Skip to content
Snippets Groups Projects
sched_fair.c 38.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
     *
     *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
     *
     *  Interactivity improvements by Mike Galbraith
     *  (C) 2007 Mike Galbraith <efault@gmx.de>
     *
     *  Various enhancements by Dmitry Adamushko.
     *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
     *
     *  Group scheduling enhancements by Srivatsa Vaddagiri
     *  Copyright IBM Corporation, 2007
     *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
     *
     *  Scaled math optimizations by Thomas Gleixner
     *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
    
     *
     *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
     *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
    
    #include <linux/latencytop.h>
    
    
     * Targeted preemption latency for CPU-bound tasks:
    
     * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
    
     * NOTE: this latency value is not the same as the concept of
    
    Ingo Molnar's avatar
    Ingo Molnar committed
     * 'timeslice length' - timeslices in CFS are of variable length
     * and have no persistent notion like in traditional, time-slice
     * based scheduling concepts.
    
    Ingo Molnar's avatar
    Ingo Molnar committed
     * (to see the precise effective timeslice length of your workload,
     *  run vmstat and monitor the context-switches (cs) field)
    
    unsigned int sysctl_sched_latency = 20000000ULL;
    
     * Minimal preemption granularity for CPU-bound tasks:
    
     * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
    
    unsigned int sysctl_sched_min_granularity = 4000000ULL;
    
     * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
     */
    
    static unsigned int sched_nr_latency = 5;
    
    
    /*
     * After fork, child runs first. (default) If set to 0 then
     * parent will (try to) run first.
    
    const_debug unsigned int sysctl_sched_child_runs_first = 1;
    
    /*
     * sys_sched_yield() compat mode
     *
     * This option switches the agressive yield implementation of the
     * old scheduler back on.
     */
    unsigned int __read_mostly sysctl_sched_compat_yield;
    
    
    /*
     * SCHED_OTHER wake-up granularity.
    
     * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
    
     *
     * This option delays the preemption effects of decoupled workloads
     * and reduces their over-scheduling. Synchronous workloads will still
     * have immediate wakeup/sleep latencies.
     */
    
    unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
    
    const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
    
    
    static const struct sched_class fair_sched_class;
    
    
    /**************************************************************
     * CFS operations on generic schedulable entities:
     */
    
    
    static inline struct task_struct *task_of(struct sched_entity *se)
    {
    	return container_of(se, struct task_struct, se);
    }
    
    
    #ifdef CONFIG_FAIR_GROUP_SCHED
    
    /* cpu runqueue to which this cfs_rq is attached */
    
    static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
    {
    
    	return cfs_rq->rq;
    
    /* An entity is a task if it doesn't "own" a runqueue */
    #define entity_is_task(se)	(!se->my_q)
    
    /* Walk up scheduling entities hierarchy */
    #define for_each_sched_entity(se) \
    		for (; se; se = se->parent)
    
    static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
    {
    	return p->se.cfs_rq;
    }
    
    /* runqueue on which this entity is (to be) queued */
    static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
    {
    	return se->cfs_rq;
    }
    
    /* runqueue "owned" by this group */
    static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
    {
    	return grp->my_q;
    }
    
    /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
     * another cpu ('this_cpu')
     */
    static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
    {
    	return cfs_rq->tg->cfs_rq[this_cpu];
    }
    
    /* Iterate thr' all leaf cfs_rq's on a runqueue */
    #define for_each_leaf_cfs_rq(rq, cfs_rq) \
    	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
    
    /* Do the two (enqueued) entities belong to the same group ? */
    static inline int
    is_same_group(struct sched_entity *se, struct sched_entity *pse)
    {
    	if (se->cfs_rq == pse->cfs_rq)
    		return 1;
    
    	return 0;
    }
    
    static inline struct sched_entity *parent_entity(struct sched_entity *se)
    {
    	return se->parent;
    }
    
    
    #else	/* CONFIG_FAIR_GROUP_SCHED */
    
    static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
    {
    	return container_of(cfs_rq, struct rq, cfs);
    
    }
    
    #define entity_is_task(se)	1
    
    
    #define for_each_sched_entity(se) \
    		for (; se; se = NULL)
    
    static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
    
    	return &task_rq(p)->cfs;
    
    static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
    {
    	struct task_struct *p = task_of(se);
    	struct rq *rq = task_rq(p);
    
    	return &rq->cfs;
    }
    
    /* runqueue "owned" by this group */
    static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
    {
    	return NULL;
    }
    
    static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
    {
    	return &cpu_rq(this_cpu)->cfs;
    }
    
    #define for_each_leaf_cfs_rq(rq, cfs_rq) \
    		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
    
    static inline int
    is_same_group(struct sched_entity *se, struct sched_entity *pse)
    {
    	return 1;
    }
    
    static inline struct sched_entity *parent_entity(struct sched_entity *se)
    {
    	return NULL;
    }
    
    #endif	/* CONFIG_FAIR_GROUP_SCHED */
    
    
    
    /**************************************************************
     * Scheduling class tree data structure manipulation methods:
     */
    
    
    static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
    
    	s64 delta = (s64)(vruntime - min_vruntime);
    	if (delta > 0)
    
    		min_vruntime = vruntime;
    
    	return min_vruntime;
    }
    
    
    static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
    
    {
    	s64 delta = (s64)(vruntime - min_vruntime);
    	if (delta < 0)
    		min_vruntime = vruntime;
    
    	return min_vruntime;
    }
    
    
    static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    	return se->vruntime - cfs_rq->min_vruntime;
    
    /*
     * Enqueue an entity into the rb-tree:
     */
    
    static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
    	struct rb_node *parent = NULL;
    	struct sched_entity *entry;
    
    	s64 key = entity_key(cfs_rq, se);
    
    	int leftmost = 1;
    
    	/*
    	 * Find the right place in the rbtree:
    	 */
    	while (*link) {
    		parent = *link;
    		entry = rb_entry(parent, struct sched_entity, run_node);
    		/*
    		 * We dont care about collisions. Nodes with
    		 * the same key stay together.
    		 */
    
    		if (key < entity_key(cfs_rq, entry)) {
    
    			link = &parent->rb_left;
    		} else {
    			link = &parent->rb_right;
    			leftmost = 0;
    		}
    	}
    
    	/*
    	 * Maintain a cache of leftmost tree entries (it is frequently
    	 * used):
    	 */
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    	if (leftmost) {
    
    		cfs_rq->rb_leftmost = &se->run_node;
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    		/*
    		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
    		 * value tracking the leftmost vruntime in the tree.
    		 */
    		cfs_rq->min_vruntime =
    			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
    	}
    
    
    	rb_link_node(&se->run_node, parent, link);
    	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
    }
    
    
    static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    	if (cfs_rq->rb_leftmost == &se->run_node) {
    		struct rb_node *next_node;
    		struct sched_entity *next;
    
    		next_node = rb_next(&se->run_node);
    		cfs_rq->rb_leftmost = next_node;
    
    		if (next_node) {
    			next = rb_entry(next_node,
    					struct sched_entity, run_node);
    			cfs_rq->min_vruntime =
    				max_vruntime(cfs_rq->min_vruntime,
    					     next->vruntime);
    		}
    	}
    
    	if (cfs_rq->next == se)
    		cfs_rq->next = NULL;
    
    
    	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
    }
    
    static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
    {
    	return cfs_rq->rb_leftmost;
    }
    
    static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
    {
    	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
    }
    
    
    static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
    {
    
    	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
    
    	if (!last)
    		return NULL;
    
    
    	return rb_entry(last, struct sched_entity, run_node);
    
    /**************************************************************
     * Scheduling class statistics methods:
     */
    
    
    #ifdef CONFIG_SCHED_DEBUG
    int sched_nr_latency_handler(struct ctl_table *table, int write,
    		struct file *filp, void __user *buffer, size_t *lenp,
    		loff_t *ppos)
    {
    	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
    
    	if (ret || !write)
    		return ret;
    
    	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
    					sysctl_sched_min_granularity);
    
    	return 0;
    }
    #endif
    
     * delta *= P[w / rw]
    
     */
    static inline unsigned long
    calc_delta_weight(unsigned long delta, struct sched_entity *se)
    {
    	for_each_sched_entity(se) {
    		delta = calc_delta_mine(delta,
    				se->load.weight, &cfs_rq_of(se)->load);
    	}
    
    	return delta;
    }
    
    /*
    
     * delta /= w
    
     */
    static inline unsigned long
    calc_delta_fair(unsigned long delta, struct sched_entity *se)
    {
    
    	if (unlikely(se->load.weight != NICE_0_LOAD))
    		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
    
    /*
     * The idea is to set a period in which each task runs once.
     *
     * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
     * this period because otherwise the slices get too small.
     *
     * p = (nr <= nl) ? l : l*nr/nl
     */
    
    static u64 __sched_period(unsigned long nr_running)
    {
    	u64 period = sysctl_sched_latency;
    
    	unsigned long nr_latency = sched_nr_latency;
    
    
    	if (unlikely(nr_running > nr_latency)) {
    
    		period = sysctl_sched_min_granularity;
    
    		period *= nr_running;
    	}
    
    	return period;
    }
    
    
    /*
     * We calculate the wall-time slice from the period by taking a part
     * proportional to the weight.
     *
    
     * s = p*P[w/rw]
    
    static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    	unsigned long nr_running = cfs_rq->nr_running;
    
    	if (unlikely(!se->on_rq))
    		nr_running++;
    
    	return calc_delta_weight(__sched_period(nr_running), se);
    
     * We calculate the vruntime slice of a to be inserted task
    
    static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    {
    
    	return calc_delta_fair(sched_slice(cfs_rq, se), se);
    
    /*
     * Update the current task's runtime statistics. Skip current tasks that
     * are not in our scheduling class.
     */
    static inline void
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
    	      unsigned long delta_exec)
    
    	unsigned long delta_exec_weighted;
    
    	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
    
    
    	curr->sum_exec_runtime += delta_exec;
    
    	schedstat_add(cfs_rq, exec_clock, delta_exec);
    
    	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
    
    	curr->vruntime += delta_exec_weighted;
    
    static void update_curr(struct cfs_rq *cfs_rq)
    
    	struct sched_entity *curr = cfs_rq->curr;
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	u64 now = rq_of(cfs_rq)->clock;
    
    	unsigned long delta_exec;
    
    	if (unlikely(!curr))
    		return;
    
    	/*
    	 * Get the amount of time the current task was running
    	 * since the last time we changed load (this cannot
    	 * overflow on 32 bits):
    	 */
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	delta_exec = (unsigned long)(now - curr->exec_start);
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	__update_curr(cfs_rq, curr, delta_exec);
    	curr->exec_start = now;
    
    
    	if (entity_is_task(curr)) {
    		struct task_struct *curtask = task_of(curr);
    
    		cpuacct_charge(curtask, delta_exec);
    
    		account_group_exec_runtime(curtask, delta_exec);
    
    }
    
    static inline void
    
    update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
    
    }
    
    /*
     * Task is being enqueued - update stats:
     */
    
    static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	/*
    	 * Are we enqueueing a waiting task? (for current tasks
    	 * a dequeue/enqueue event is a NOP)
    	 */
    
    	if (se != cfs_rq->curr)
    
    		update_stats_wait_start(cfs_rq, se);
    
    update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    	schedstat_set(se->wait_max, max(se->wait_max,
    			rq_of(cfs_rq)->clock - se->wait_start));
    
    	schedstat_set(se->wait_count, se->wait_count + 1);
    	schedstat_set(se->wait_sum, se->wait_sum +
    			rq_of(cfs_rq)->clock - se->wait_start);
    
    	schedstat_set(se->wait_start, 0);
    
    }
    
    static inline void
    
    update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	/*
    	 * Mark the end of the wait period if dequeueing a
    	 * waiting task:
    	 */
    
    	if (se != cfs_rq->curr)
    
    		update_stats_wait_end(cfs_rq, se);
    
    }
    
    /*
     * We are picking a new current task - update its stats:
     */
    static inline void
    
    update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    	/*
    	 * We are starting a new run period:
    	 */
    
    	se->exec_start = rq_of(cfs_rq)->clock;
    
    }
    
    /**************************************************
     * Scheduling class queueing methods:
     */
    
    
    #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
    static void
    add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
    {
    	cfs_rq->task_weight += weight;
    }
    #else
    static inline void
    add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
    {
    }
    #endif
    
    
    static void
    account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    	update_load_add(&cfs_rq->load, se->load.weight);
    
    	if (!parent_entity(se))
    		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
    
    	if (entity_is_task(se)) {
    
    		add_cfs_task_weight(cfs_rq, se->load.weight);
    
    		list_add(&se->group_node, &cfs_rq->tasks);
    	}
    
    	cfs_rq->nr_running++;
    	se->on_rq = 1;
    }
    
    static void
    account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    	update_load_sub(&cfs_rq->load, se->load.weight);
    
    	if (!parent_entity(se))
    		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
    
    	if (entity_is_task(se)) {
    
    		add_cfs_task_weight(cfs_rq, -se->load.weight);
    
    		list_del_init(&se->group_node);
    	}
    
    static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    {
    #ifdef CONFIG_SCHEDSTATS
    	if (se->sleep_start) {
    
    		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
    
    		struct task_struct *tsk = task_of(se);
    
    
    		if ((s64)delta < 0)
    			delta = 0;
    
    		if (unlikely(delta > se->sleep_max))
    			se->sleep_max = delta;
    
    		se->sleep_start = 0;
    		se->sum_sleep_runtime += delta;
    
    
    		account_scheduler_latency(tsk, delta >> 10, 1);
    
    	}
    	if (se->block_start) {
    
    		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
    
    		struct task_struct *tsk = task_of(se);
    
    
    		if ((s64)delta < 0)
    			delta = 0;
    
    		if (unlikely(delta > se->block_max))
    			se->block_max = delta;
    
    		se->block_start = 0;
    		se->sum_sleep_runtime += delta;
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    
    		/*
    		 * Blocking time is in units of nanosecs, so shift by 20 to
    		 * get a milliseconds-range estimation of the amount of
    		 * time that the task spent sleeping:
    		 */
    		if (unlikely(prof_on == SLEEP_PROFILING)) {
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
    				     delta >> 20);
    		}
    
    		account_scheduler_latency(tsk, delta >> 10, 0);
    
    static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    #ifdef CONFIG_SCHED_DEBUG
    	s64 d = se->vruntime - cfs_rq->min_vruntime;
    
    	if (d < 0)
    		d = -d;
    
    	if (d > 3*sysctl_sched_latency)
    		schedstat_inc(cfs_rq, nr_spread_over);
    #endif
    }
    
    
    static void
    place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
    {
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    	u64 vruntime;
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    	if (first_fair(cfs_rq)) {
    		vruntime = min_vruntime(cfs_rq->min_vruntime,
    				__pick_next_entity(cfs_rq)->vruntime);
    	} else
    		vruntime = cfs_rq->min_vruntime;
    
    	/*
    	 * The 'current' period is already promised to the current tasks,
    	 * however the extra weight of the new task will slow them down a
    	 * little, place the new task so that it fits in the slot that
    	 * stays open at the end.
    	 */
    
    	if (initial && sched_feat(START_DEBIT))
    
    		vruntime += sched_vslice(cfs_rq, se);
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	if (!initial) {
    
    		/* sleeps upto a single latency don't count. */
    
    		if (sched_feat(NEW_FAIR_SLEEPERS)) {
    			unsigned long thresh = sysctl_sched_latency;
    
    			/*
    			 * convert the sleeper threshold into virtual time
    			 */
    			if (sched_feat(NORMALIZED_SLEEPER))
    				thresh = calc_delta_fair(thresh, se);
    
    			vruntime -= thresh;
    		}
    
    		/* ensure we never gain time by being placed backwards. */
    		vruntime = max_vruntime(se->vruntime, vruntime);
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    	se->vruntime = vruntime;
    
    static void
    
    enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
    
    	 * Update run-time statistics of the 'current'.
    
    	account_entity_enqueue(cfs_rq, se);
    
    	if (wakeup) {
    
    		place_entity(cfs_rq, se, 0);
    
    		enqueue_sleeper(cfs_rq, se);
    
    	update_stats_enqueue(cfs_rq, se);
    
    	check_spread(cfs_rq, se);
    
    	if (se != cfs_rq->curr)
    		__enqueue_entity(cfs_rq, se);
    
    dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
    
    	/*
    	 * Update run-time statistics of the 'current'.
    	 */
    	update_curr(cfs_rq);
    
    
    	update_stats_dequeue(cfs_rq, se);
    
    Peter Zijlstra's avatar
    Peter Zijlstra committed
    #ifdef CONFIG_SCHEDSTATS
    
    		if (entity_is_task(se)) {
    			struct task_struct *tsk = task_of(se);
    
    			if (tsk->state & TASK_INTERRUPTIBLE)
    
    				se->sleep_start = rq_of(cfs_rq)->clock;
    
    			if (tsk->state & TASK_UNINTERRUPTIBLE)
    
    				se->block_start = rq_of(cfs_rq)->clock;
    
    	if (se != cfs_rq->curr)
    
    		__dequeue_entity(cfs_rq, se);
    	account_entity_dequeue(cfs_rq, se);
    
    }
    
    /*
     * Preempt the current task with a newly woken task if needed:
     */
    
    check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    
    	unsigned long ideal_runtime, delta_exec;
    
    
    	ideal_runtime = sched_slice(cfs_rq, curr);
    
    	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
    
    	if (delta_exec > ideal_runtime)
    
    		resched_task(rq_of(cfs_rq)->curr);
    }
    
    
    set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    
    	/* 'current' is not kept within the tree. */
    	if (se->on_rq) {
    		/*
    		 * Any task has to be enqueued before it get to execute on
    		 * a CPU. So account for the time it spent waiting on the
    		 * runqueue.
    		 */
    		update_stats_wait_end(cfs_rq, se);
    		__dequeue_entity(cfs_rq, se);
    	}
    
    
    	update_stats_curr_start(cfs_rq, se);
    
    	cfs_rq->curr = se;
    
    #ifdef CONFIG_SCHEDSTATS
    	/*
    	 * Track our maximum slice length, if the CPU's load is at
    	 * least twice that of our own weight (i.e. dont track it
    	 * when there are only lesser-weight tasks around):
    	 */
    
    	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
    
    		se->slice_max = max(se->slice_max,
    			se->sum_exec_runtime - se->prev_sum_exec_runtime);
    	}
    #endif
    
    	se->prev_sum_exec_runtime = se->sum_exec_runtime;
    
    static struct sched_entity *
    pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
    {
    
    	struct rq *rq = rq_of(cfs_rq);
    	u64 pair_slice = rq->clock - cfs_rq->pair_start;
    
    	if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
    
    		cfs_rq->pair_start = rq->clock;
    
    static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
    
    	struct sched_entity *se = NULL;
    
    	if (first_fair(cfs_rq)) {
    		se = __pick_next_entity(cfs_rq);
    
    		se = pick_next(cfs_rq, se);
    
    		set_next_entity(cfs_rq, se);
    	}
    
    static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
    
    {
    	/*
    	 * If still on the runqueue then deactivate_task()
    	 * was not called and update_curr() has to be done:
    	 */
    	if (prev->on_rq)
    
    	check_spread(cfs_rq, prev);
    
    		update_stats_wait_start(cfs_rq, prev);
    
    		/* Put 'current' back into the tree. */
    		__enqueue_entity(cfs_rq, prev);
    	}
    
    	cfs_rq->curr = NULL;
    
    static void
    entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
    
    	 * Update run-time statistics of the 'current'.
    
    #ifdef CONFIG_SCHED_HRTICK
    	/*
    	 * queued ticks are scheduled to match the slice, so don't bother
    	 * validating it and just reschedule.
    	 */
    
    	if (queued) {
    		resched_task(rq_of(cfs_rq)->curr);
    		return;
    	}
    
    	/*
    	 * don't let the period tick interfere with the hrtick preemption
    	 */
    	if (!sched_feat(DOUBLE_TICK) &&
    			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
    		return;
    #endif
    
    
    	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
    
    		check_preempt_tick(cfs_rq, curr);
    
    }
    
    /**************************************************
     * CFS operations on tasks:
     */
    
    
    #ifdef CONFIG_SCHED_HRTICK
    static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
    {
    	struct sched_entity *se = &p->se;
    	struct cfs_rq *cfs_rq = cfs_rq_of(se);
    
    	WARN_ON(task_rq(p) != rq);
    
    	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
    		u64 slice = sched_slice(cfs_rq, se);
    		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
    		s64 delta = slice - ran;
    
    		if (delta < 0) {
    			if (rq->curr == p)
    				resched_task(p);
    			return;
    		}
    
    		/*
    		 * Don't schedule slices shorter than 10000ns, that just
    		 * doesn't make sense. Rely on vruntime for fairness.
    		 */
    
    		if (rq->curr != p)
    
    			delta = max_t(s64, 10000LL, delta);
    
    		hrtick_start(rq, delta);
    
    
    /*
     * called from enqueue/dequeue and updates the hrtick when the
     * current task is from our class and nr_running is low enough
     * to matter.
     */
    static void hrtick_update(struct rq *rq)
    {
    	struct task_struct *curr = rq->curr;
    
    	if (curr->sched_class != &fair_sched_class)
    		return;
    
    	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
    		hrtick_start_fair(rq, curr);
    }
    
    #else /* !CONFIG_SCHED_HRTICK */
    
    static inline void
    hrtick_start_fair(struct rq *rq, struct task_struct *p)
    {
    }
    
    
    static inline void hrtick_update(struct rq *rq)
    {
    }
    
    /*
     * The enqueue_task method is called before nr_running is
     * increased. Here we update the fair scheduling stats and
     * then put the task into the rbtree:
     */
    
    static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
    
    {
    	struct cfs_rq *cfs_rq;
    
    	struct sched_entity *se = &p->se;
    
    
    	for_each_sched_entity(se) {
    
    			break;
    		cfs_rq = cfs_rq_of(se);
    
    		enqueue_entity(cfs_rq, se, wakeup);
    
    }
    
    /*
     * The dequeue_task method is called before nr_running is
     * decreased. We remove the task from the rbtree and
     * update the fair scheduling stats:
     */
    
    static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
    
    {
    	struct cfs_rq *cfs_rq;
    
    	struct sched_entity *se = &p->se;
    
    
    	for_each_sched_entity(se) {
    		cfs_rq = cfs_rq_of(se);
    
    		dequeue_entity(cfs_rq, se, sleep);
    
    		/* Don't dequeue parent if it has other entities besides us */
    
    		if (cfs_rq->load.weight)
    
     * sched_yield() support is very simple - we dequeue and enqueue.
     *
     * If compat_yield is turned on then we requeue to the end of the tree.
    
    static void yield_task_fair(struct rq *rq)
    
    	struct task_struct *curr = rq->curr;
    	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    	struct sched_entity *rightmost, *se = &curr->se;
    
    	 * Are we the only task in the tree?
    	 */
    	if (unlikely(cfs_rq->nr_running == 1))
    		return;
    
    
    	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
    
    		 * Update run-time statistics of the 'current'.
    
    Dmitry Adamushko's avatar
    Dmitry Adamushko committed
    		update_curr(cfs_rq);
    
    
    		return;
    	}
    	/*
    	 * Find the rightmost entry in the rbtree:
    
    Dmitry Adamushko's avatar
    Dmitry Adamushko committed
    	rightmost = __pick_last_entity(cfs_rq);
    
    	/*
    	 * Already in the rightmost position?
    	 */
    
    	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
    
    		return;
    
    	/*
    	 * Minimally necessary key value to be last in the tree:
    
    Dmitry Adamushko's avatar
    Dmitry Adamushko committed
    	 * Upon rescheduling, sched_class::put_prev_task() will place
    	 * 'current' within the tree based on its new key value.
    
    	se->vruntime = rightmost->vruntime + 1;
    
    /*
     * wake_idle() will wake a task on an idle cpu if task->cpu is
     * not idle and an idle cpu is available.  The span of cpus to
     * search starts with cpus closest then further out as needed,
     * so we always favor a closer, idle cpu.
    
     * Domains may include CPUs that are not usable for migration,
     * hence we need to mask them out (cpu_active_map)
    
     *
     * Returns the CPU we should wake onto.
     */
    #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
    static int wake_idle(int cpu, struct task_struct *p)
    {
    	cpumask_t tmp;
    	struct sched_domain *sd;
    	int i;
    
    	/*
    	 * If it is idle, then it is the best cpu to run this task.
    	 *
    	 * This cpu is also the best, if it has more than one task already.
    	 * Siblings must be also busy(in most cases) as they didn't already
    	 * pickup the extra load from this cpu and hence we need not check
    	 * sibling runqueue info. This will avoid the checks and cache miss
    	 * penalities associated with that.
    	 */
    
    	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
    
    		return cpu;
    
    	for_each_domain(cpu, sd) {
    
    		if ((sd->flags & SD_WAKE_IDLE)
    		    || ((sd->flags & SD_WAKE_IDLE_FAR)
    			&& !task_hot(p, task_rq(p)->clock, sd))) {
    
    			cpus_and(tmp, sd->span, p->cpus_allowed);