Skip to content
Snippets Groups Projects
builtin-stat.c 18.2 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * builtin-stat.c
     *
     * Builtin stat command: Give a precise performance counters summary
     * overview about any workload, CPU or specific PID.
     *
     * Sample output:
    
       $ perf stat ~/hackbench 10
       Time: 0.104
    
        Performance counter stats for '/home/mingo/hackbench':
    
           1255.538611  task clock ticks     #      10.143 CPU utilization factor
                 54011  context switches     #       0.043 M/sec
                   385  CPU migrations       #       0.000 M/sec
                 17755  pagefaults           #       0.014 M/sec
            3808323185  CPU cycles           #    3033.219 M/sec
            1575111190  instructions         #    1254.530 M/sec
              17367895  cache references     #      13.833 M/sec
               7674421  cache misses         #       6.112 M/sec
    
        Wall-clock time elapsed:   123.786620 msecs
    
     *
     * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
     *
     * Improvements and fixes by:
     *
     *   Arjan van de Ven <arjan@linux.intel.com>
     *   Yanmin Zhang <yanmin.zhang@intel.com>
     *   Wu Fengguang <fengguang.wu@intel.com>
     *   Mike Galbraith <efault@gmx.de>
     *   Paul Mackerras <paulus@samba.org>
    
     *   Jaswinder Singh Rajput <jaswinder@kernel.org>
    
     *
     * Released under the GPL v2. (and only v2, not any later version)
    
    #include "perf.h"
    
    #include "util/util.h"
    
    #include "util/parse-options.h"
    #include "util/parse-events.h"
    
    #include "util/event.h"
    #include "util/debug.h"
    
    #include "util/header.h"
    
    #include "util/cpumap.h"
    
    static struct perf_event_attr default_attrs[] = {
    
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK		},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES	},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS		},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS		},
    
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES		},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS		},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES		},
    
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES		},
    
    static int			run_idx				=  0;
    
    static int			run_count			=  1;
    
    static bool			no_inherit			= false;
    
    static bool			no_aggr				= false;
    
    static pid_t			target_pid			= -1;
    
    static pid_t			target_tid			= -1;
    static pid_t			*all_tids			=  NULL;
    static int			thread_num			=  0;
    
    static pid_t			child_pid			= -1;
    
    static bool			big_num				=  true;
    
    static int			event_scaled[MAX_COUNTERS];
    
    static struct {
    	u64 val;
    	u64 ena;
    	u64 run;
    } cpu_counts[MAX_NR_CPUS][MAX_COUNTERS];
    
    
    static volatile int done = 0;
    
    
    	double n, mean, M2;
    
    static void update_stats(struct stats *stats, u64 val)
    {
    
    	stats->n++;
    	delta = val - stats->mean;
    	stats->mean += delta / stats->n;
    	stats->M2 += delta*(val - stats->mean);
    
    static double avg_stats(struct stats *stats)
    {
    
    	return stats->mean;
    
     * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
     *
    
     *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
     * s^2 = -------------------------------
     *                  n - 1
    
     *
     * http://en.wikipedia.org/wiki/Stddev
     *
     * The std dev of the mean is related to the std dev by:
     *
     *             s
     * s_mean = -------
     *          sqrt(n)
     *
    
     */
    static double stddev_stats(struct stats *stats)
    {
    
    	double variance = stats->M2 / (stats->n - 1);
    	double variance_mean = variance / stats->n;
    
    	return sqrt(variance_mean);
    
    struct stats			event_res_stats[MAX_COUNTERS][3];
    
    struct stats			runtime_nsecs_stats[MAX_NR_CPUS];
    struct stats			runtime_cycles_stats[MAX_NR_CPUS];
    struct stats			runtime_branches_stats[MAX_NR_CPUS];
    
    struct stats			walltime_nsecs_stats;
    
    #define MATCH_EVENT(t, c, counter)			\
    	(attrs[counter].type == PERF_TYPE_##t &&	\
    	 attrs[counter].config == PERF_COUNT_##c)
    
    
    #define ERR_PERF_OPEN \
    
    "counter %d, sys_perf_event_open() syscall returned with %d (%s).  /bin/dmesg may provide additional information."
    
    static int create_perf_stat_counter(int counter, bool *perm_err)
    
    	struct perf_event_attr *attr = attrs + counter;
    
    		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
    				    PERF_FORMAT_TOTAL_TIME_RUNNING;
    
    		for (cpu = 0; cpu < nr_cpus; cpu++) {
    
    			fd[cpu][counter][0] = sys_perf_event_open(attr,
    					-1, cpumap[cpu], -1, 0);
    
    			if (fd[cpu][counter][0] < 0) {
    				if (errno == EPERM || errno == EACCES)
    					*perm_err = true;
    				error(ERR_PERF_OPEN, counter,
    
    					 fd[cpu][counter][0], strerror(errno));
    
    		attr->inherit = !no_inherit;
    		if (target_pid == -1 && target_tid == -1) {
    
    			attr->disabled = 1;
    			attr->enable_on_exec = 1;
    		}
    
    		for (thread = 0; thread < thread_num; thread++) {
    			fd[0][counter][thread] = sys_perf_event_open(attr,
    				all_tids[thread], -1, -1, 0);
    
    			if (fd[0][counter][thread] < 0) {
    				if (errno == EPERM || errno == EACCES)
    					*perm_err = true;
    				error(ERR_PERF_OPEN, counter,
    
    					 fd[0][counter][thread],
    					 strerror(errno));
    
    /*
     * Does the counter have nsecs as a unit?
     */
    static inline int nsec_counter(int counter)
    {
    
    	if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
    	    MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
    
     * Read out the results of a single counter:
    
     * aggregate counts across CPUs in system-wide mode
    
    static void read_counter_aggr(int counter)
    
    	u64 count[3], single_count[3];
    
    
    	count[0] = count[1] = count[2] = 0;
    
    	for (cpu = 0; cpu < nr_cpus; cpu++) {
    
    		for (thread = 0; thread < thread_num; thread++) {
    			if (fd[cpu][counter][thread] < 0)
    				continue;
    
    			res = read(fd[cpu][counter][thread],
    					single_count, nv * sizeof(u64));
    			assert(res == nv * sizeof(u64));
    
    			close(fd[cpu][counter][thread]);
    			fd[cpu][counter][thread] = -1;
    
    			count[0] += single_count[0];
    			if (scale) {
    				count[1] += single_count[1];
    				count[2] += single_count[2];
    			}
    
    		}
    	}
    
    	scaled = 0;
    	if (scale) {
    		if (count[2] == 0) {
    
    			event_scaled[counter] = -1;
    
    		if (count[2] < count[1]) {
    
    			event_scaled[counter] = 1;
    
    			count[0] = (unsigned long long)
    				((double)count[0] * count[1] / count[2] + 0.5);
    		}
    	}
    
    
    	for (i = 0; i < 3; i++)
    		update_stats(&event_res_stats[counter][i], count[i]);
    
    	if (verbose) {
    		fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
    				count[0], count[1], count[2]);
    	}
    
    
    	/*
    	 * Save the full runtime - to allow normalization during printout:
    	 */
    
    	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
    
    		update_stats(&runtime_nsecs_stats[0], count[0]);
    
    	if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
    
    		update_stats(&runtime_cycles_stats[0], count[0]);
    
    	if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
    
    		update_stats(&runtime_branches_stats[0], count[0]);
    }
    
    /*
     * Read out the results of a single counter:
     * do not aggregate counts across CPUs in system-wide mode
     */
    static void read_counter(int counter)
    {
    	u64 count[3];
    	int cpu;
    	size_t res, nv;
    
    	count[0] = count[1] = count[2] = 0;
    
    	nv = scale ? 3 : 1;
    
    	for (cpu = 0; cpu < nr_cpus; cpu++) {
    
    		if (fd[cpu][counter][0] < 0)
    			continue;
    
    		res = read(fd[cpu][counter][0], count, nv * sizeof(u64));
    
    		assert(res == nv * sizeof(u64));
    
    		close(fd[cpu][counter][0]);
    		fd[cpu][counter][0] = -1;
    
    		if (scale) {
    			if (count[2] == 0) {
    				count[0] = 0;
    			} else if (count[2] < count[1]) {
    				count[0] = (unsigned long long)
    				((double)count[0] * count[1] / count[2] + 0.5);
    			}
    		}
    		cpu_counts[cpu][counter].val = count[0]; /* scaled count */
    		cpu_counts[cpu][counter].ena = count[1];
    		cpu_counts[cpu][counter].run = count[2];
    
    		if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
    			update_stats(&runtime_nsecs_stats[cpu], count[0]);
    		if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
    			update_stats(&runtime_cycles_stats[cpu], count[0]);
    		if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
    			update_stats(&runtime_branches_stats[cpu], count[0]);
    	}
    
    static int run_perf_stat(int argc __used, const char **argv)
    
    {
    	unsigned long long t0, t1;
    	int status = 0;
    
    	int child_ready_pipe[2], go_pipe[2];
    
    	if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
    
    		perror("failed to create pipes");
    		exit(1);
    	}
    
    
    	if (forks) {
    
    			perror("failed to fork");
    
    
    			close(child_ready_pipe[0]);
    			close(go_pipe[1]);
    			fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
    
    			/*
    			 * Do a dummy execvp to get the PLT entry resolved,
    			 * so we avoid the resolver overhead on the real
    			 * execvp call.
    			 */
    			execvp("", (char **)argv);
    
    			/*
    			 * Tell the parent we're ready to go
    			 */
    			close(child_ready_pipe[1]);
    
    			/*
    			 * Wait until the parent tells us to go.
    			 */
    			if (read(go_pipe[0], &buf, 1) == -1)
    				perror("unable to read pipe");
    
    			execvp(argv[0], (char **)argv);
    
    			perror(argv[0]);
    			exit(-1);
    		}
    
    		if (target_tid == -1 && target_pid == -1 && !system_wide)
    			all_tids[0] = child_pid;
    
    
    		 * Wait for the child to be ready to exec.
    
    		close(go_pipe[0]);
    		if (read(child_ready_pipe[0], &buf, 1) == -1)
    
    			perror("unable to read pipe");
    
    		close(child_ready_pipe[0]);
    
    	for (counter = 0; counter < nr_counters; counter++)
    
    		ncreated += create_perf_stat_counter(counter, &perm_err);
    
    	if (ncreated < nr_counters) {
    		if (perm_err)
    			error("You may not have permission to collect %sstats.\n"
    			      "\t Consider tweaking"
    			      " /proc/sys/kernel/perf_event_paranoid or running as root.",
    			      system_wide ? "system-wide " : "");
    		die("Not all events could be opened.\n");
    
    		if (child_pid != -1)
    			kill(child_pid, SIGTERM);
    		return -1;
    	}
    
    
    	/*
    	 * Enable counters and exec the command:
    	 */
    	t0 = rdclock();
    
    
    	if (forks) {
    		close(go_pipe[1]);
    		wait(&status);
    	} else {
    
    	update_stats(&walltime_nsecs_stats, t1 - t0);
    
    	if (no_aggr) {
    		for (counter = 0; counter < nr_counters; counter++)
    			read_counter(counter);
    	} else {
    		for (counter = 0; counter < nr_counters; counter++)
    			read_counter_aggr(counter);
    	}
    
    static void print_noise(int counter, double avg)
    
    	if (run_count == 1)
    		return;
    
    	fprintf(stderr, "   ( +- %7.3f%% )",
    			100 * stddev_stats(&event_res_stats[counter][0]) / avg);
    
    static void nsec_printout(int cpu, int counter, double avg)
    
    	double msecs = avg / 1e6;
    
    	if (no_aggr)
    		fprintf(stderr, "CPU%-4d %18.6f  %-24s",
    			cpumap[cpu], msecs, event_name(counter));
    	else
    		fprintf(stderr, " %18.6f  %-24s", msecs, event_name(counter));
    
    	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
    
    		fprintf(stderr, " # %10.3f CPUs ",
    				avg / avg_stats(&walltime_nsecs_stats));
    
    static void abs_printout(int cpu, int counter, double avg)
    
    	double total, ratio = 0.0;
    
    	char cpustr[16] = { '\0', };
    
    	if (no_aggr)
    		sprintf(cpustr, "CPU%-4d", cpumap[cpu]);
    	else
    		cpu = 0;
    
    		fprintf(stderr, "%s %'18.0f  %-24s",
    			cpustr, avg, event_name(counter));
    
    		fprintf(stderr, "%s %18.0f  %-24s",
    			cpustr, avg, event_name(counter));
    
    	if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
    
    		total = avg_stats(&runtime_cycles_stats[cpu]);
    
    
    		if (total)
    			ratio = avg / total;
    
    		fprintf(stderr, " # %10.3f IPC  ", ratio);
    
    	} else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter) &&
    
    			runtime_branches_stats[cpu].n != 0) {
    		total = avg_stats(&runtime_branches_stats[cpu]);
    
    
    		if (total)
    			ratio = avg * 100 / total;
    
    
    		fprintf(stderr, " # %10.3f %%    ", ratio);
    
    	} else if (runtime_nsecs_stats[cpu].n != 0) {
    		total = avg_stats(&runtime_nsecs_stats[cpu]);
    
    
    		if (total)
    			ratio = 1000.0 * avg / total;
    
    		fprintf(stderr, " # %10.3f M/sec", ratio);
    
    /*
     * Print out the results of a single counter:
    
     * aggregated counts in system-wide mode
    
    static void print_counter_aggr(int counter)
    
    	double avg = avg_stats(&event_res_stats[counter][0]);
    
    	int scaled = event_scaled[counter];
    
    		fprintf(stderr, " %18s  %-24s\n",
    
    			"<not counted>", event_name(counter));
    		return;
    	}
    
    	if (nsec_counter(counter))
    
    		nsec_printout(-1, counter, avg);
    
    	else
    
    		abs_printout(-1, counter, avg);
    
    
    	if (scaled) {
    		double avg_enabled, avg_running;
    
    		avg_enabled = avg_stats(&event_res_stats[counter][1]);
    		avg_running = avg_stats(&event_res_stats[counter][2]);
    
    		fprintf(stderr, "  (scaled from %.2f%%)",
    
    				100 * avg_running / avg_enabled);
    	}
    
    /*
     * Print out the results of a single counter:
     * does not use aggregated count in system-wide
     */
    static void print_counter(int counter)
    {
    	u64 ena, run, val;
    	int cpu;
    
    	for (cpu = 0; cpu < nr_cpus; cpu++) {
    		val = cpu_counts[cpu][counter].val;
    		ena = cpu_counts[cpu][counter].ena;
    		run = cpu_counts[cpu][counter].run;
    		if (run == 0 || ena == 0) {
    			fprintf(stderr, "CPU%-4d %18s  %-24s", cpumap[cpu],
    					"<not counted>", event_name(counter));
    
    			fprintf(stderr, "\n");
    			continue;
    		}
    
    		if (nsec_counter(counter))
    			nsec_printout(cpu, counter, val);
    		else
    			abs_printout(cpu, counter, val);
    
    		print_noise(counter, 1.0);
    
    		if (run != ena) {
    			fprintf(stderr, "  (scaled from %.2f%%)",
    					100.0 * run / ena);
    		}
    		fprintf(stderr, "\n");
    	}
    }
    
    
    static void print_stat(int argc, const char **argv)
    {
    	int i, counter;
    
    
    	fprintf(stderr, " Performance counter stats for ");
    
    		fprintf(stderr, "\'%s", argv[0]);
    		for (i = 1; i < argc; i++)
    			fprintf(stderr, " %s", argv[i]);
    
    	} else if (target_pid != -1)
    		fprintf(stderr, "process id \'%d", target_pid);
    	else
    		fprintf(stderr, "thread id \'%d", target_tid);
    
    	fprintf(stderr, "\'");
    	if (run_count > 1)
    		fprintf(stderr, " (%d runs)", run_count);
    	fprintf(stderr, ":\n\n");
    
    	if (no_aggr) {
    		for (counter = 0; counter < nr_counters; counter++)
    			print_counter(counter);
    	} else {
    		for (counter = 0; counter < nr_counters; counter++)
    			print_counter_aggr(counter);
    	}
    
    	fprintf(stderr, " %18.9f  seconds time elapsed",
    
    			avg_stats(&walltime_nsecs_stats)/1e9);
    
    	if (run_count > 1) {
    		fprintf(stderr, "   ( +- %7.3f%% )",
    
    				100*stddev_stats(&walltime_nsecs_stats) /
    				avg_stats(&walltime_nsecs_stats));
    
    	}
    	fprintf(stderr, "\n\n");
    
    static volatile int signr = -1;
    
    
    static void skip_signal(int signo)
    
    	signr = signo;
    }
    
    static void sig_atexit(void)
    {
    
    	if (child_pid != -1)
    		kill(child_pid, SIGTERM);
    
    
    	if (signr == -1)
    		return;
    
    	signal(signr, SIG_DFL);
    	kill(getpid(), signr);
    
    }
    
    static const char * const stat_usage[] = {
    
    	"perf stat [<options>] [<command>]",
    
    	NULL
    };
    
    static const struct option options[] = {
    	OPT_CALLBACK('e', "event", NULL, "event",
    
    		     "event selector. use 'perf list' to list available events",
    		     parse_events),
    
    	OPT_BOOLEAN('i', "no-inherit", &no_inherit,
    		    "child tasks do not inherit counters"),
    
    	OPT_INTEGER('p', "pid", &target_pid,
    
    		    "stat events on existing process id"),
    	OPT_INTEGER('t', "tid", &target_tid,
    		    "stat events on existing thread id"),
    
    	OPT_BOOLEAN('a', "all-cpus", &system_wide,
    
    		    "system-wide collection from all CPUs"),
    
    	OPT_BOOLEAN('c', "scale", &scale,
    
    		    "scale/normalize counters"),
    
    		    "be more verbose (show counter open errors, etc)"),
    
    	OPT_INTEGER('r', "repeat", &run_count,
    		    "repeat command and print average + stddev (max: 100)"),
    
    	OPT_BOOLEAN('n', "null", &null_run,
    		    "null run - dont start any counters"),
    
    	OPT_BOOLEAN('B', "big-num", &big_num,
    		    "print large numbers with thousands\' separators"),
    
    	OPT_STRING('C', "cpu", &cpu_list, "cpu",
    		    "list of cpus to monitor in system-wide"),
    
    	OPT_BOOLEAN('A', "no-aggr", &no_aggr,
    		    "disable CPU count aggregation"),
    
    int cmd_stat(int argc, const char **argv, const char *prefix __used)
    
    	argc = parse_options(argc, argv, options, stat_usage,
    		PARSE_OPT_STOP_AT_NON_OPTION);
    
    	if (!argc && target_pid == -1 && target_tid == -1)
    
    		usage_with_options(stat_usage, options);
    
    	if (run_count <= 0)
    
    		usage_with_options(stat_usage, options);
    
    	/* no_aggr is for system-wide only */
    	if (no_aggr && !system_wide)
    		usage_with_options(stat_usage, options);
    
    
    	/* Set attrs and nr_counters if no event is selected and !null_run */
    	if (!null_run && !nr_counters) {
    		memcpy(attrs, default_attrs, sizeof(default_attrs));
    		nr_counters = ARRAY_SIZE(default_attrs);
    	}
    
    		nr_cpus = read_cpu_map(cpu_list);
    
    	if (nr_cpus < 1)
    		usage_with_options(stat_usage, options);
    
    
    	if (target_pid != -1) {
    		target_tid = target_pid;
    		thread_num = find_all_tid(target_pid, &all_tids);
    		if (thread_num <= 0) {
    			fprintf(stderr, "Can't find all threads of pid %d\n",
    					target_pid);
    			usage_with_options(stat_usage, options);
    		}
    	} else {
    		all_tids=malloc(sizeof(pid_t));
    		if (!all_tids)
    			return -ENOMEM;
    
    		all_tids[0] = target_tid;
    		thread_num = 1;
    	}
    
    	for (i = 0; i < MAX_NR_CPUS; i++) {
    		for (j = 0; j < MAX_COUNTERS; j++) {
    			fd[i][j] = malloc(sizeof(int)*thread_num);
    			if (!fd[i][j])
    				return -ENOMEM;
    		}
    	}
    
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	/*
    	 * We dont want to block the signals - that would cause
    	 * child tasks to inherit that and Ctrl-C would not work.
    	 * What we want is for Ctrl-C to work in the exec()-ed
    	 * task, but being ignored by perf stat itself:
    	 */
    
    	atexit(sig_atexit);
    
    Ingo Molnar's avatar
    Ingo Molnar committed
    	signal(SIGINT,  skip_signal);
    	signal(SIGALRM, skip_signal);
    	signal(SIGABRT, skip_signal);
    
    
    	status = 0;
    	for (run_idx = 0; run_idx < run_count; run_idx++) {
    		if (run_count != 1 && verbose)
    
    			fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
    
    	if (status != -1)
    		print_stat(argc, argv);