples of integrals and derivatives in order to calculate new integrals."
    },
    "603-612": {
      "source": "603",
      "target": "612",
      "label": "An improper integral is defined via a limit of Rimeann integrals on bounded sets."
    },
    "003-606": {
      "source": "003",
      "target": "606",
      "label": "An antiderivative is also a map."
    },
    "303-612": {
      "source": "303",
      "target": "612",
      "label": "An improper integral is defined as the limit of a function (the antiderivative)."
    },
    "003-402": {
      "source": "003",
      "target": "402",
      "label": "Polynomials can be interpreted as real valued functions."
    },
    "609-611": {
      "source": "609",
      "target": "611",
      "label": "The substitution rule is often used for calculating integrals of rational functions."
    },
    "108-106": {
      "source": "108",
      "target": "106",
      "label": "The fact that every Cauchy sequence converges can be derived from the Bolzano-Weierstraß theorem."
    },
      "source": "102",
      "label": "Cauchy sequences are bounded."
    },
    "402-611": {
      "source": "402",
      "target": "611",
      "label": "How to integrate rational functions."
    },
    "008-009": {
      "source": "008",
      "target": "009",
      "label": "How to construct logical statements."
    },
    "004-012": {
      "source": "004",
      "target": "012",
      "label": "Countable sets can be bijectively mapped to the natural numbers or a finite subset of the natural numbers."
    },
    "012-113": {
      "source": "012",
      "target": "113",
      "label": "Uncountability of the real numbers in particular means that the reals are not a countable set."
    },
    "104-113": {
      "source": "104",
      "target": "113",
      "label": "The uncountability of the reals can be shown via a interval nesting which converges do to the monotonicity of the underlying sequences."
    },
    "106-113": {
      "source": "106",
      "target": "113",
      "label": "Uncountability of the real numbers can be proven as a consequence of the completeness of the real numbers."
    },
    "006-012": {
      "source": "006",
      "target": "012",
      "label": "Countable sets can be bijectively mapped to the natural numbers or a finite subset of the natural numbers."
    },
    "203-207": {
      "source": "203",
      "target": "207",
      "label": "Characterize the convergence/divergence of a series by the convergence/divergence of a majorant/minorant."
    }
  }
}